Generic placeholder image

Current Drug Therapy

Editor-in-Chief

ISSN (Print): 1574-8855
ISSN (Online): 2212-3903

Review Article

A Critical Sojourn of Hyaluronic Acid-based Hydrogels in the Wound Healing Process: Current Advances and Future Prospects

Author(s): Tanmay Sudhakar Markandeywar, Dilpreet Singh and Raj Kumar Narang*

Volume 19, Issue 5, 2024

Published on: 01 November, 2023

Page: [561 - 593] Pages: 33

DOI: 10.2174/0115748855262932230925064600

Price: $65

Open Access Journals Promotions 2
Abstract

"Hyaluronic acid (HA), a non-sulfated glycosaminoglycan (GAG), is a significant component of the epidermal extracellular matrix (ECM). It plays multiple roles in the inflammatory response, cell adhesion, migration, proliferation, differentiation, angiogenesis, and tissue regeneration. Due to its inherent characteristics, including non-immunoreactivity, exceptional biocompatibility, biodegradability, native biofunctionality, hydrophilicity, and non-immunoreactivity, HA has found applications in the production of wound dressings. HA's synergistic role in enhancing deeper penetration into chronic wounds and its biofunctional properties in the healing process have been harnessed. HA-based wound dressings, often incorporating biomolecules or drugs to improve the dressing's biochemical performance during wound healing, have been developed. In this review, we explore the current state of knowledge regarding hydrogels based on HA, focusing on their biofunctional properties and delivery mechanisms. We present the latest developments in the research and development of HA-based hydrogels for the treatment of skin wounds."

Keywords: Hyaluronic acid, hydrogel, wound healing, literature work, biofunctional property, mechanism.

Graphical Abstract
[1]
Huang S, Liu H, Liao K, Hu Q, Guo R, Deng K. Functionalized GO nanovehicles with nitric oxide release and photothermal activitybased hydrogels for bacteria-infected wound healing ACS Appl Mater Interfaces 2020; 12(26): acsami.0c04080..
[http://dx.doi.org/10.1021/acsami.0c04080] [PMID: 32475108]
[2]
Shi L, Zhao Y, Xie Q, et al. Moldable hyaluronan hydrogel enabled by dynamic metal–bisphosphonate coordination chemistry for wound healing. Adv Healthc Mater 2018; 7(5): 1700973.
[http://dx.doi.org/10.1002/adhm.201700973] [PMID: 29281172]
[3]
Li Z, Zhou F, Li Z, et al. Hydrogel cross-linked with dynamic covalent bonding and micellization for promoting burn wound healing. ACS Appl Mater Interfaces 2018; 10(30): 25194-202.
[http://dx.doi.org/10.1021/acsami.8b08165] [PMID: 29986126]
[4]
Luo P, Liu L, Xu W, Fan L, Nie M. Preparation and characterization of aminated hyaluronic acid/oxidized hydroxyethyl cellulose hydrogel. Carbohydr Polym 2018; 199: 170-7.
[http://dx.doi.org/10.1016/j.carbpol.2018.06.065] [PMID: 30143117]
[5]
Dhaliwal K, Lopez N. Hydrogel dressings and their application in burn wound care. Br J Community Nurs 2018; 23(Sup9): S24-7.
[http://dx.doi.org/10.12968/bjcn.2018.23.Sup9.S24]
[6]
Hong L, Shen M, Fang J, et al. Hyaluronic acid (HA)-based hydrogels for full-thickness wound repairing and skin regeneration. J Mater Sci Mater Med 2018; 29(9): 150.
[http://dx.doi.org/10.1007/s10856-018-6158-x] [PMID: 30196396]
[7]
Wu J, Chen A, Zhou Y, et al. Novel H2S-Releasing hydrogel for wound repair via in situ polarization of M2 macrophages. Biomaterials 2019; 222: 119398.
[http://dx.doi.org/10.1016/j.biomaterials.2019.119398] [PMID: 31487582]
[8]
Nguyen NTP, Nguyen LVH, Tran NMP, et al. The effect of oxidation degree and volume ratio of components on properties and applications of in situ cross-linking hydrogels based on chitosan and hyaluronic acid. Mater Sci Eng C 2019; 103: 109670.
[http://dx.doi.org/10.1016/j.msec.2019.04.049] [PMID: 31349450]
[9]
Liang Y, Zhao X, Hu T, et al. Adhesive hemostatic conducting injectable composite hydrogels with sustained drug release and photothermal antibacterial activity to promote full‐thickness skin regeneration during wound healing. Small 2019; 15(12): 1900046.
[http://dx.doi.org/10.1002/smll.201900046] [PMID: 30786150]
[10]
Ying H, Zhou J, Wang M, et al. In situ formed collagen-hyaluronic acid hydrogel as biomimetic dressing for promoting spontaneous wound healing. Mater Sci Eng C 2019; 101: 487-98.
[http://dx.doi.org/10.1016/j.msec.2019.03.093] [PMID: 31029343]
[11]
Zhao X, Wang L, Gao J, Chen X, Wang K. Hyaluronic acid/lysozyme self-assembled coacervate to promote cutaneous wound healing. Biomater Sci 2020; 8(6): 1702-10.
[http://dx.doi.org/10.1039/C9BM01886G] [PMID: 31994544]
[12]
Zhou W, Zi L, Cen Y, You C, Tian M. Copper sulfide nanoparticlesincorporated hyaluronic acid injectable hydrogel with enhanced angiogenesis to promote wound healing. Front Bioeng Biotechnol 2020; 8: 417.
[http://dx.doi.org/10.3389/fbioe.2020.00417] [PMID: 32457889]
[13]
Liu S, Liu X, Ren Y, et al. Mussel-inspired dual-cross-linking hyaluronic acid/ε-polylysine hydrogel with self-healing and antibacterial properties for wound healing. ACS Appl Mater Interfaces 2020; 12(25): 27876-88.
[http://dx.doi.org/10.1021/acsami.0c00782] [PMID: 32478498]
[14]
Tarusha L, Paoletti S, Travan A, Marsich E. Alginate membranes loaded with hyaluronic acid and silver nanoparticles to foster tissue healing and to control bacterial contamination of non-healing wounds. J Mater Sci Mater Med 2018; 29(2): 22.
[http://dx.doi.org/10.1007/s10856-018-6027-7] [PMID: 29396683]
[15]
Puertas-Bartolomé M, Benito-Garzón L, Fung S, Kohn J, Vázquez-Lasa B, San Román J. Bioadhesive functional hydrogels: Controlled release of catechol species with antioxidant and antiinflammatory behavior. Mater Sci Eng C 2019; 105: 110040.
[http://dx.doi.org/10.1016/j.msec.2019.110040] [PMID: 31546368]
[16]
Gao Z, Golland B, Tronci G, Thornton PD. A redox-responsive hyaluronic acid-based hydrogel for chronic wound management. J Mater Chem B Mater Biol Med 2019; 7(47): 7494-501.
[http://dx.doi.org/10.1039/C9TB01683J] [PMID: 31710328]
[17]
Zhu Q, Jiang M, Liu Q, et al. Enhanced healing activity of burn wound infection by a dextran-HA hydrogel enriched with sanguinarine. Biomater Sci 2018; 6(9): 2472-86.
[http://dx.doi.org/10.1039/C8BM00478A] [PMID: 30066700]
[18]
Ribeiro D, Carvalho Júnior A, Vale de Macedo G, et al. Polysaccharide-based formulations for healing of skin-related wound infections: lessons from animal models and clinical trials. Biomolecules 2019; 10(1): 63.
[http://dx.doi.org/10.3390/biom10010063] [PMID: 31905975]
[19]
Zhao W, Li Y, Zhang X, et al. Photo-responsive supramolecular hyaluronic acid hydrogels for accelerated wound healing. J Control Release 2020; 323: 24-35.
[http://dx.doi.org/10.1016/j.jconrel.2020.04.014] [PMID: 32283209]
[20]
Zhang J, Ge J, Xu Y, et al. Bioactive multi-engineered hydrogel offers simultaneous promise against antibiotic resistance and wound damage. Int J Biol Macromol 2020; 164: 4466-74.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.08.247] [PMID: 32890556]
[21]
Qin X, Qiao W, Wang Y, et al. An extracellular matrix-mimicking hydrogel for full thickness wound healing in diabetic mice. Macromol Biosci 2018; 18(7): 1800047.
[http://dx.doi.org/10.1002/mabi.201800047] [PMID: 29737012]
[22]
Zhang W, Qi X, Zhao Y, et al. Study of injectable Blueberry anthocyanins-loaded hydrogel for promoting full-thickness wound healing. Int J Pharm 2020; 586: 119543.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119543] [PMID: 32561307]
[23]
Wang T, Zheng Y, Shi Y, Zhao L. pH-responsive calcium alginate hydrogel laden with protamine nanoparticles and hyaluronan oligosaccharide promotes diabetic wound healing by enhancing angiogenesis and antibacterial activity. Drug Deliv Transl Res 2019; 9(1): 227-39.
[http://dx.doi.org/10.1007/s13346-018-00609-8] [PMID: 30519937]
[24]
Huang J, Ren J, Chen G, et al. Tunable sequential drug delivery system based on chitosan/hyaluronic acid hydrogels and PLGA microspheres for management of non-healing infected wounds. Mater Sci Eng C 2018; 89: 213-22.
[http://dx.doi.org/10.1016/j.msec.2018.04.009] [PMID: 29752091]
[25]
Serban MA, Skardal A. Hyaluronan chemistries for three-dimensional matrix applications. Matrix Biol 2019; 78-79: 337-45.
[http://dx.doi.org/10.1016/j.matbio.2018.02.010] [PMID: 29438729]
[26]
Griesser J, Hetényi G, Bernkop-Schnürch A. Thiolated hyaluronic acid as versatile Mucoadhesive polymer: from the chemistry behind to product developments—what are the capabilities? Polymers (Basel) 2018; 10(3): 243.
[http://dx.doi.org/10.3390/polym10030243] [PMID: 30966278]
[27]
Misra S, Hascall VC, Markwald RR, Ghatak S. Interactions between hyaluronan and its receptors (CD44, RHAMM) regulate the activities of inflammation and cancer. Front Immunol 2015; 6: 201.
[http://dx.doi.org/10.3389/fimmu.2015.00201] [PMID: 25999946]
[28]
Vasvani S, Kulkarni P, Rawtani D. Hyaluronic acid: A review on its biology, aspects of drug delivery, route of administrations and a special emphasis on its approved marketed products and recent clinical studies. Int J Biol Macromol 2020; 151: 1012-29.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.11.066] [PMID: 31715233]
[29]
Zhu J, Li F, Wang X, Yu J, Wu D. Hyaluronic acid and polyethylene glycol hybrid hydrogel encapsulating nanogel with hemostasis and sustainable antibacterial property for wound healing. ACS Appl Mater Interfaces 2018; 10(16): 13304-16.
[http://dx.doi.org/10.1021/acsami.7b18927] [PMID: 29607644]
[30]
Tian R, Qiu X, Yuan P, et al. Fabrication of self-healing hydrogels with on-demand antimicrobial activity and sustained biomolecule release for infected skin regeneration. ACS Appl Mater Interfaces 2018; 10(20): 17018-27.
[http://dx.doi.org/10.1021/acsami.8b01740] [PMID: 29693373]
[31]
Hsieh CM, Wang W, Chen YH, et al. A novel composite hydrogel composed of formic acid-decellularized pepsin-soluble extracellular matrix hydrogel and sacchachitin hydrogel as wound dressing to synergistically accelerate diabetic wound healing. Pharmaceutics 2020; 12(6): 538.
[http://dx.doi.org/10.3390/pharmaceutics12060538] [PMID: 32545186]
[32]
Frenkel JS. The role of hyaluronan in wound healing. Int Wound J 2014; 11(2): 159-63.
[http://dx.doi.org/10.1111/j.1742-481X.2012.01057.x]
[33]
Yang X, Wang B, Peng D, Nie X, Wang J, Yu C-Y, et al. Hyaluronic acid‐based injectable hydrogels for wound dressing and localized tumor therapy: A Review. Adv NanoBiomed Res 2022; 2(12): 2200124.
[34]
Yasin A, Ren Y, Li J, Sheng Y, Cao C. Advances in hyaluronic acid for biomedical applications. Front Bioeng Biotechnol 2022; 10: 910290.
[http://dx.doi.org/10.3389/fbioe.2022.910290]
[35]
Khunmanee S, Jeong Y. Crosslinking method of hyaluronic-based hydrogel for biomedical applications. J Tissue Eng 2017; 8: 2041731417726464.
[http://dx.doi.org/10.1177/2041731417726464]
[36]
Ibraheem W, Jedaiba W, Alnami A, Hussain Baiti L, Ali Manqari S, Bhati A, et al. Efficacy of hyaluronic acid gel and spray in healing of extraction wound: a randomized controlled study. Eur Rev Med Pharmacol Sci 2022; 26(10): 3444-9.
[http://dx.doi.org/10.26355/eurrev_202205_28838]
[37]
Zhou G, Zhu J, Jin L, Chen J, Xu R, Zhao Y, et al. Salvianolic-acid-B-loaded HA self-healing hydrogel promotes diabetic wound healing through promotion of anti-inflammation and angiogenesis. Int J Mol Sci 2023; 24(7): 6844.
[http://dx.doi.org/10.3390/ijms24076844]
[38]
Zhang Y, Zheng Y, Shu F, et al. In situ formed adhesive hyaluronic acid hydrogel with prolonged amnion-derived conditioned medium release for diabetic wound repair. Carbohydr Polym 2022; 276: 118752.
[http://dx.doi.org/10.1016/j.carbpol.2021.118752] [PMID: 34823781]
[39]
Sindhu RK, Gupta R, Wadhera G, Kumar P. Modern herbal nanogels: formulation, delivery methods, and applications. Gels 2022; 8(2): 97.
[http://dx.doi.org/10.3390/gels8020097] [PMID: 35200478]
[40]
del Olmo JA, Martínez VS, González RP, Alonso JM. Sustained drug release from biopolymer-based hydrogels and hydrogel coatings. Hydrogels - from tradition to innovative platforms with multiple applications. InechOpen 2022.
[http://dx.doi.org/10.5772/intechopen.103946]
[41]
Wang SY, Kim H, Kwak G, et al. Development of biocompatible HA hydrogels embedded with a new synthetic peptide promoting cellular migration for advanced wound care management. Adv Sci (Weinh) 2018; 5(11): 1800852.
[http://dx.doi.org/10.1002/advs.201800852] [PMID: 30479928]
[42]
Hsu YY, Liu KL, Yeh HH, Lin HR, Wu HL, Tsai JC. Sustained release of recombinant thrombomodulin from cross-linked gelatin/hyaluronic acid hydrogels potentiate wound healing in diabetic mice. Eur J Pharm Biopharm 2019; 135: 61-71.
[http://dx.doi.org/10.1016/j.ejpb.2018.12.007] [PMID: 30552972]
[43]
Yin F, Lin L, Zhan S. Preparation and properties of cellulose nanocrystals, gelatin, hyaluronic acid composite hydrogel as wound dressing. J Biomater Sci Polym Ed 2019; 30(3): 190-201.
[http://dx.doi.org/10.1080/09205063.2018.1558933] [PMID: 30556771]
[44]
Thönes S, Rother S, Wippold T, et al. Hyaluronan/collagen hydrogels containing sulfated hyaluronan improve wound healing by sustained release of heparin-binding EGF-like growth factor. Acta Biomater 2019; 86: 135-47.
[http://dx.doi.org/10.1016/j.actbio.2019.01.029] [PMID: 30660005]
[45]
Alemzadeh E, Oryan A, Mohammadi AA. Hyaluronic acid hydrogel loaded by adipose stem cells enhances wound healing by modulating IL‐1β, TGF‐β1, and bFGF in burn wound model in rat. J Biomed Mater Res B Appl Biomater 2020; 108(2): 555-67.
[http://dx.doi.org/10.1002/jbm.b.34411] [PMID: 31081996]
[46]
Makvandi P, Ali GW, Della Sala F, Abdel-Fattah WI, Borzacchiello A. Biosynthesis and characterization of antibacterial thermosensitive hydrogels based on corn silk extract, hyaluronic acid and nanosilver for potential wound healing. Carbohydr Polym 2019; 223: 115023.
[http://dx.doi.org/10.1016/j.carbpol.2019.115023] [PMID: 31427021]
[47]
Wang X, Xu P, Yao Z, et al. Preparation of antimicrobial hyaluronic acid/quaternized chitosan hydrogels for the promotion of seawaterimmersion wound healing. Front Bioeng Biotechnol 2019; 7: 360.
[http://dx.doi.org/10.3389/fbioe.2019.00360] [PMID: 31921796]
[48]
Yu B, Zhan A, Liu Q, et al. A designed supramolecular cross-linking hydrogel for the direct, convenient, and efficient administration of hydrophobic drugs. Int J Pharm 2020; 578: 119075.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119075] [PMID: 31991187]
[49]
Das B, Basu A, Maji S, et al. Nanotailored hyaluronic acid modified methylcellulose as an injectable scaffold with enhanced physicorheological and biological aspects. Carbohydr Polym 2020; 237: 116146.
[http://dx.doi.org/10.1016/j.carbpol.2020.116146] [PMID: 32241450]
[50]
Dong Y, Cui M, Qu J, et al. Conformable hyaluronic acid hydrogel delivers adipose-derived stem cells and promotes regeneration of burn injury. Acta Biomater 2020; 108: 56-66.
[http://dx.doi.org/10.1016/j.actbio.2020.03.040] [PMID: 32251786]
[51]
Lei H, Zhu C, Fan D. Optimization of human-like collagen composite polysaccharide hydrogel dressing preparation using response surface for burn repair. Carbohydr Polym 2020; 239: 116249.
[http://dx.doi.org/10.1016/j.carbpol.2020.116249] [PMID: 32414448]
[52]
Guan S, Li Y, Cheng C, et al. Manufacture of pH- and HAase-responsive hydrogels with on-demand and continuous antibacterial activity for full-thickness wound healing. Int J Biol Macromol 2020; 164: 2418-31.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.08.108] [PMID: 32798544]
[53]
Li J, Gao H, Xiong Y, et al. Enhancing cutaneous wound healing based on human induced neural stem cell-derived exosomes. Int J Nanomedicine 2022; 17: 5991-6006.
[http://dx.doi.org/10.2147/IJN.S377502] [PMID: 36506346]
[54]
Peng X, Ding C, Zhao Y, et al. Poloxamer 407 and hyaluronic acid thermosensitive hydrogel-encapsulated ginsenoside Rg3 to promote skin wound healing. Front Bioeng Biotechnol 2022; 10: 831007.
[http://dx.doi.org/10.3389/fbioe.2022.831007] [PMID: 35866029]
[55]
Wang L, Xia K, Han L, et al. Local administration of ginkgolide B using a hyaluronan-based hydrogel improves wound healing in diabetic mice. Front Bioeng Biotechnol 2022; 10: 898231.
[http://dx.doi.org/10.3389/fbioe.2022.898231] [PMID: 35694224]
[56]
Yang H, Song L, Sun B, et al. Modulation of macrophages by a paeoniflorin-loaded hyaluronic acid-based hydrogel promotes diabetic wound healing. Mater Today Bio 2021; 12: 100139.
[http://dx.doi.org/10.1016/j.mtbio.2021.100139] [PMID: 34632363]
[57]
Yang R, Huang J, Zhang W, et al. Mechanoadaptive injectable hydrogel based on poly(γ-glutamic acid) and hyaluronic acid regulates fibroblast migration for wound healing. Carbohydr Polym 2021; 273: 118607.
[http://dx.doi.org/10.1016/j.carbpol.2021.118607] [PMID: 34561006]
[58]
Alonci G, Mocchi R, Sommatis S, et al. Physico-chemical characterization and in vitro biological evaluation of a bionic hydrogel based on hyaluronic acid and L-lysine for medical applications. Pharmaceutics 2021; 13(8): 1194.
[http://dx.doi.org/10.3390/pharmaceutics13081194] [PMID: 34452157]
[59]
Chen X, Zhang H, Yang X, et al. Preparation and application of quaternized chitosan-and agnps-base synergistic antibacterial hydrogel for burn wound healing. Molecules 2021; 26(13): 4037.
[http://dx.doi.org/10.3390/molecules26134037] [PMID: 34279375]
[60]
Júnior DM, Hausen MA, Asami J, et al. A new dermal substitute containing polyvinyl alcohol with silver nanoparticles and collagen with hyaluronic acid: In vitro and in vivo approaches. Antibiotics (Basel) 2021; 10(6): 742.
[http://dx.doi.org/10.3390/antibiotics10060742] [PMID: 34205394]
[61]
Shah SA, Sohail M, Minhas MU, et al. Curcumin-laden hyaluronic acid-co-pullulan-based biomaterials as a potential platform to synergistically enhance the diabetic wound repair. Int J Biol Macromol 2021; 185: 350-68.
[http://dx.doi.org/10.1016/j.ijbiomac.2021.06.119] [PMID: 34171251]
[62]
Suo H, Hussain M, Wang H, et al. Injectable and pH-sensitive hyaluronic acid-based hydrogels with on-demand release of antimicrobial peptides for infected wound healing. Biomacromolecules 2021; 22(7): 3049-59.
[http://dx.doi.org/10.1021/acs.biomac.1c00502] [PMID: 34128646]
[63]
Hu B, Gao M, Boakye-Yiadom KO, et al. An intrinsically bioactive hydrogel with on-demand drug release behaviors for diabetic wound healing. Bioact Mater 2021; 6(12): 4592-606.
[http://dx.doi.org/10.1016/j.bioactmat.2021.04.040] [PMID: 34095619]
[64]
Gonçalves RC, Signini R, Rosa LM, Dias YSP, Vinaud MC, Lino Junior RS. Carboxymethyl chitosan hydrogel formulations enhance the healing process in experimental partial-thickness (second-degree) burn wound healing. Acta Cir Bras 2021; 36(3): e360303.
[http://dx.doi.org/10.1590/acb360303] [PMID: 33825787]
[65]
Yang R, Liu X, Ren Y, et al. Injectable adaptive self-healing hyaluronic acid/poly (γ-glutamic acid) hydrogel for cutaneous wound healing. Acta Biomater 2021; 127: 102-15.
[http://dx.doi.org/10.1016/j.actbio.2021.03.057] [PMID: 33813093]
[66]
Yoo KM, Murphy SV, Skardal A. A rapid crosslinkable maleimidemodified hyaluronic acid and gelatin hydrogel delivery system for regenerative applications. Gels 2021; 7(1): 13.
[http://dx.doi.org/10.3390/gels7010013] [PMID: 33535669]
[67]
Yang L, Zhang L, Hu J, Wang W, Liu X. Promote anti-inflammatory and angiogenesis using a hyaluronic acid-based hydrogel with miRNA-laden nanoparticles for chronic diabetic wound treatment. Int J Biol Macromol 2021; 166: 166-78.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.10.129] [PMID: 33172616]
[68]
Watson AL, Eckhart KE, Wolf ME, Sydlik SA. Hyaluronic acidbased antibacterial hydrogels for use as wound dressings. ACS Appl Bio Mater 2022; 5(12): 5608-16.
[http://dx.doi.org/10.1021/acsabm.2c00647] [PMID: 36383154]
[69]
Huang B, Hu D, Dong A, Tian J, Zhang W. Highly antibacterial and adhesive hyaluronic acid hydrogel for wound repair. Biomacromolecules 2022; 23(11): 4766-77.
[http://dx.doi.org/10.1021/acs.biomac.2c00950] [PMID: 36321788]
[70]
Zhang R, Wang S, Ma X, et al. In situ gelation strategy based on ferrocene-hyaluronic acid organic copolymer biomaterial for exudate management and multi-modal wound healing. Acta Biomater 2022; 154: 180-93.
[http://dx.doi.org/10.1016/j.actbio.2022.09.076] [PMID: 36243366]
[71]
Zhou S, Yang D, Yang D, et al. Injectable, self‐healing and multiple responsive histamine modified hyaluronic acid hydrogels with potentialities in drug delivery, antibacterial and tissue engineering. Macromol Rapid Commun 2022; 44(3): 2200674.
[PMID: 36205697]
[72]
Chandika P, Khan F, Heo SY, et al. Multifunctional dual crosslinked poly (vinyl alcohol)/methacrylate hyaluronic acid/chitooligosaccharide-sinapic acid wound dressing hydrogel. Int J Biol Macromol 2022; 222(Pt A): 1137-50.
[http://dx.doi.org/10.1016/j.ijbiomac.2022.09.174] [PMID: 36162531]
[73]
Li N, Zhan A, Jiang Y, Liu H. A novel matrix metalloproteinasescleavable hydrogel loading deferoxamine accelerates diabetic wound healing. Int J Biol Macromol 2022; 222(Pt A): 1551-9.
[http://dx.doi.org/10.1016/j.ijbiomac.2022.09.185] [PMID: 36155786]
[74]
Li Q, Qi G, Lutter D, et al. Injectable peptide hydrogel encapsulation of mesenchymal stem cells improved viability, stemness, anti-inflammatory effects, and early stage wound healing. Biomolecules 2022; 12(9): 1317.
[http://dx.doi.org/10.3390/biom12091317] [PMID: 36139156]
[75]
Li M, Shi X, Yang B, et al. Single-component hyaluronic acid hydrogel adhesive based on phenylboronic ester bonds for hemostasis and wound closure. Carbohydr Polym 2022; 296: 119953.
[http://dx.doi.org/10.1016/j.carbpol.2022.119953] [PMID: 36087997]
[76]
Deng M, Wu Y, Ren Y, et al. Clickable and smart drug delivery vehicles accelerate the healing of infected diabetic wounds. J Control Release 2022; 350: 613-29.
[http://dx.doi.org/10.1016/j.jconrel.2022.08.053] [PMID: 36058354]
[77]
Gong M, Yan F, Yu L, Li F. A dopamine-methacrylated hyaluronic acid hydrogel as an effective carrier for stem cells in skin regeneration therapy. Cell Death Dis 2022; 13(8): 738.
[http://dx.doi.org/10.1038/s41419-022-05060-9] [PMID: 36030275]
[78]
Liu S, Jiang N, Chi Y, et al. Injectable and self-healing hydrogel based on chitosan-tannic acid and oxidized hyaluronic acid for wound healing. ACS Biomater Sci Eng 2022; 8(9): 3754-64.
[http://dx.doi.org/10.1021/acsbiomaterials.2c00321] [PMID: 35993819]
[79]
Zhou Z, Zhang X, Xu L, et al. A self-healing hydrogel based on crosslinked hyaluronic acid and chitosan to facilitate diabetic wound healing. Int J Biol Macromol 2022; 220: 326-36.
[http://dx.doi.org/10.1016/j.ijbiomac.2022.08.076] [PMID: 35981678]
[80]
Xue C, Xu X, Zhang L, et al. Self-healing/pH-responsive/inherently antibacterial polysaccharide-based hydrogel for a photothermal strengthened wound dressing. Colloids Surf B Biointerfaces 2022; 218: 112738.
[http://dx.doi.org/10.1016/j.colsurfb.2022.112738] [PMID: 35930984]
[81]
Li J, Shen J, Zhuang B, et al. Light-triggered on-site rapid formation of antibacterial hydrogel dressings for accelerated healing of infected wounds. Biomaterials Advances 2022; 136: 212784.
[http://dx.doi.org/10.1016/j.bioadv.2022.212784] [PMID: 35929299]
[82]
Zhang B, Lv Y, Yu C, et al. Au–Pt nanozyme-based multifunctional hydrogel dressing for diabetic wound healing. Biomaterials Advances 2022; 137: 212869.
[http://dx.doi.org/10.1016/j.bioadv.2022.212869] [PMID: 35929245]
[83]
Hwang J, Kiick KL, Sullivan MO. Modified hyaluronic acid-collagen matrices trigger efficient gene transfer and prohealing behavior in fibroblasts for improved wound repair. Acta Biomater 2022; 150: 138-53.
[http://dx.doi.org/10.1016/j.actbio.2022.07.039] [PMID: 35907557]
[84]
Chen Y, Xiang Y, Zhu T, et al. A dZnONPs enhanced hybrid injectable photocrosslinked hydrogel for infected wounds treatment. Gels 2022; 8(8): 463.
[http://dx.doi.org/10.3390/gels8080463] [PMID: 35892722]
[85]
Luo X, Ao F, Huo Q, et al. Skin-inspired injectable adhesive gelatin/HA biocomposite hydrogel for hemostasis and full-thickness dermal wound healing. Biomaterials Advances 2022; 139: 212983.
[http://dx.doi.org/10.1016/j.bioadv.2022.212983] [PMID: 35882139]
[86]
Weng H, Jia W, Li M, Chen Z. New injectable chitosan-hyaluronic acid based hydrogels for hemostasis and wound healing. Carbohydr Polym 2022; 294: 119767.
[http://dx.doi.org/10.1016/j.carbpol.2022.119767] [PMID: 35868789]
[87]
Li S, Dong Q, Peng X, et al. Self-healing hyaluronic acid nanocomposite hydrogels with platelet-rich plasma impregnated for skin regeneration. ACS Nano 2022; 16(7): 11346-59.
[http://dx.doi.org/10.1021/acsnano.2c05069] [PMID: 35848721]
[88]
Zhao Y, Liu X, Peng X, et al. A poloxamer/hyaluronic acid/chitosan-based thermosensitive hydrogel that releases dihydromyricetin to promote wound healing. Int J Biol Macromol 2022; 216: 475-86.
[http://dx.doi.org/10.1016/j.ijbiomac.2022.06.210] [PMID: 35810849]
[89]
Wang M, Deng Z, Guo Y, Xu P. Designing functional hyaluronic acid-based hydrogels for cartilage tissue engineering. Mater Today Bio 2022; 17: 100495.
[http://dx.doi.org/10.1016/j.mtbio.2022.100495]
[90]
Ren Y, Ma S, Zhang D, et al. Functionalized injectable hyaluronic acid hydrogel with antioxidative and photothermal antibacterial activity for infected wound healing. Int J Biol Macromol 2022; 210: 218-32.
[http://dx.doi.org/10.1016/j.ijbiomac.2022.05.024] [PMID: 35537589]
[91]
Long L, Hu C, Liu W, et al. Injectable multifunctional hyaluronic acid/methylcellulose hydrogels for chronic wounds repairing. Carbohydr Polym 2022; 289: 119456.
[http://dx.doi.org/10.1016/j.carbpol.2022.119456] [PMID: 35483858]
[92]
Cui L, Li J, Guan S, Zhang K, Zhang K, Li J. Injectable multifunctional CMC/HA-DA hydrogel for repairing skin injury. Mater Today Bio 2022; 14: 100257.
[http://dx.doi.org/10.1016/j.mtbio.2022.100257] [PMID: 35469255]
[93]
Xiong J, Yang ZR, Lv N, et al. Self‐adhesive hyaluronic acid/antimicrobial peptide composite hydrogel with antioxidant capability and photothermal activity for infected wound healing. Macromol Rapid Commun 2022; 43(18): 2200176.
[http://dx.doi.org/10.1002/marc.202200176] [PMID: 35451187]
[94]
Yu Y, Yang B, Tian D, Liu J, Yu A, Wan Y. Thiolated hyaluronic acid/silk fibroin dual-network hydrogel incorporated with bioglass nanoparticles for wound healing. Carbohydr Polym 2022; 288: 119334.
[http://dx.doi.org/10.1016/j.carbpol.2022.119334] [PMID: 35450620]
[95]
Qian J, Ji L, Xu W, et al. Copper-hydrazide coordinated multifunctional hyaluronan hydrogels for infected wound healing. ACS Appl Mater Interfaces 2022; 14(14): 16018-31.
[http://dx.doi.org/10.1021/acsami.2c01254] [PMID: 35353495]
[96]
Jia Y, Zhang X, Yang W, et al. A pH-responsive hyaluronic acid hydrogel for regulating the inflammation and remodeling of the ECM in diabetic wounds. J Mater Chem B Mater Biol Med 2022; 10(15): 2875-88.
[http://dx.doi.org/10.1039/D2TB00064D] [PMID: 35285467]
[97]
Ijaz U, Sohail M, Usman Minhas M, et al. Biofunctional hyaluronic acid/κ-carrageenan injectable hydrogels for improved drug delivery and wound healing. Polymers (Basel) 2022; 14(3): 376.
[http://dx.doi.org/10.3390/polym14030376] [PMID: 35160366]
[98]
Zhang X, Wan H, Lan W, et al. Fabrication of adhesive hydrogels based on poly (acrylic acid) and modified hyaluronic acid. J Mech Behav Biomed Mater 2022; 126: 105044.
[http://dx.doi.org/10.1016/j.jmbbm.2021.105044] [PMID: 34915359]
[99]
Lee S-H, An S, Ryu YC, et al. Adhesive hydrogel patch-mediated combination drug therapy induces regenerative wound healing through reconstruction of regenerative microenvironment. Adv Healthc Mater 2023; 12(18): e2203094.
[http://dx.doi.org/10.1002/adhm.202203094]
[100]
Gao YM, Li ZY, Zhang XJ, Zhang J, Li QF, Zhou SB. One-pot synthesis of bioadhesive double-network hydrogel patch as disposable wound dressing. ACS Appl Mater Interfaces 2023; 15(9): 11496-506.
[http://dx.doi.org/10.1021/acsami.2c19931] [PMID: 36821340]
[101]
Dong D, Cheng Z, Wang T, et al. Acid-degradable nanocomposite hydrogel and glucose oxidase combination for killing bacterial with photothermal augmented chemodynamic therapy. Int J Biol Macromol 2023; 234: 123745.
[http://dx.doi.org/10.1016/j.ijbiomac.2023.123745] [PMID: 36806779]
[102]
Wang L, Hussain Z, Zheng P, et al. A mace-like heterostructural enriched injectable hydrogel composite for on-demand promotion of diabetic wound healing. J Mater Chem B Mater Biol Med 2023; 11(10): 2166-83.
[http://dx.doi.org/10.1039/D2TB02403A] [PMID: 36779476]
[103]
Fang Z, Lv Y, Zhang H, et al. A multifunctional hydrogel loaded with two nanoagents improves the pathological microenvironment associated with radiation combined with skin wounds. Acta Biomater 2023; 159: 111-27.
[http://dx.doi.org/10.1016/j.actbio.2023.01.052] [PMID: 36736645]
[104]
Lv Y, Cai F, He Y, et al. Multi-crosslinked hydrogels with strong wet adhesion, self-healing, antibacterial property, reactive oxygen species scavenging activity, and on-demand removability for seawater-immersed wound healing. Acta Biomater 2023; 159: 95-110.
[http://dx.doi.org/10.1016/j.actbio.2023.01.045] [PMID: 36736644]
[105]
Xiong Y, Xu Y, Zhou F, et al. Bio‐functional hydrogel with antibacterial and anti‐inflammatory dual properties to combat with burn wound infection. Bioeng Transl Med 2023; 8(1): e10373.
[http://dx.doi.org/10.1002/btm2.10373] [PMID: 36684072]
[106]
Ghaffari-bohlouli P, Simińska-Stanny J, Jafari H, et al. Printable hyaluronic acid hydrogel functionalized with yeast-derived peptide for skin wound healing. Int J Biol Macromol 2023; 232: 123348.
[http://dx.doi.org/10.1016/j.ijbiomac.2023.123348] [PMID: 36682658]
[107]
Wei Q, Jin Z, Zhang W, et al. Honokiol@PF127 crosslinked hyaluronate-based hydrogel for promoting wound healing by regulating macrophage polarization. Carbohydr Polym 2023; 303: 120469.
[http://dx.doi.org/10.1016/j.carbpol.2022.120469] [PMID: 36657865]
[108]
Bai Q, Gao Q, Hu F, et al. Chitosan and hyaluronic-based hydrogels could promote the infected wound healing. Int J Biol Macromol 2023; 232: 123271.
[http://dx.doi.org/10.1016/j.ijbiomac.2023.123271] [PMID: 36646352]
[109]
Zhao Y, Chen Z, Shao W, et al. Black phosphorus-enhanced injectable hydrogel for infected soft tissue healing. APL Bioeng 2023; 7(1): 016103.
[http://dx.doi.org/10.1063/5.0121241] [PMID: 36644416]
[110]
Huang L, Li W, Guo M, et al. Silver doped-silica nanoparticles reinforced poly (ethylene glycol) diacrylate/hyaluronic acid hydrogel dressings for synergistically accelerating bacterial-infected wound healing. Carbohydr Polym 2023; 304: 120450.
[http://dx.doi.org/10.1016/j.carbpol.2022.120450] [PMID: 36641182]
[111]
Guo F, Liu Y, Chen S, Lin Y, Yue Y. A Schiff base hydrogel dressing loading extracts from Periplaneta Americana for diabetic wound healing. Int J Biol Macromol 2023; 230: 123256.
[http://dx.doi.org/10.1016/j.ijbiomac.2023.123256] [PMID: 36641022]
[112]
Liu D, Li L, Shi BL, et al. Ultrasound-triggered piezocatalytic composite hydrogels for promoting bacterial-infected wound healing. Bioact Mater 2023; 24: 96-111.
[http://dx.doi.org/10.1016/j.bioactmat.2022.11.023] [PMID: 36582346]
[113]
Chang R, Zhao D, Zhang C, et al. Nanocomposite multifunctional hyaluronic acid hydrogel with photothermal antibacterial and antioxidant properties for infected wound healing. Int J Biol Macromol 2023; 226: 870-84.
[http://dx.doi.org/10.1016/j.ijbiomac.2022.12.116] [PMID: 36526064]
[114]
Han W, Chen C, Yang K, et al. Hyaluronic acid and chitosan-based injectable and self-healing hydrogel with inherent antibacterial and antioxidant bioactivities. Int J Biol Macromol 2023; 227: 373-83.
[http://dx.doi.org/10.1016/j.ijbiomac.2022.12.037] [PMID: 36521711]
[115]
Du M, Jin J, Zhou F, Chen J, Jiang W. Dual drug-loaded hydrogels with pH-responsive and antibacterial activity for skin wound dressing. Colloids Surf B Biointerfaces 2023; 222: 113063.
[http://dx.doi.org/10.1016/j.colsurfb.2022.113063] [PMID: 36502601]
[116]
Qiao Z, Ding J, Wu C, et al. One‐pot synthesis of Bi2S3/TiO2/rGO heterostructure with red light‐driven photovoltaic effect for remote electrotherapy‐assisted wound repair. Small 2023; 19(7): e2206231.
[117]
Ding X, Li S, Tian M, et al. Facile preparation of a novel nanoemulsion based hyaluronic acid hydrogel loading with Poria cocos triterpenoids extract for wound dressing. Int J Biol Macromol 2023; 226: 1490-9.
[http://dx.doi.org/10.1016/j.ijbiomac.2022.11.261] [PMID: 36442559]
[118]
Lapčík L, Lapčík L, De Smedt S, Demeester J, Chabreček P. Hyaluronan: preparation, structure, properties, and applications. Chem Rev 1998; 98(8): 2663-84.
[http://dx.doi.org/10.1021/cr941199z] [PMID: 11848975]
[119]
Hintze V, Schnabelrauch M, Rother S. Chemical modification of hyaluronan and their biomedical applications. Front Chem 2022; 10: 830671.
[http://dx.doi.org/10.3389/fchem.2022.830671] [PMID: 35223772]
[120]
Yang JA, Kim ES, Kwon JH, et al. Transdermal delivery of hyaluronic acid – Human growth hormone conjugate. Biomaterials 2012; 33(25): 5947-54.
[http://dx.doi.org/10.1016/j.biomaterials.2012.05.003] [PMID: 22632765]
[121]
Yamazaki S, Hirayama R, Ikeda Y, Iseki S, Yoda T. Hyaluronic acid hydrogels support to generate integrated bone formation through endochondral ossification in vivo using mesenchymal stem cells. PLoS One 2023; 18(2): e0281345.
[http://dx.doi.org/10.1371/journal.pone.0281345]
[122]
Zhang S, Dong J, Pan R, Xu Z, Li M, Zang RJP. Structures, Properties, and Bioengineering Applications of Alginates and Hyaluronic Acid 2023; 15(9): 2149.
[123]
Li S, Chen L. Nanotechnology-based ocular drug delivery systems: recent advances and future prospects. J Nanobiotechnology 2023; 21(1): 232.
[http://dx.doi.org/10.1186/s12951-023-01992-2]
[124]
Shirbhate U, Bajaj PJC. Injectable and self-invigorating hydrogel applications in dentistry and periodontal regeneration: A literature review. Cureus 2022; 14(9): e29248.
[http://dx.doi.org/10.7759/cureus.29248]
[125]
Huang M, Huang Y, Hongyu L, et al. Hydrogels for treatment of oral and maxillofacial diseases: current research. challenge, and future directions. Biomater Sci 2022; 10(22): 6413-46.
[126]
França CG, Leme KC, Luzo ÂCM, Hernandez-Montelongo J, Santana MHA. Oxidized hyaluronic acid/adipic acid dihydrazide hydrogel as cell microcarriers for tissue regeneration applications. E-Polymers 2022; 22(1): 949-58.
[127]
Özdemir E, Familiari F, Huri PY, Firat A, Huri G. Use of 3D-printed polycaprolactone + hyaluronic acid-based scaffold in orthopedic practice: report of two cases. J 3D Print Med 2023; 7(2)
[128]
Gupta G, Asati P, Jain P, Mishra P, Mishra A, Singour P. Recent advancements in cancer targeting therapy with the hyaluronic acid as a potential adjuvant. Ars Pharmaceutica 2022; 63(4): 387-409.
[http://dx.doi.org/10.30827/ars.v63i4.25208]
[129]
Han W, Liu F, Li Y, et al. Advances in natural polymer‐based transdermal drug delivery systems for tumor therapy. Small 2023; 19(35): e2301670.
[http://dx.doi.org/10.1002/smll.202301670]
[130]
Ouyang Y, Zhao J, Wang S. Multifunctional hydrogels based on chitosan, hyaluronic acid and other biological macromolecules for the treatment of inflammatory bowel disease: A review. Int J Biol Macromol 2023; 227505.
[http://dx.doi.org/10.1016/j.ijbiomac.2022.12.032]
[131]
Song Y, Zhang Y, Qu Q, et al. Biomaterials based on hyaluronic acid, collagen and peptides for three-dimensional cell culture and their application in stem cell differentiation. Int J Biol Macromol 2023; 226: 14-36.
[http://dx.doi.org/10.1016/j.ijbiomac.2022.11.213]
[132]
Wang X, Liu S, Zhao Q, et al. Three-dimensional hydrogel scaffolds facilitate in vitro self-renewal of human skin-derived precursors. Acta Biomater 2014; 10(7): 3177-87.
[http://dx.doi.org/10.1016/j.actbio.2014.03.018]
[133]
Grieco M, Ursini O, Palamà IE, Gigli G, Moroni L, Cortese B. HYDRHA: Hydrogels of hyaluronic acid. New biomedical approaches in cancer, neurodegenerative diseases, and tissue engineering. Mater Today Bio 2022; 17: 100453.
[http://dx.doi.org/10.1016/j.mtbio.2022.100453]
[134]
Ding Y-W, Zhang X-W, Mi C-H, Qi X-Y, Zhou J. Recent advances in hyaluronic acid-based hydrogels for 3D bioprinting in tissue engineering applications. In: Smart Materials in Medicine. 2023; 4: pp. 59-68.
[135]
Hwang HS, Lee C-SJG. Recent Progress in Hyaluronic-Acid-Based Hydrogels for Bone Tissue Engineering 2023; 9(7): 588.
[136]
Kim YS,. Guilak FJIjoms. Engineering hyaluronic acid for the development of new treatment strategies for osteoarthritis. Int J Mol Sci 2022; 23(15): 8662.
[http://dx.doi.org/10.3390/ijms23158662]
[137]
Deng H, Wang J,. An RJFiP. Hyaluronic acid-based hydrogels: As an exosome delivery system in bone regeneration. Front Pharmacol 2023; 14: 1131001.
[http://dx.doi.org/10.3389/fphar.2023.1131001]
[138]
Huang G, Zhao Q, Li W, et al. Exosomes: A new option for osteoporosis treatment. Medicine (Baltimore) 2022; 101(52): e32402.
[http://dx.doi.org/10.1097/MD.0000000000032402]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy