Research Article

LIMD2是急性心肌梗死中细胞衰老-免疫/炎症的标志

卷 31, 期 17, 2024

发表于: 02 November, 2023

页: [2400 - 2413] 页: 14

弟呕挨: 10.2174/0109298673274563231031044134

价格: $65

摘要

背景:急性心肌梗死(AMI)是一种年龄依赖性心血管疾病,其中细胞老化、免疫和炎症因素改变病程;然而,AMI的细胞老化-免疫/炎症特征尚未研究。 方法:基于GEO数据库获取microRNA (miRNA)测序、mRNA测序和单细胞测序数据,利用Seurat软件包对ami相关细胞亚群进行鉴定。随后,筛选差异表达的mirna和mrna,建立竞争内源性rna (ceRNAs)网络。通过单样本基因集富集分析(ssGSEA)、ESTIMATE和CIBERSORT算法计算衰老和免疫评分,并使用Hmisc包筛选与衰老和免疫评分相关性最高的基因。最后,通过蛋白-蛋白相互作用(PPI)和分子对接分析预测AMI治疗的潜在药物。 结果:AMI中有4种细胞类型(巨噬细胞、成纤维细胞、内皮细胞、CD8 T细胞),其中CD8 T细胞衰老活性最低。基于差异表达miRNAs (DEmiRNAs)靶基因和差异表达mrna (demmrnas)中的重叠基因,建立了miRNAs- mNRA相互作用的ceRNA网络。观察CD8 T细胞的24个标记基因。LIMD2被认为是AMI中细胞衰老免疫/炎症相关的中枢基因。本研究还发现了DB03276-LIMD2- ami的潜在治疗网络,该网络在DB03276-LIMD2之间表现出优异且稳定的结合状态。 结论:本研究确定LIMD2是细胞衰老免疫/炎症相关的中枢基因。ceRNA网络和DB03276-LIMD2-LAMI治疗网络丰富了对AMI发病机制和治疗机制的认识。

关键词: 急性心肌梗死,细胞老化,免疫,炎症,cerna, LIMD2。

[1]
Hong, G.; Rui, G.; Zhang, D.; Lian, M.; Yang, Y.; Chen, P.; Yang, H.; Guan, Z.; Chen, W.; Wang, Y. A smartphone-assisted pressure-measuring-based diagnosis system for acute myocardial infarction diagnosis. Int. J. Nanomedicine, 2019, 14, 2451-2464.
[http://dx.doi.org/10.2147/IJN.S197541] [PMID: 31040668]
[2]
Tyrrell, D.J.; Blin, M.G.; Song, J.; Wood, S.C.; Zhang, M.; Beard, D.A.; Goldstein, D.R. Age-associated mitochondrial dysfunction accelerates atherogenesis. Circ. Res., 2020, 126(3), 298-314.
[http://dx.doi.org/10.1161/CIRCRESAHA.119.315644] [PMID: 31818196]
[3]
Van de Werf, F.; Bax, J.; Betriu, A.; Blomstrom-Lundqvist, C.; Crea, F.; Falk, V.; Filippatos, G.; Fox, K.; Huber, K.; Kastrati, A.; Rosengren, A.; Steg, P.G.; Tubaro, M.; Verheugt, F.; Weidinger, F.; Weis, M.; Vahanian, A.; Camm, J.; De Caterina, R.; Dean, V.; Dickstein, K.; Filippatos, G.; Funck-Brentano, C.; Hellemans, I.; Kristensen, S.D.; McGregor, K.; Sechtem, U.; Silber, S.; Tendera, M.; Widimsky, P.; Zamorano, J.L.; Silber, S.; Aguirre, F.V.; Al-Attar, N.; Alegria, E.; Andreotti, F.; Benzer, W.; Breithardt, O.; Danchin, N.; Mario, C.D.; Dudek, D.; Gulba, D.; Halvorsen, S.; Kaufmann, P.; Kornowski, R.; Lip, G.Y.H.; Rutten, F. Management of acute myocardial infarction in patients presenting with persistent ST-segment elevation. Eur. Heart J., 2008, 29(23), 2909-2945.
[http://dx.doi.org/10.1093/eurheartj/ehn416] [PMID: 19004841]
[4]
Cipriani, A.; Dall’Aglio, P-B.; Mazzotta, L.; Sirico, D.; Sarris, G.; Hazekamp, M.; Carrel, T.; Frigiola, A.; Sojak, V.; Rito, M-L.; Horer, J.; Roussin, R.; Cleuziou, J.; Meyns, B.; Fragata, J.; Telles, H.; Polimenakos, A-C.; Francois, K.; Veshti, A.; Salminen, J.; Rocafort, A-G.; Nosal, M.; Protopapas, E.; Tumbarello, R.; Sarto, P.; Pegoraro, C.; Motta, R.; Salvo, G-D.; Corrado, D.; Vida, V-L.; Padalino, M-A. Diagnostic yield of non-invasive testing in patients with anomalous aortic origin of coronary arteries: A multicentric experience. Congenit. Heart Dis., 2022, 17(4), 375-385.
[http://dx.doi.org/10.32604/chd.2022.019385]
[5]
Lieder, H.R.; Kleinbongard, P.; Skyschally, A.; Hagelschuer, H.; Chilian, W.M.; Heusch, G. Vago-splenic axis in signal transduction of remote ischemic preconditioning in pigs and rats. Circ. Res., 2018, 123(10), 1152-1163.
[http://dx.doi.org/10.1161/CIRCRESAHA.118.313859] [PMID: 30359199]
[6]
Bhatia, S.; Arora, S.; Bhatia, S.M.; Al-Hijji, M.; Reddy, Y.N.V.; Patel, P.; Rihal, C.S.; Gersh, B.J.; Deshmukh, A. Non-st-segment-elevation myocardial infarction among patients with chronic kidney disease: A propensity score-matched comparison of percutaneous coronary intervention versus conservative management. J. Am. Heart Assoc., 2018, 7(6), e007920.
[http://dx.doi.org/10.1161/JAHA.117.007920] [PMID: 29525779]
[7]
Saber Hafez, M.; Roushdy, A.; Ezzeldin, D. Predictors and effects of persistent hypertension after successful treatment of coarctation of the aorta. Congenit. Heart Dis., 2022, 17(3), 325-333.
[http://dx.doi.org/10.32604/chd.2022.019025]
[8]
Wang, L.; Zhang, M.; Chen, X.; Pang, Y.; Liu, J.; Xu, Z. Assessment of reversibility in pulmonary hypertension related to congenital heart disease by using biomarkers and clinical features. Congenit. Heart Dis., 2022, 17(1), 87-97.
[http://dx.doi.org/10.32604/CHD.2022.018452]
[9]
Alique, M.; Luna, C.; Carracedo, J.; Ramírez, R. LDL biochemical modifications: A link between atherosclerosis and aging. Food Nutr. Res., 2015, 59(1), 29240.
[http://dx.doi.org/10.3402/fnr.v59.29240] [PMID: 26637360]
[10]
Le Blanc, J.; Lordkipanidzé, M. Platelet function in aging. Front. Cardiovasc. Med., 2019, 6, 109.
[http://dx.doi.org/10.3389/fcvm.2019.00109] [PMID: 31448291]
[11]
Zhang, Y.; Herbert, B.S.; Rajashekhar, G.; Ingram, D.A.; Yoder, M.C.; Clauss, M.; Rehman, J. Premature senescence of highly proliferative endothelial progenitor cells is induced by tumor necrosis factor-α via the p38 mitogen-activated protein kinase pathway. FASEB J., 2009, 23(5), 1358-1365.
[http://dx.doi.org/10.1096/fj.08-110296] [PMID: 19124561]
[12]
Zeng, J.Y.; Du, J.J.; Pan, Y.; Wu, J.; Bi, H.L.; Cui, B.H.; Zhai, T.Y.; Sun, Y.; Sun, Y.H. Calcium-sensing receptor in human peripheral blood T lymphocytes is involved in the AMI onset and progression through the NF-κB signaling pathway. Int. J. Mol. Sci., 2016, 17(9), 1397.
[http://dx.doi.org/10.3390/ijms17091397] [PMID: 27563892]
[13]
Minato, N.; Hattori, M.; Hamazaki, Y. Physiology and pathology of T-cell aging. Int. Immunol., 2020, 32(4), 223-231.
[http://dx.doi.org/10.1093/intimm/dxaa006] [PMID: 31967307]
[14]
Salmena, L.; Poliseno, L.; Tay, Y.; Kats, L.; Pandolfi, P.P. A ceRNA hypothesis: The rosetta stone of a hidden RNA language? Cell, 2011, 146(3), 353-358.
[http://dx.doi.org/10.1016/j.cell.2011.07.014] [PMID: 21802130]
[15]
Si, X.; Zheng, H.; Wei, G.; Li, M.; Li, W.; Wang, H.; Guo, H.; Sun, J.; Li, C.; Zhong, S.; Liao, W.; Liao, Y.; Huang, S.; Bin, J. circRNA Hipk3 induces cardiac regeneration after myocardial infarction in mice by binding to Notch1 and miR-133a. Mol. Ther. Nucleic Acids, 2020, 21, 636-655.
[http://dx.doi.org/10.1016/j.omtn.2020.06.024] [PMID: 32736292]
[16]
Huang, S.; Li, X.; Zheng, H.; Si, X.; Li, B.; Wei, G.; Li, C.; Chen, Y.; Chen, Y.; Liao, W.; Liao, Y.; Bin, J. Loss of super-enhancer-regulated circRNA Nfix induces cardiac regeneration after myocardial infarction in adult mice. Circulation, 2019, 139(25), 2857-2876.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.118.038361] [PMID: 30947518]
[17]
Zhang, F.; Zhang, R.; Zhang, X.; Wu, Y.; Li, X.; Zhang, S.; Hou, W.; Ding, Y.; Tian, J.; Sun, L.; Kong, X. Comprehensive analysis of circRNA expression pattern and circRNA-miRNA-mRNA network in the pathogenesis of atherosclerosis in rabbits. Aging, 2018, 10(9), 2266-2283.
[http://dx.doi.org/10.18632/aging.101541] [PMID: 30187887]
[18]
Tagawa, T.; Gao, S.; Koparde, V.N.; Gonzalez, M.; Spouge, J.L.; Serquiña, A.P.; Lurain, K.; Ramaswami, R.; Uldrick, T.S.; Yarchoan, R.; Ziegelbauer, J.M. Discovery of Kaposi’s sarcoma herpesvirus-encoded circular RNAs and a human antiviral circular RNA. Proc. Natl. Acad. Sci., 2018, 115(50), 12805-12810.
[http://dx.doi.org/10.1073/pnas.1816183115] [PMID: 30455306]
[19]
Stuart, T.; Butler, A.; Hoffman, P.; Hafemeister, C.; Papalexi, E.; Mauck, W.M., 3rd; Hao, Y.; Stoeckius, M.; Smibert, P.; Satija, R. Comprehensive integration of single-cell data. Cell,, 2019, 177(7), 1888-1902.
[20]
Barbie, D.A.; Tamayo, P.; Boehm, J.S.; Kim, S.Y.; Moody, S.E.; Dunn, I.F.; Schinzel, A.C.; Sandy, P.; Meylan, E.; Scholl, C.; Fröhling, S.; Chan, E.M.; Sos, M.L.; Michel, K.; Mermel, C.; Silver, S.J.; Weir, B.A.; Reiling, J.H.; Sheng, Q.; Gupta, P.B.; Wadlow, R.C.; Le, H.; Hoersch, S.; Wittner, B.S.; Ramaswamy, S.; Livingston, D.M.; Sabatini, D.M.; Meyerson, M.; Thomas, R.K.; Lander, E.S.; Mesirov, J.P.; Root, D.E.; Gilliland, D.G.; Jacks, T.; Hahn, W.C. Systematic RNA interference reveals that oncogenic KRAS-driven cancers require TBK1. Nature, 2009, 462(7269), 108-112.
[http://dx.doi.org/10.1038/nature08460] [PMID: 19847166]
[21]
Shen, W.; Song, Z.; Zhong, X.; Huang, M.; Shen, D.; Gao, P.; Qian, X.; Wang, M.; He, X.; Wang, T.; Li, S.; Song, X. Sangerbox: A comprehensive, interaction-friendly clinical bioinformatics analysis platform. iMeta, 2022, 1(3), e36.
[http://dx.doi.org/10.1002/imt2.36]
[22]
Ritchie, M.E.; Phipson, B.; Wu, D.; Hu, Y.; Law, C.W.; Shi, W.; Smyth, G.K. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res., 2015, 43(7), e47.
[http://dx.doi.org/10.1093/nar/gkv007] [PMID: 25605792]
[23]
Yu, G.; Wang, L.G.; Han, Y.; He, Q.Y. clusterProfiler: An R package for comparing biological themes among gene clusters. OMICS, 2012, 16(5), 284-287.
[http://dx.doi.org/10.1089/omi.2011.0118] [PMID: 22455463]
[24]
Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res., 2003, 13(11), 2498-2504.
[http://dx.doi.org/10.1101/gr.1239303] [PMID: 14597658]
[25]
Yoshihara, K.; Shahmoradgoli, M.; Martínez, E.; Vegesna, R.; Kim, H.; Torres-Garcia, W.; Treviño, V.; Shen, H.; Laird, P.W.; Levine, D.A.; Carter, S.L.; Getz, G.; Stemke-Hale, K.; Mills, G.B.; Verhaak, R.G.W. Inferring tumour purity and stromal and immune cell admixture from expression data. Nat. Commun., 2013, 4(1), 2612.
[http://dx.doi.org/10.1038/ncomms3612] [PMID: 24113773]
[26]
Chen, B.; Khodadoust, M.S.; Liu, C.L.; Newman, A.M.; Alizadeh, A.A. Profiling tumor infiltrating immune cells with CIBERSORT. Methods Mol. Biol., 2018, 1711, 243-259.
[http://dx.doi.org/10.1007/978-1-4939-7493-1_12] [PMID: 29344893]
[27]
Harrell, F.E.; Harrell, M.F.E. Package ‘hmisc’. CRAN2018, 2019, 2019, 235-236.
[28]
Charoentong, P.; Finotello, F.; Angelova, M.; Mayer, C.; Efremova, M.; Rieder, D.; Hackl, H.; Trajanoski, Z. Pan-cancer immunogenomic analyses reveal genotype-immunophenotype relationships and predictors of response to checkpoint blockade. Cell Rep., 2017, 18(1), 248-262.
[http://dx.doi.org/10.1016/j.celrep.2016.12.019] [PMID: 28052254]
[29]
Franceschini, A.; Szklarczyk, M.D. BiocViews Network, B. 2015. Available from:https://www.bioconductor.org/packages/release/BiocViews.html#___ExperimentData
[30]
Jumper, J.; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.; Ronneberger, O.; Tunyasuvunakool, K.; Bates, R.; Žídek, A.; Potapenko, A.; Bridgland, A.; Meyer, C.; Kohl, S.A.A.; Ballard, A.J.; Cowie, A.; Romera-Paredes, B.; Nikolov, S.; Jain, R.; Adler, J.; Back, T.; Petersen, S.; Reiman, D.; Clancy, E.; Zielinski, M.; Steinegger, M.; Pacholska, M.; Berghammer, T.; Bodenstein, S.; Silver, D.; Vinyals, O.; Senior, A.W.; Kavukcuoglu, K.; Kohli, P.; Hassabis, D. Highly accurate protein structure prediction with AlphaFold. Nature, 2021, 596(7873), 583-589.
[http://dx.doi.org/10.1038/s41586-021-03819-2] [PMID: 34265844]
[31]
Jiménez, J.; Doerr, S.; Martínez-Rosell, G.; Rose, A.S.; De Fabritiis, G. DeepSite: Protein-binding site predictor using 3D-convolutional neural networks. Bioinformatics, 2017, 33(19), 3036-3042.
[http://dx.doi.org/10.1093/bioinformatics/btx350] [PMID: 28575181]
[32]
El-Hachem, N.; Haibe-Kains, B.; Khalil, A.; Kobeissy, F.H.; Nemer, G. AutoDock and AutoDockTools for protein-ligand docking: Beta-site amyloid precursor protein cleaving enzyme 1 (BACE1) as a case study. Neuroprot.: Methods Protocol., 2017, 391-403.
[33]
Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem., 2010, 31(2), 455-461.
[http://dx.doi.org/10.1002/jcc.21334] [PMID: 19499576]
[34]
DeLano, W.L. Pymol: An open-source molecular graphics tool. CCP4 Newsl. Protein Crystallogr, 2002, 40(1), 82-92.
[35]
Bauer, P.; Hess, B.; Lindahl, E. GROMACS 2022.3 Manual. 2022. Available from:https://zenodo.org/records/7037337
[36]
Zhang, Q.; Wang, L.; Wang, S.; Cheng, H.; Xu, L.; Pei, G.; Wang, Y.; Fu, C.; Jiang, Y.; He, C.; Wei, Q. Signaling pathways and targeted therapy for myocardial infarction. Signal Transduct. Target. Ther., 2022, 7(1), 78.
[http://dx.doi.org/10.1038/s41392-022-00925-z] [PMID: 35273164]
[37]
Nadareishvili, Z.G.; Koziol, D.E.; Szekely, B.; Ruetzler, C.; LaBiche, R.; McCarron, R.; DeGraba, T.J. Increased CD8(+) T cells associated with Chlamydia pneumoniae in symptomatic carotid plaque. Stroke, 2001, 32(9), 1966-1972.
[http://dx.doi.org/10.1161/hs0901.095633] [PMID: 11546882]
[38]
Laconi, E.; Marongiu, F.; DeGregori, J. Cancer as a disease of old age: Changing mutational and microenvironmental landscapes. Br. J. Cancer, 2020, 122(7), 943-952.
[http://dx.doi.org/10.1038/s41416-019-0721-1] [PMID: 32042067]
[39]
Ovadya, Y.; Landsberger, T.; Leins, H.; Vadai, E.; Gal, H.; Biran, A.; Yosef, R.; Sagiv, A.; Agrawal, A.; Shapira, A.; Windheim, J.; Tsoory, M.; Schirmbeck, R.; Amit, I.; Geiger, H.; Krizhanovsky, V. Impaired immune surveillance accelerates accumulation of senescent cells and aging. Nat. Commun., 2018, 9(1), 5435.
[http://dx.doi.org/10.1038/s41467-018-07825-3] [PMID: 30575733]
[40]
Desdín-Micó, G.; Soto-Heredero, G.; Aranda, J.F.; Oller, J.; Carrasco, E.; Gabandé-Rodríguez, E.; Blanco, E.M.; Alfranca, A.; Cussó, L.; Desco, M.; Ibañez, B.; Gortazar, A.R.; Fernández-Marcos, P.; Navarro, M.N.; Hernaez, B.; Alcamí, A.; Baixauli, F.; Mittelbrunn, M. T cells with dysfunctional mitochondria induce multimorbidity and premature senescence. Science, 2020, 368(6497), 1371-1376.
[http://dx.doi.org/10.1126/science.aax0860] [PMID: 32439659]
[41]
Yousefzadeh, M.J.; Flores, R.R.; Zhu, Y.; Schmiechen, Z.C.; Brooks, R.W.; Trussoni, C.E.; Cui, Y.; Angelini, L.; Lee, K.A.; McGowan, S.J.; Burrack, A.L.; Wang, D.; Dong, Q.; Lu, A.; Sano, T.; O’Kelly, R.D.; McGuckian, C.A.; Kato, J.I.; Bank, M.P.; Wade, E.A.; Pillai, S.P.S.; Klug, J.; Ladiges, W.C.; Burd, C.E.; Lewis, S.E.; LaRusso, N.F.; Vo, N.V.; Wang, Y.; Kelley, E.E.; Huard, J.; Stromnes, I.M.; Robbins, P.D.; Niedernhofer, L.J. An aged immune system drives senescence and ageing of solid organs. Nature, 2021, 594(7861), 100-105.
[http://dx.doi.org/10.1038/s41586-021-03547-7] [PMID: 33981041]
[42]
Mogilenko, D.A.; Shpynov, O.; Andhey, P.S.; Arthur, L.; Swain, A.; Esaulova, E.; Brioschi, S.; Shchukina, I.; Kerndl, M.; Bambouskova, M.; Yao, Z.; Laha, A.; Zaitsev, K.; Burdess, S.; Gillfilan, S.; Stewart, S.A.; Colonna, M.; Artyomov, M.N. Comprehensive profiling of an aging immune system reveals clonal GZMK+ CD8+ T cells as conserved hallmark of inflammaging. Immunity, 2021, 54(1), 99-115.e12.
[http://dx.doi.org/10.1016/j.immuni.2020.11.005] [PMID: 33271118]
[43]
Chang, N.C.; Yeh, C.T.; Lin, Y.K.; Kuo, K.T.; Fong, I.H.; Kounis, N.G.; Hu, P.; Hung, M.Y. Garcinol attenuates lipoprotein(a)-induced oxidative stress and inflammatory cytokine production in ventricular cardiomyocyte through α7-nicotinic acetylcholine receptor-mediated inhibition of the p38 MAPK and NF-κB signaling pathways. Antioxidants, 2021, 10(3), 461.
[http://dx.doi.org/10.3390/antiox10030461] [PMID: 33809417]
[44]
Du, L.; Chen, J.; Wu, Y.; Xia, G.; Chen, M.; Zhao, P.; Wang, Y.; Yao, D.; Liu, F.; Zhang, L.; Wang, X.; Yang, Y.; Wang, L. Long Non-coding RNA N1LR protects against myocardial ischemic/reperfusion injury through regulating the TGF-β signaling pathway. Front. Cardiovasc. Med., 2021, 8, 654969.
[http://dx.doi.org/10.3389/fcvm.2021.654969] [PMID: 34485393]
[45]
Xu, S.; Xia, X.; Liu, Y.; Chen, F.; Gu, R.; Bian, X.; Xu, X.; Jia, C.; Lu, S.; Gu, Y.; Bai, H.; Zhang, H. Remote cyclic compression ameliorates myocardial infarction injury in rats via AMPK-dependent pathway. Microvasc. Res., 2022, 141, 104313.
[http://dx.doi.org/10.1016/j.mvr.2022.104313] [PMID: 35041850]
[46]
Shah, H.; Hacker, A.; Langburt, D.; Dewar, M.; McFadden, M.J.; Zhang, H.; Kuzmanov, U.; Zhou, Y.Q.; Hussain, B.; Ehsan, F.; Hinz, B.; Gramolini, A.O.; Heximer, S.P. Myocardial infarction induces cardiac fibroblast transformation within injured and noninjured regions of the mouse heart. J. Proteome Res., 2021, 20(5), 2867-2881.
[http://dx.doi.org/10.1021/acs.jproteome.1c00098] [PMID: 33789425]
[47]
Araldi, R.P.; de Melo, T.C.; Levy, D.; de Souza, D.M.; Maurício, B.; Colozza-Gama, G.A.; Bydlowski, S.P.; Peng, H.; Rauscher, F.J., III; Cerutti, J.M. LIMD2 regulates key steps of metastasis cascade in papillary thyroid cancer cells via MAPK crosstalk. Cells, 2020, 9(11), 2522.
[http://dx.doi.org/10.3390/cells9112522] [PMID: 33238381]
[48]
Gajula, S.N.R.; Nadimpalli, N.; Sonti, R. Drug metabolic stability in early drug discovery to develop potential lead compounds. Drug Metab. Rev., 2021, 53(3), 459-477.
[http://dx.doi.org/10.1080/03602532.2021.1970178] [PMID: 34406889]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy