Generic placeholder image

Current Nanoscience

Editor-in-Chief

ISSN (Print): 1573-4137
ISSN (Online): 1875-6786

Review Article

A Review on Biomimetic Cilia Microrobots: Driving Methods, Application and Research Prospects

Author(s): Ziang Jing, Gaoshen Cai*, Yufeng Pan and Yongfeng Yuan

Volume 20, Issue 6, 2024

Published on: 31 October, 2023

Page: [740 - 752] Pages: 13

DOI: 10.2174/0115734137268436231023071009

Price: $65

Abstract

With the development of science and technology, microrobots have been used in medicine, biology, rescue, and many other fields. However, the microrobots have problems such as energy and motion due to miniaturization. In order to solve the problem of the energy supply of microrobots, researchers have provided more drive schemes for microrobots. Inspired by the biological cilia, the biomimetic cilia have been developed and applied to microrobots to achieve propulsion, liquid pumping, liquid mixing, and particle manipulation. This review summarizes the different driving modes of microrobots, focusing on the application of magnetic drive and optical drive in the field of micro-robots. The structure and function of biological cilia and biomimetic cilia are introduced. The application of biomimetic cilia microrobots in various fields is discussed, and the current challenges and future development trends of biomimetic cilia microrobots are summarized. This review hopes to provide useful help for researchers of biomimetic cilia microrobots.

Keywords: Drive, bionics, cilia, structure, micro-robot, medicine.

Graphical Abstract
[1]
Klopp-Dutote, N.; Lefranc, M.; Strunski, V.; Page, C. Minimally invasive fully ROBOT assisted cochlear implantation in humans: Preliminary results in five consecutive patients. Clin. Otolaryngol., 2021, 46(6), 1326-1330.
[http://dx.doi.org/10.1111/coa.13840] [PMID: 34310841]
[2]
Vikram Singh, A.; Sitti, M. Targeted drug delivery and imaging using mobile milli/microrobots: A promising future towards theranostic pharmaceutical design. Curr. Pharm. Des., 2016, 22(11), 1418-1428.
[http://dx.doi.org/10.2174/1381612822666151210124326] [PMID: 26654436]
[3]
Jung, H.; Kwak, S.; Choi, H.; Oh, S. Two-degree-of-freedom control of a micro-robot using a dual-rate state observer. IEEE Trans. Control Syst. Technol., 2022, 10, 1109.
[4]
Arents, J.; Greitans, M. Smart industrial robot control trends, challenges and opportunities within manufacturing. Appl. Sci., 2022, 12(2), 937.
[http://dx.doi.org/10.3390/app12020937]
[5]
Iida, N.; Matsumoto, M. A transformable sheet type robot that can be thrown from the air. Biomimetics, 2022, 7(3), 114.
[http://dx.doi.org/10.3390/biomimetics7030114] [PMID: 35997434]
[6]
Friedrich, D.T.; Modes, V.; Hoffmann, T.K.; Greve, J.; Schuler, P.J.; Burgner-Kahrs, J. Teleoperated tubular continuum robots for transoral surgery - feasibility in a porcine larynx model. Int. J. Med. Robot., 2018, 14(5), e1928.
[http://dx.doi.org/10.1002/rcs.1928] [PMID: 29923349]
[7]
Huang, W.; Liu, M.; Hsia, K.J. Modeling of magnetic cilia carpet robots using discrete differential geometry formulation. Extreme Mech. Lett., 2023, 59, 101967.
[http://dx.doi.org/10.1016/j.eml.2023.101967]
[8]
Wu, C.; Zhang, Z.; Zheng, W. A twisted and coiled polymer artificial muscles driven soft crawling robot based on enhanced antagonistic configuration. Machines, 2022, 10(2), 142.
[http://dx.doi.org/10.3390/machines10020142]
[9]
Eshaghi, M.; Ghasemi, M.; Khorshidi, K. Design, manufacturing and applications of small-scale magnetic soft robots. Extreme Mech. Lett., 2021, 44, 101268.
[http://dx.doi.org/10.1016/j.eml.2021.101268]
[10]
Pantoja, G.I.M.; Medina, M.A.M.; Alban, O.A.V. Magnetic three-dimensional pose control system for micro robots in the human head. Proceedings of the 12th international joint conference on biomedical engineering systems and technologies, 2019, pp. 65-74.
[http://dx.doi.org/10.5220/0007483400650074]
[11]
Chen, Y.; Yang, J.; Zhang, X.; Feng, Y.; Zeng, H.; Wang, L.; Feng, W. Light-driven bimorph soft actuators: design, fabrication, and properties. Mater. Horiz., 2021, 8(3), 728-757.
[http://dx.doi.org/10.1039/D0MH01406K] [PMID: 34821314]
[12]
Maeda, S.; Hara, Y.; Nakamaru, S.; Hashimoto, S. Design of autonomous gel actuators. Polymers, 2011, 3(1), 299-313.
[http://dx.doi.org/10.3390/polym3010299]
[13]
Shields, A.R.; Fiser, B.L.; Evans, B.A.; Falvo, M.R.; Washburn, S.; Superfine, R. Biomimetic cilia arrays generate simultaneous pumping and mixing regimes. Proc. Natl. Acad. Sci., 2010, 107(36), 15670-15675.
[http://dx.doi.org/10.1073/pnas.1005127107] [PMID: 20798342]
[14]
Chao, C.; Vanguri, V.; Uy, K. Robot-assisted thoracoscopic resection of a posterior mediastinal mullerian cyst. Case Rep. Pulmonol., 2018, 2018, 1-4.
[http://dx.doi.org/10.1155/2018/1424275] [PMID: 29535882]
[15]
Palagi, S.; Jager, E.W.H.; Mazzolai, B.; Beccai, L. Propulsion of swimming microrobots inspired by metachronal waves in ciliates: from biology to material specifications. Bioinspir. Biomim., 2013, 8(4), 046004.
[http://dx.doi.org/10.1088/1748-3182/8/4/046004] [PMID: 24103844]
[16]
Jiang, W.; Ye, G.; Chen, B.; Liu, H. A dual-driven biomimetic microrobot based on optical and magnetic propulsion. J. Micromech. Microeng., 2021, 31(3), 035003.
[http://dx.doi.org/10.1088/1361-6439/abd8de]
[17]
Jeong, S.; Choi, H.; Choi, J.; Yu, C.; Park, J.O.; Park, S. Novel electromagnetic actuation (EMA) method for 3-dimensional locomotion of intravascular microrobot. Sens. Actuators A Phys., 2010, 157(1), 118-125.
[18]
Liu, J.; Xu, T.; Yang, S.X.; Wu, X. Navigation and visual feedback control for magnetically driven helical miniature swimmers. IEEE Trans. Industr. Inform., 2020, 16(1), 477-487.
[http://dx.doi.org/10.1109/TII.2019.2913762]
[19]
Deng, H.; Sattari, K.; Xie, Y.; Liao, P.; Yan, Z.; Lin, J. Laser reprogramming magnetic anisotropy in soft composites for reconfigurable 3D shaping. Nat. Commun., 2020, 11(1), 6325.
[http://dx.doi.org/10.1038/s41467-020-20229-6] [PMID: 33303761]
[20]
Wang, Q.; Yang, L.; Yu, J.; Chiu, P.W.Y.; Zheng, Y.P.; Zhang, L. Real-time magnetic navigation of a rotating colloidal microswarm under ultrasound guidance. IEEE Trans. Biomed. Eng., 2020, 67(12), 3403-3412.
[http://dx.doi.org/10.1109/TBME.2020.2987045] [PMID: 32305888]
[21]
Zhao, R.; Kim, Y.; Chester, S.A.; Sharma, P.; Zhao, X. Mechanics of hard-magnetic soft materials. J. Mech. Phys. Solids, 2019, 124, 244-263.
[http://dx.doi.org/10.1016/j.jmps.2018.10.008]
[22]
Xiao, Y.; Du, J. Superparamagnetic nanoparticles for biomedical applications. J. Mater. Chem. B Mater. Biol. Med., 2020, 8(3), 354-367.
[http://dx.doi.org/10.1039/C9TB01955C] [PMID: 31868197]
[23]
Li, Q.; Feng, F.; Xu, M.; Liu, Y.; Li, M.; Feng, X.; Wang, X.; Yao, L. Multifunctional liquid microrobots based on paramagnetic microdroplets. Cell Rep. Phys. Sci., 2023, 4(2), 101279.
[http://dx.doi.org/10.1016/j.xcrp.2023.101279]
[24]
Gao, Y.; Wei, F.; Chao, Y.; Yao, L. Bioinspired soft microrobots actuated by magnetic field. Biomed. Microdevices, 2021, 23(4), 52.
[http://dx.doi.org/10.1007/s10544-021-00590-z] [PMID: 34599405]
[25]
Park, J.E.; Jeon, J.; Cho, J.H.; Won, S.; Jin, H.J.; Lee, K.H.; Wie, J.J. Magnetomotility of untethered helical soft robots. RSC Advances, 2019, 9(20), 11272-11280.
[http://dx.doi.org/10.1039/C9RA01775E] [PMID: 35520257]
[26]
Wang, X.; Qin, X.H.; Hu, C.; Terzopoulou, A.; Chen, X.Z.; Huang, T.Y.; Maniura-Weber, K.; Pané, S.; Nelson, B.J. 3D printed enzymatically biodegradable soft helical microswimmers. Adv. Funct. Mater., 2018, 28(45), 1804107.
[http://dx.doi.org/10.1002/adfm.201804107]
[27]
Cui, J.; Huang, T.Y.; Luo, Z.; Testa, P.; Gu, H.; Chen, X.Z.; Nelson, B.J.; Heyderman, L.J. Nanomagnetic encoding of shape-morphing micromachines. Nature, 2019, 575(7781), 164-168.
[http://dx.doi.org/10.1038/s41586-019-1713-2] [PMID: 31695212]
[28]
Wu, S.; Ze, Q.; Zhang, R.; Hu, N.; Cheng, Y.; Yang, F.; Zhao, R. Symmetry-breaking actuation mechanism for soft robotics and active metamaterials. ACS Appl. Mater. Interfaces, 2019, 11(44), 41649-41658.
[http://dx.doi.org/10.1021/acsami.9b13840] [PMID: 31578851]
[29]
Wang, X.Q.; Chan, K.H.; Cheng, Y.; Ding, T.; Li, T.; Achavananthadith, S.; Ahmet, S.; Ho, J.S.; Ho, G.W. Somatosensory, light-driven, thin-film robots capable of integrated perception and motility. Adv. Mater., 2020, 32(21), 2000351.
[http://dx.doi.org/10.1002/adma.202000351] [PMID: 32285545]
[30]
Guo, Q.; Zhou, C.; Ma, Z.; Yang, X. Fundamentals of TiO2 photocatalysis: Concepts, mechanisms, and challenges. Adv. Mater., 2019, 31(50), 1901997.
[http://dx.doi.org/10.1002/adma.201901997] [PMID: 31423680]
[31]
Shoueir, K.; Kandil, S.; El-hosainy, H.; El-Kemary, M. Tailoring the surface reactivity of plasmonic Au@TiO2 photocatalyst bio-based chitosan fiber towards cleaner of harmful water pollutants under visible-light irradiation. J. Clean. Prod., 2019, 230, 383-393.
[http://dx.doi.org/10.1016/j.jclepro.2019.05.103]
[32]
Zeng, H.; Wasylczyk, P.; Parmeggiani, C.; Martella, D.; Burresi, M.; Wiersma, D.S. Light-fueled microscopic walkers. Adv. Mater., 2015, 27(26), 3883-3887.
[http://dx.doi.org/10.1002/adma.201501446] [PMID: 26033690]
[33]
Palagi, S.; Mark, A.G.; Reigh, S.Y.; Melde, K.; Qiu, T.; Zeng, H.; Parmeggiani, C.; Martella, D.; Sanchez-Castillo, A.; Kapernaum, N.; Giesselmann, F.; Wiersma, D.S.; Lauga, E.; Fischer, P. Structured light enables biomimetic swimming and versatile locomotion of photoresponsive soft microrobots. Nat. Mater., 2016, 15(6), 647-653.
[http://dx.doi.org/10.1038/nmat4569] [PMID: 26878315]
[34]
Huang, C.; Lv, J.; Tian, X.; Wang, Y.; Liu, J.; Yu, Y. A remotely driven and controlled micro-gripper fabricated from light-induced deformation smart material. Smart Mater. Struct., 2016, 25(9), 095009.
[http://dx.doi.org/10.1088/0964-1726/25/9/095009]
[35]
Martella, D.; Nocentini, S.; Nuzhdin, D.; Parmeggiani, C.; Wiersma, D.S. Photonic microhand with autonomous action. Adv. Mater., 2017, 29(42), 1704047.
[http://dx.doi.org/10.1002/adma.201704047] [PMID: 28976033]
[36]
Zuo, B.; Wang, M.; Lin, B.P.; Yang, H. Visible and infrared three-wavelength modulated multi-directional actuators. Nat. Commun., 2019, 10(1), 4539.
[http://dx.doi.org/10.1038/s41467-019-12583-x] [PMID: 31586123]
[37]
Mourran, A.; Zhang, H.; Vinokur, R.; Möller, M. Soft microrobots employing nonequilibrium actuation via plasmonic heating. Adv. Mater., 2017, 29(2), 1604825.
[http://dx.doi.org/10.1002/adma.201604825] [PMID: 27865006]
[38]
Bordbar-Khiabani, A.; Gasik, M. Smart hydrogels for advanced drug delivery systems. Int. J. Mol. Sci., 2022, 23(7), 3665.
[http://dx.doi.org/10.3390/ijms23073665] [PMID: 35409025]
[39]
Elkhoury, K.; Koçak, P.; Kang, A.; Arab-Tehrany, E.; Ellis Ward, J.; Shin, S.R. Engineering smart targeting nanovesicles and their combination with hydrogels for controlled drug delivery. Pharmaceutics, 2020, 12(9), 849.
[http://dx.doi.org/10.3390/pharmaceutics12090849] [PMID: 32906833]
[40]
Kim, D.H.; Casale, D.; Kőhidai, L.; Kim, M.J. Galvanotactic and phototactic control of Tetrahymena pyriformis as a microfluidic workhorse. Appl. Phys. Lett., 2009, 94(16), 163901.
[http://dx.doi.org/10.1063/1.3123254]
[41]
Suzuki, D.; Irieda, H.; Homma, M.; Kawagishi, I.; Sudo, Y. Phototactic and chemotactic signal transduction by transmembrane receptors and transducers in microorganisms. Sensors, 2010, 10(4), 4010-4039.
[http://dx.doi.org/10.3390/s100404010] [PMID: 22319339]
[42]
Weibel, D.B.; Garstecki, P.; Ryan, D.; DiLuzio, W.R.; Mayer, M.; Seto, J.E.; Whitesides, G.M. Microoxen: Microorganisms to move microscale loads. Proc. Natl. Acad. Sci., 2005, 102(34), 11963-11967.
[http://dx.doi.org/10.1073/pnas.0505481102] [PMID: 16103369]
[43]
Yopak, K.E.; Galinsky, V.L.; Berquist, R.M.; Frank, L.R. Quantitative classification of cerebellar foliation in cartilaginous fishes (class: chondrichthyes) using three-dimensional shape analysis and its implications for evolutionary biology. Brain Behav. Evol., 2016, 87(4), 252-264.
[http://dx.doi.org/10.1159/000446904] [PMID: 27450795]
[44]
Nocentini, S.; Parmeggiani, C.; Martella, D.; Wiersma, D.S. Optically driven soft micro robotics. Adv. Opt. Mater., 2018, 6(14), 1800207.
[http://dx.doi.org/10.1002/adom.201800207]
[45]
Li, J.S.; Godaba, H.; Zhang, Z.Q.; Foo, C.C.; Zhu, J. Modeling of an origami robot driven by electrostatic forces. 2021 27th International Conference on Mechatronics and Machine Vision in Practice (M2VIP),, 2022.26-28 November 2021Shanghai, China
[46]
Wang, L.; Razzaq, M.Y.; Rudolph, T.; Heuchel, M.; Nöchel, U.; Mansfeld, U.; Jiang, Y.; Gould, O.E.C.; Behl, M.; Kratz, K.; Lendlein, A. Reprogrammable, magnetically controlled polymeric nanocomposite actuators. Mater. Horiz., 2018, 5(5), 861-867.
[http://dx.doi.org/10.1039/C8MH00266E]
[47]
Jiang, L.; Yang, Y.; Chen, R.; Lu, G.; Li, R.; Li, D.; Humayun, M.S.; Shung, K.K.; Zhu, J.; Chen, Y.; Zhou, Q. Flexible piezoelectric ultrasonic energy harvester array for bio-implantable wireless generator. Nano Energy, 2019, 56, 216-224.
[http://dx.doi.org/10.1016/j.nanoen.2018.11.052] [PMID: 31475091]
[48]
McNeill, J.M.; Nama, N.; Braxton, J.M.; Mallouk, T.E. Wafer-scale fabrication of micro- to nanoscale bubble swimmers and their fast autonomous propulsion by ultrasound. ACS Nano, 2020, 14(6), 7520-7528.
[http://dx.doi.org/10.1021/acsnano.0c03311] [PMID: 32432850]
[49]
Wang, Z.; Wang, L.; Yang, Q.; Xu, Z.W.; Yang, J.H.; Shang, J.Z.A.A. H2O2 based power system inspired by periodic pulsed spray of bombardier beetle. 2015 IEEE International Conference on Robotics and Biomimetics (ROBIO), 2015, pp. 1764-1768.
[50]
Wang, L.; Marciello, M.; Estévez-Gay, M.; Soto Rodriguez, P.E.D.; Luengo Morato, Y.; Iglesias-Fernández, J.; Huang, X.; Osuna, S.; Filice, M.; Sánchez, S. Enzyme conformation infuences the performance of lipase-powered nanomotors. Angew. Chem. Int. Ed., 2020, 59(47), 21080-21087.
[http://dx.doi.org/10.1002/anie.202008339] [PMID: 32755070]
[51]
Tang, X.F.; Yang, Y.; Zheng, M.B.; Yin, T.; Huang, G.J.; Lai, Z.Y.; Zhang, B.Z.; Chen, Z.; Xu, T.T.; Ma, T.; Pan, H.; Cai, L.T. Magnetic-acoustic sequentially actuated car t cell microrobots for precision navigation and in situ antitumor immunoactivation. Adv. Mater., 2023, 35(S1), 2211509.
[http://dx.doi.org/10.1002/adma.202211509]
[52]
Medina-Sánchez, M.; Schwarz, L.; Meyer, A.K.; Hebenstreit, F.; Schmidt, O.G. Cellular cargo delivery: toward assisted fertilization by sperm-carrying micromotors. Nano Lett., 2016, 16(1), 555-561.
[http://dx.doi.org/10.1021/acs.nanolett.5b04221] [PMID: 26699202]
[53]
Nachury, M.V.; Mick, D.U. Establishing and regulating the composition of cilia for signal transduction. Nat. Rev. Mol. Cell Biol., 2019, 20(7), 389-405.
[http://dx.doi.org/10.1038/s41580-019-0116-4] [PMID: 30948801]
[54]
Van Houten, J. Paramecium biology. Results Probl. Cell Differ., 2019, 68, 291-318.
[http://dx.doi.org/10.1007/978-3-030-23459-1_13]
[55]
Pazour, G.J.; Agrin, N.; Leszyk, J.; Witman, G.B. Proteomic analysis of a eukaryotic cilium. J. Cell Biol., 2005, 170(1), 103-113.
[http://dx.doi.org/10.1083/jcb.200504008] [PMID: 15998802]
[56]
Yuan, S.; Liu, Y.; Peng, H.; Tang, C.; Hennig, G.W.; Wang, Z.; Wang, L.; Yu, T.; Klukovich, R.; Zhang, Y.; Zheng, H.; Xu, C.; Wu, J.; Hess, R.A.; Yan, W. Motile cilia of the male reproductive system require miR-34/miR-449 for development and function to generate luminal turbulence. Proc. Natl. Acad. Sci., 2019, 116(9), 3584-3593.
[http://dx.doi.org/10.1073/pnas.1817018116] [PMID: 30659149]
[57]
Anvarian, Z.; Mykytyn, K.; Mukhopadhyay, S.; Pedersen, L.B.; Christensen, S.T. Cellular signalling by primary cilia in development, organ function and disease. Nat. Rev. Nephrol., 2019, 15(4), 199-219.
[http://dx.doi.org/10.1038/s41581-019-0116-9] [PMID: 30733609]
[58]
Akella, J.S.; Silva, M.; Morsci, N.S.; Nguyen, K.C.; Rice, W.J.; Hall, D.H.; Barr, M.M. Cell type specific structural plasticity of the ciliary transition zone in C. elegans. Biol. Cell, 2019, 111(4), 95-107.
[http://dx.doi.org/10.1111/boc.201800042] [PMID: 30681171]
[59]
Morohoshi, A.; Miyata, H.; Shimada, K.; Nozawa, K.; Matsumura, T.; Yanase, R.; Shiba, K.; Inaba, K.; Ikawa, M. Nexin-Dynein regulatory complex component DRC7 but not FBXL13 is required for sperm flagellum formation and male fertility in mice. PLoS Genet., 2020, 16(1), e1008585.
[http://dx.doi.org/10.1371/journal.pgen.1008585] [PMID: 31961863]
[60]
Ma, M.; Stoyanova, M.; Rademacher, G.; Dutcher, S.K.; Brown, A.; Zhang, R. Structure of the decorated ciliary doublet microtubule. Cell, 2019, 179(4), 909-922.e12.
[http://dx.doi.org/10.1016/j.cell.2019.09.030] [PMID: 31668805]
[61]
Kiesel, P.; Alvarez Viar, G.; Tsoy, N.; Maraspini, R.; Gorilak, P.; Varga, V.; Honigmann, A.; Pigino, G. The molecular structure of mammalian primary cilia revealed by cryo-electron tomography. Nat. Struct. Mol. Biol., 2020, 27(12), 1115-1124.
[http://dx.doi.org/10.1038/s41594-020-0507-4] [PMID: 32989303]
[62]
Joukov, V.; De Nicolo, A. The centrosome and the primary cilium: The yin and yang of a hybrid organelle. Cells, 2019, 8(7), 701.
[http://dx.doi.org/10.3390/cells8070701] [PMID: 31295970]
[63]
Ermilov, S.G. OConnor, B.M. New species of monoschelobates balogh et mahunka 1969 and multoribates hammer 1961, phoretic on passalid beetles from the neotropical region. Zool Zhurnal., 2021, 100(6), 618-626.
[http://dx.doi.org/10.31857/S0044513421060040]
[64]
Jana, S.C.; Dutta, P.; Jain, A.; Singh, A.; Adusumilli, L.; Girotra, M.; Kumari, D.; Shirolikar, S.; Ray, K. Kinesin-2 transports Orco into the olfactory cilium of Drosophila melanogaster at specific developmental stages. PLoS Genet., 2021, 17(8), e1009752.
[http://dx.doi.org/10.1371/journal.pgen.1009752] [PMID: 34411092]
[65]
Sengupta, D.; Trap, D.; Kottapalli, A.G.P. Piezoresistive carbon nanofiber-based cilia-inspired flow sensor. Nanomaterials, 2020, 10(2), 211.
[http://dx.doi.org/10.3390/nano10020211] [PMID: 31991865]
[66]
Gewily, D.I.; Mahmoud, F.A.; Saber, S.A.; ElSalkh, B.A.; El-Dahshan, A.A.; Abumandour, M.M.A.; Kandyel, R.M.; Gadel-Rab, A.G. Ultrastructural comparison between the tongue of two reptilian species endemic in Egyptian fauna; Bosc’s fringe toed lizard Acanthodactylus boskianus and Sinai fan fingered gecko Ptyodactylus guttatus. Microsc. Res. Tech., 2021, 84(9), 1977-1991.
[http://dx.doi.org/10.1002/jemt.23753] [PMID: 33720486]
[67]
Pacherres, C.O.; Ahmerkamp, S.; Schmidt-Grieb, G.M.; Holtappels, M.; Richter, C. Ciliary vortex flows and oxygen dynamics in the coral boundary layer. Sci. Rep., 2020, 10(1), 7541.
[http://dx.doi.org/10.1038/s41598-020-64420-7] [PMID: 32372014]
[68]
Valentine, M.S.; Van Houten, J. Ion channels of cilia: Paramecium as a model. J. Eukaryot. Microbiol., 2022, 69(5), e12884.
[http://dx.doi.org/10.1111/jeu.12884] [PMID: 34995386]
[69]
George, S.B.; Strathmann, R.R. Arms of larval seastars of Pisaster ochraceus provide versatility in muscular and ciliary swimming. PLoS One, 2019, 14(3), e0213803.
[http://dx.doi.org/10.1371/journal.pone.0213803] [PMID: 30870513]
[70]
Koyama, H.; Shi, D.; Fujimori, T. Biophysics in oviduct: Planar cell polarity, cilia, epithelial fold and tube morphogenesis, egg dynamics. Biophys. Physicobiol., 2019, 16(0), 89-107.
[http://dx.doi.org/10.2142/biophysico.16.0_89] [PMID: 30923666]
[71]
Olstad, E.W.; Ringers, C.; Hansen, J.N.; Wens, A.; Brandt, C.; Wachten, D.; Yaksi, E.; Jurisch-Yaksi, N. Ciliary beating compartmentalizes cerebrospinal fluid flow in the brain and regulates ventricular development. Curr. Biol., 2019, 29(2), 229-241.e6.
[http://dx.doi.org/10.1016/j.cub.2018.11.059] [PMID: 30612902]
[72]
Ramirez-San Juan, G.R.; Mathijssen, A.J.T.M.; He, M.; Jan, L.; Marshall, W.; Prakash, M. Multi-scale spatial heterogeneity enhances particle clearance in airway ciliary arrays. Nat. Phys., 2020, 16(9), 958-964.
[http://dx.doi.org/10.1038/s41567-020-0923-8] [PMID: 35937969]
[73]
Little, R.B.; Norris, D.P. Right, left and cilia: How asymmetry is established. Semin. Cell Dev. Biol., 2021, 110, 11-18.
[http://dx.doi.org/10.1016/j.semcdb.2020.06.003] [PMID: 32571625]
[74]
Liu, J.; Zhu, C.; Ning, G.; Yang, L.; Cao, Y.; Huang, S.; Wang, Q. Chemokine signaling links cell-cycle progression and cilia formation for left–right symmetry breaking. PLoS Biol., 2019, 17(8), e3000203.
[http://dx.doi.org/10.1371/journal.pbio.3000203] [PMID: 31430272]
[75]
Gilpin, W.; Bull, M.S.; Prakash, M. The multiscale physics of cilia and flagella. Nat. Rev. Phys., 2020, 2(2), 74-88.
[http://dx.doi.org/10.1038/s42254-019-0129-0]
[76]
Zhang, S.; Zuo, P.; Wang, Y.; Onck, P.; Toonder, J.M.J. Anti-biofouling and self-cleaning surfaces featured with magnetic artificial cilia. ACS Appl. Mater. Interfaces, 2020, 12(24), 27726-27736.
[http://dx.doi.org/10.1021/acsami.0c05403] [PMID: 32476404]
[77]
Babu, D.; Katsonis, N. Light moves artificial cilia to a complex beat. Nature, 2022, 605(7908), 37-38.
[http://dx.doi.org/10.1038/d41586-022-01080-9] [PMID: 35508770]
[78]
Cicconofri, G.; Damioli, V.; Noselli, G. Nonreciprocal oscillations of polyelectrolyte gel filaments subject to a steady and uniform electric field. J. Mech. Phys. Solids, 2023, 173, 105225.
[http://dx.doi.org/10.1016/j.jmps.2023.105225]
[79]
Ludwig, H.C.; Dreha-Kulaczewski, S.; Bock, H.C. Neurofluids—Deep inspiration, cilia and preloading of the astrocytic network. J. Neurosci. Res., 2021, 99(11), 2804-2821.
[http://dx.doi.org/10.1002/jnr.24935] [PMID: 34323313]
[80]
Zhang, R.; den Toonder, J.; Onck, P.R. Transport and mixing by metachronal waves in nonreciprocal soft robotic pneumatic artificial cilia at low Reynolds numbers. Phys. Fluids, 2021, 33(9), 092009.
[http://dx.doi.org/10.1063/5.0054929]
[81]
Zhang, S.; Cui, Z.; Wang, Y.; den Toonder, J.M.J. Metachronal actuation of microscopic magnetic artificial cilia generates strong microfluidic pumping. Lab Chip, 2020, 20(19), 3569-3581.
[http://dx.doi.org/10.1039/D0LC00610F] [PMID: 32845950]
[82]
Saleem, N.; Munawar, S.; Tripathi, D. Thermal analysis of double diffusive electrokinetic thermally radiated TiO2-Ag/blood stream triggered by synthetic cilia under buoyancy forces and activation energy. Phys. Scr., 2021, 96(9), 095218.
[http://dx.doi.org/10.1088/1402-4896/ac0988]
[83]
Ringers, C.; Bialonski, S.; Ege, M.; Solovev, A.; Hansen, J.N.; Jeong, I.; Friedrich, B.M.; Jurisch-Yaksi, N.; Goldstein, R.E. Novel analytical tools reveal that local synchronization of cilia coincides with tissue-scale metachronal waves in zebrafish multiciliated epithelia. eLife, 2023, 12, e77701.
[http://dx.doi.org/10.7554/eLife.77701] [PMID: 36700548]
[84]
Zhang, X.; Guo, J.; Fu, X.; Zhang, D.; Zhao, Y. Tailoring flexible arrays for artificial cilia actuators. Adv. Intell. Syst., 2021, 3(10), 2000225.
[http://dx.doi.org/10.1002/aisy.202000225]
[85]
Li, J.; Esteban-Fernández de Ávila, B.; Gao, W.; Zhang, L.; Wang, J. Micro/nanorobots for biomedicine: Delivery, surgery, sensing, and detoxification. Sci. Robot., 2017, 2(4), eaam6431.
[http://dx.doi.org/10.1126/scirobotics.aam6431] [PMID: 31552379]
[86]
Dillinger, C.; Nama, N.; Ahmed, D. Ultrasound-activated ciliary bands for microrobotic systems inspired by starfish. Nat. Commun., 2021, 12(1), 6455.
[http://dx.doi.org/10.1038/s41467-021-26607-y] [PMID: 34753910]
[87]
Zheng, L. Design and research of a magnetic-driven microrobot system based on biomimetic multi-cilia; Soochow University, 2016.
[88]
Chen, W.; Yan, G.; Wang, Z.; Jiang, P.; Liu, H. A wireless capsule robot with spiral legs for human intestine. Int. J. Med. Robot., 2014, 10(2), 147-161.
[http://dx.doi.org/10.1002/rcs.1520] [PMID: 23843276]
[89]
Ding, L.; Sontz, E.A.; Saqui-Salces, M.; Merchant, J.L. Interleukin-1 beta suppresses gastrin via primary cilia and induces antral hyperplasia. Cell. Mol. Gastroenterol. Hepatol., 2021, 11(5), 1251-1266.
[http://dx.doi.org/10.1016/j.jcmgh.2020.12.008] [PMID: 33347972]
[90]
Mousavi, S.; Howard, D.; Zhang, F.; Leng, J.; Wang, C.H. Direct 3d printing of highly anisotropic, flexible, constriction-resistive sensors for multidirectional proprioception in soft robots. ACS Appl. Mater. Interfaces, 2020, 12(13), 15631-15643.
[http://dx.doi.org/10.1021/acsami.9b21816] [PMID: 32129594]
[91]
Ghanbari, A.; Bahrami, M. A novel swimming microrobot based on artificial cilia for biomedical applications. J. Intell. Robot. Syst., 2011, 63(3-4), 399-416.
[http://dx.doi.org/10.1007/s10846-010-9516-6]
[92]
Ghanbari, A.; Bahrami, M.; Nobari, M.R.H. Methodology for artificial microswimming using magnetic actuation. Phys. Rev. E Stat. Nonlin. Soft Matter Phys., 2011, 83(4), 046301.
[http://dx.doi.org/10.1103/PhysRevE.83.046301] [PMID: 21599289]
[93]
Wu, Z.; Su, B. Spider cilium-like flexible electromagnetic sensor and its Application in Robot Collaborative Sensing; Chinese Chemical Society, 2019, p. 078993.
[94]
Lei, H.; Li, W.; Tan, X. Microfabrication of IPMC cilia for bio-inspired flow sensing. Eapad., 2012, 8340, 83401A.
[http://dx.doi.org/10.1117/12.917525]
[95]
Ribeiro, P.; Khan, M.A.; Alfadhel, A.; Kosel, J.; Franco, F.; Cardoso, S.; Bernardino, A.; Schmitz, A.; Santos-Victor, J.; Jamone, L. Bioinspired ciliary force sensor for robotic platforms. IEEE Robot. Autom. Lett., 2017, 2(2), 971-976.
[http://dx.doi.org/10.1109/LRA.2017.2656249]
[96]
Li, F.; Liu, W.; Stefanini, C.; Fu, X.; Dario, P. A novel bioinspired PVDF micro/nano hair receptor for a robot sensing system. Sensors, 2010, 10(1), 994-1011.
[http://dx.doi.org/10.3390/s100100994] [PMID: 22315581]
[97]
Lu, H.; Zhang, M.; Yang, Y.; Huang, Q.; Fukuda, T.; Wang, Z.; Shen, Y. A bioinspired multilegged soft millirobot that functions in both dry and wet conditions. Nat. Commun., 2018, 9(1), 3944.
[http://dx.doi.org/10.1038/s41467-018-06491-9]
[98]
Zhang, S.; Cui, Z.; Wang, Y.; den Toonder, J. Metachronal μ-Cilia for on-chip integrated pumps and climbing robots. ACS Appl. Mater. Interfaces, 2021, 13(17), 20845-20857.
[http://dx.doi.org/10.1021/acsami.1c03009] [PMID: 33884875]
[99]
Bae, A.J.; Ahmad, R.; Bodenschatz, E.; Pumir, A.; Gholami, A. Flagellum-driven cargoes: Influence of cargo size and the flagellum-cargo attachment geometry. PLoS One, 2023, 18(3), e0279940.
[http://dx.doi.org/10.1371/journal.pone.0279940] [PMID: 36897856]
[100]
Diaz, K.; Robinson, T.L.; Aydin, Y.O.; Aydin, E.; Goldman, D.I.; Wan, K.Y. A minimal robophysical model of quadriflagellate self-propulsion. Bioinspir. Biomim., 2021, 16(6), 066001.
[http://dx.doi.org/10.1088/1748-3190/ac1b6e] [PMID: 34359055]
[101]
Erdem, E.Y.; Yu-Ming Chen, Y-M.; Mohebbi, M.; Suh, J.W.; Kovacs, G.; Darling, R.B.; Böhringer, K.F. Thermally actuated omnidirectional walking microrobot. J. Microelectromech. Syst., 2010, 19(3), 433-442.
[http://dx.doi.org/10.1109/JMEMS.2010.2041897]
[102]
Xu, Z.; Wu, Z.; Yuan, M.; Chen, H.; Ge, W.; Xu, Q. Multiple cilia like swarms enable efficient microrobot deployment and execution. Cell Reports Physical Science, 2023, 4(3), 101329.
[http://dx.doi.org/10.1016/j.xcrp.2023.101329]
[103]
Cabanach, P.; Pena-Francesch, A.; Sheehan, D.; Bozuyuk, U.; Yasa, O.; Borros, S.; Sitti, M. Zwitterionic 3D-printed non-immunogenic stealth microrobots. Adv. Mater., 2020, 32(42), 2003013.
[http://dx.doi.org/10.1002/adma.202003013] [PMID: 32864804]
[104]
Li, J.; Angsantikul, P.; Liu, W.; Esteban-Fernández de, A.B.; Chang, X.; Sandraz, E.; Liang, Y.; Zhu, S.; Zhang, Y.; Chen, C.; Gao, W.; Zhang, L.; Wang, J. Biomimetic platelet camouflaged nanorobots for binding and isolation of biological threats. Adv. Mater., 2018, 30(2), 1704800.
[http://dx.doi.org/10.1002/adma.201704800] [PMID: 29193346]
[105]
Chen, X.Z.; Jang, B.; Ahmed, D.; Hu, C.; De Marco, C.; Hoop, M.; Mushtaq, F.; Nelson, B.J.; Pané, S. Small-scale machines driven by external power sources. Adv. Mater., 2018, 30(15), 1705061.
[http://dx.doi.org/10.1002/adma.201705061] [PMID: 29443430]
[106]
Wang, Q.; Zhang, L.; Bertinetto, L.; Hu, W.; Torr, P.H.S. Fast online object tracking and segmentation: A unifying approach. Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., 2019, 1328-1338.
[http://dx.doi.org/10.1109/CVPR.2019.00142]
[107]
Chen, J.; Zhang, Y.; Wu, L.; You, T.; Ning, X. An adaptive clustering-based algorithm for automatic path planning of heterogeneous. UAVS IEEE. IEEE Trans. Intell. Transp. Syst., 2022, 23(9), 16842-16853.
[http://dx.doi.org/10.1109/TITS.2021.3131473]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy