Generic placeholder image

Cardiovascular & Hematological Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5257
ISSN (Online): 1875-6182

Review Article

Combined Administration of Metformin and Vitamin D: A Futuristic Approach for Management of Hyperglycemia

Author(s): Sakshi Tyagi and Shalini Mani*

Volume 22, Issue 3, 2024

Published on: 27 October, 2023

Page: [258 - 275] Pages: 18

DOI: 10.2174/0118715257261643231018102928

Price: $65

Open Access Journals Promotions 2
Abstract

Diabetes is a series of metabolic disorders that can be categorized into three types depending on different aspects associated with age at onset, intensity of insulin resistance, and beta- cell dysfunction: Type 1 and 2 Diabetes, and Gestational Diabetes Mellitus. Type 2 Diabetes Mellitus (T2DM) has recently been found to account for more than 85% of diabetic cases. The current review intends to raise awareness among clinicians/researchers that combining vitamin D3 with metformin may pave the way for better T2DM treatment and management. An extensive literature survey was performed to analyze vitamin D’s role in regulating insulin secretion, their action on the target cells and thus maintaining the normal glucose level. On the other side, the anti-hyperglycemic effect of metformin as well as its detailed mechanism of action was also studied. Interestingly both compounds are known to exhibit the antioxidant effect too. Literature supporting the correlation between diabetic phenotypes and deficiency of vitamin D was also explored further. To thoroughly understand the common/overlapping pathways responsible for the antidiabetic as well as antioxidant nature of metformin and vitamin D3, we compared their antihyperglycemic and antioxidant activities. With this background, we are proposing the hypothesis that it would be of great interest if these two compounds could work in synergy to better manage the condition of T2DM and associated disorders.

Keywords: Diabetes, metformin, mitochondrion, insulin resistance, vitamin D3, type 2 diabetes mellitus.

Graphical Abstract
[1]
Saeedi, P.; Petersohn, I.; Salpea, P.; Malanda, B.; Karuranga, S.; Unwin, N.; Colagiuri, S.; Guariguata, L.; Motala, A.A.; Ogurtsova, K.; Shaw, J.E.; Bright, D.; Williams, R. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9th edition.Diabetes Res. Clin. Pract., 2019, 157, 107843.
[http://dx.doi.org/10.1016/j.diabres.2019.107843] [PMID: 31518657]
[2]
Plows, J.; Stanley, J.; Baker, P.; Reynolds, C.; Vickers, M. The pathophysiology of gestational diabetes mellitus. Int. J. Mol. Sci., 2018, 19(11), 3342.
[http://dx.doi.org/10.3390/ijms19113342] [PMID: 30373146]
[3]
Szymczak-Pajor, I.; Śliwińska, A. Analysis of association between vitamin D deficiency and insulin resistance. Nutrients, 2019, 11(4), 794.
[http://dx.doi.org/10.3390/nu11040794] [PMID: 30959886]
[4]
Tao, S.; Yuan, Q.; Mao, L.; Chen, F.L.; Ji, F.; Cui, Z.H. Vitamin D deficiency causes insulin resistance by provoking oxidative stress in hepatocytes. Oncotarget, 2017, 8(40), 67605-67613.
[http://dx.doi.org/10.18632/oncotarget.18754] [PMID: 28978056]
[5]
Wang, H.; Chen, W.; Li, D.; Yin, X.; Zhang, X.; Olsen, N.; Zheng, S.G. Vitamin D and chronic diseases. Aging Dis., 2017, 8(3), 346-353.
[http://dx.doi.org/10.14336/AD.2016.1021] [PMID: 28580189]
[6]
Wang, C. The relationship between type 2 diabetes mellitus and related thyroid diseases. J. Diabetes Res., 2013, 2013(3), 390534.
[7]
Vieira, R.; Souto, S.B.; Sánchez-López, E.; Machado, A.L.; Severino, P.; Jose, S.; Santini, A.; Fortuna, A.; García, M.L.; Silva, A.M.; Souto, E.B. Sugar-lowering drugs for type 2 diabetes mellitus and metabolic syndrome—review of classical and new compounds: Part-I. Pharmaceuticals (Basel), 2019, 12(4), 152.
[http://dx.doi.org/10.3390/ph12040152] [PMID: 31658729]
[8]
Bailey, C.J. Metformin: Historical overview. Diabetologia, 2017, 60(9), 1566-1576.
[http://dx.doi.org/10.1007/s00125-017-4318-z] [PMID: 28776081]
[9]
Shaw, R.J.; Lamia, K.A.; Vasquez, D.; Koo, S.H.; Bardeesy, N.; DePinho, R.A.; Montminy, M.; Cantley, L.C. The kinase LKB1 mediates glucose homeostasis in liver and therapeutic effects of metformin. Science, 2005, 310(5754), 1642-1646.
[http://dx.doi.org/10.1126/science.1120781] [PMID: 16308421]
[10]
Fullerton, M.D.; Galic, S.; Marcinko, K.; Sikkema, S.; Pulinilkunnil, T.; Chen, Z.P.; O’Neill, H.M.; Ford, R.J.; Palanivel, R.; O’Brien, M.; Hardie, D.G.; Macaulay, S.L.; Schertzer, J.D.; Dyck, J.R.B.; van Denderen, B.J.; Kemp, B.E.; Steinberg, G.R. Single phosphorylation sites in Acc1 and Acc2 regulate lipid homeostasis and the insulin-sensitizing effects of metformin. Nat. Med., 2013, 19(12), 1649-1654.
[http://dx.doi.org/10.1038/nm.3372] [PMID: 24185692]
[11]
Foretz, M.; Hébrard, S.; Leclerc, J.; Zarrinpashneh, E.; Soty, M.; Mithieux, G.; Sakamoto, K.; Andreelli, F.; Viollet, B. Metformin inhibits hepatic gluconeogenesis in mice independently of the LKB1/AMPK pathway via a decrease in hepatic energy state. J. Clin. Invest., 2010, 120(7), 2355-2369.
[http://dx.doi.org/10.1172/JCI40671] [PMID: 20577053]
[12]
Madiraju, A.K.; Erion, D.M.; Rahimi, Y.; Zhang, X.M.; Braddock, D.T.; Albright, R.A.; Prigaro, B.J.; Wood, J.L.; Bhanot, S.; MacDonald, M.J.; Jurczak, M.J.; Camporez, J.P.; Lee, H.Y.; Cline, G.W.; Samuel, V.T.; Kibbey, R.G.; Shulman, G.I. Metformin suppresses gluconeogenesis by inhibiting mitochondrial glycerophosphate dehydrogenase. Nature, 2014, 510(7506), 542-546.
[http://dx.doi.org/10.1038/nature13270] [PMID: 24847880]
[13]
Gong, L.; Goswami, S.; Giacomini, K.M.; Altman, R.B.; Klein, T.E. Metformin pathways. Pharmacogenet. Genomics, 2012, 22(11), 820-827.
[http://dx.doi.org/10.1097/FPC.0b013e3283559b22] [PMID: 22722338]
[14]
Lv, Z.; Guo, Y. Metformin and its benefits for various diseases. Front. Endocrinol. (Lausanne), 2020, 11, 191.
[http://dx.doi.org/10.3389/fendo.2020.00191] [PMID: 32425881]
[15]
Romero, R.; Erez, O.; Hüttemann, M.; Maymon, E.; Panaitescu, B.; Conde-Agudelo, A.; Pacora, P.; Yoon, B.H.; Grossman, L.I. Metformin, the aspirin of the 21st century: Its role in gestational diabetes mellitus, prevention of preeclampsia and cancer, and the promotion of longevity. Am. J. Obstet. Gynecol., 2017, 217(3), 282-302.
[http://dx.doi.org/10.1016/j.ajog.2017.06.003] [PMID: 28619690]
[16]
Foretz, M.; Guigas, B.; Bertrand, L.; Pollak, M.; Viollet, B. Metformin: From mechanisms of action to therapies. Cell Metab., 2014, 20(6), 953-966.
[http://dx.doi.org/10.1016/j.cmet.2014.09.018] [PMID: 25456737]
[17]
Yousef, F.; Yousef, N.; Mansour, O.; Herbali, J. Metformin: A unique herbal origin medication. Glob. J. Med. Res., 2017, 17.
[18]
Carlberg, C.; Vitamin, D. Ref J Biomed Sci, 2016, 2016, 1-7.
[19]
Jeon, S.M.; Shin, E.A. Exploring vitamin D metabolism and function in cancer. Exp. Mol. Med., 2018, 50(4), 1-14.
[http://dx.doi.org/10.1038/s12276-018-0038-9] [PMID: 29657326]
[20]
Matsui, M.S.; Vitamin, D. Update. Curr. Dermatol. Rep., 2020, 9(4), 323-330.
[http://dx.doi.org/10.1007/s13671-020-00315-0] [PMID: 33078087]
[21]
Wimalawansa, S.J. Associations of vitamin D with insulin resistance, obesity, type 2 diabetes, and metabolic syndrome. J. Steroid Biochem. Mol. Biol., 2018, 175, 177-189.
[http://dx.doi.org/10.1016/j.jsbmb.2016.09.017] [PMID: 27662816]
[22]
Berridge, M.J. Vitamin D cell signalling in health and disease. Biochem. Biophys. Res. Commun., 2015, 460(1), 53-71.
[http://dx.doi.org/10.1016/j.bbrc.2015.01.008] [PMID: 25998734]
[23]
Berridge, M.J. Vitamin D, reactive oxygen species and calcium signalling in ageing and disease. Philos. Trans. R. Soc. Lond. B Biol. Sci., 2016, 371(1700), 20150434-20150471.
[24]
Berridge, M.J. Vitamin D deficiency and diabetes. Biochem. J., 2017, 474(8), 1321-1332.
[http://dx.doi.org/10.1042/BCJ20170042] [PMID: 28341729]
[25]
Wenclewska, S.; Szymczak-Pajor, I.; Drzewoski, J.; Bunk, M.; Śliwińska, A. Vitamin D supplementation reduces both oxidative DNA damage and insulin resistance in the elderly with metabolic disorders. Int. J. Mol. Sci., 2019, 20(12), 2891.
[http://dx.doi.org/10.3390/ijms20122891] [PMID: 31200560]
[26]
Ashabi, G.; Khalaj, L.; Khodagholi, F.; Goudarzvand, M.; Sarkaki, A. Pre-treatment with metformin activates Nrf2 antioxidant pathways and inhibits inflammatory responses through induction of AMPK after transient global cerebral ischemia. Metab. Brain Dis., 2015, 30(3), 747-754.
[http://dx.doi.org/10.1007/s11011-014-9632-2] [PMID: 25413451]
[27]
Anandabaskar, N.; Selvarajan, S.; Kamalanathan, S. Vitamin D in Health and Disease – An Update. J. Young Pharm., 2018, 10(4), 381-387.
[http://dx.doi.org/10.5530/jyp.2018.10.85]
[28]
Demer, L.L.; Hsu, J.J.; Tintut, Y. Steroid hormone vitamin D: Implications for cardiovascular disease. Circ. Res., 2018, 122(11), 1576-1585.
[http://dx.doi.org/10.1161/CIRCRESAHA.118.311585] [PMID: 29798901]
[29]
Aghajafari, F.; Field, C.J.; Kaplan, B.J.; Rabi, D.M.; Maggiore, J.A.; O’Beirne, M.; Hanley, D.A.; Eliasziw, M.; Dewey, D.; Weinberg, A.; Ross, S.J. The current recommended vitamin D intake guideline for diet and supplements during pregnancy is not adequate to achieve vitamin D sufficiency for most pregnant women. PLoS One, 2016, 11(7), e0157262.
[http://dx.doi.org/10.1371/journal.pone.0157262] [PMID: 27367800]
[30]
Silva, M.C.; Furlanetto, T.W. Intestinal absorption of vitamin D: A systematic review. Nutr. Rev., 2018, 76(1), 60-76.
[http://dx.doi.org/10.1093/nutrit/nux034] [PMID: 29025082]
[31]
Hollis, B.W.; Wagner, C.L.; Drezner, M.K.; Binkley, N.C. Circulating vitamin D3 and 25-hydroxyvitamin D in humans: An important tool to define adequate nutritional vitamin D status. J. Steroid Biochem. Mol. Biol., 2007, 103(3-5), 631-634.
[http://dx.doi.org/10.1016/j.jsbmb.2006.12.066] [PMID: 17218096]
[32]
Heaney, R.P.; French, C.B.; Nguyen, S.; Ferreira, M.; Baggerly, L.L.; Brunel, L.; Veugelers, P. A novel approach localizes the association of vitamin D status with insulin resistance to one region of the 25-hydroxyvitamin D continuum. Adv. Nutr., 2013, 4(3), 303-310.
[http://dx.doi.org/10.3945/an.113.003731] [PMID: 23674796]
[33]
Gil, Á.; Plaza-Diaz, J.; Mesa, M.D.; Vitamin, D. Classic and novel actions. Ann. Nutr. Metab., 2018, 72(2), 87-95.
[http://dx.doi.org/10.1159/000486536] [PMID: 29346788]
[34]
Alshahrani, F.; Aljohani, N.; Vitamin, D. Deficiency, sufficiency and toxicity. Nutrients, 2013, 5(9), 3605-3616.
[http://dx.doi.org/10.3390/nu5093605] [PMID: 24067388]
[35]
Christakos, S. In search of regulatory circuits that control the biological activity of vitamin D. J. Biol. Chem., 2017, 292(42), 17559-17560.
[http://dx.doi.org/10.1074/jbc.H117.806901] [PMID: 29055009]
[36]
Brown, R.B.; Razzaque, M.S. Dysregulation of phosphate metabolism and conditions associated with phosphate toxicity. Bonekey Rep., 2015, 4, 705.
[http://dx.doi.org/10.1038/bonekey.2015.74] [PMID: 26131357]
[37]
Holick, M.F.; Vitamin, D. Vitamin D deficiency. N. Engl. J. Med., 2007, 357(3), 266-281.
[http://dx.doi.org/10.1056/NEJMra070553] [PMID: 17634462]
[38]
Keane, J.; Elangovan, H.; Stokes, R.; Gunton, J. Vitamin D and the liver—correlation or cause? Nutrients, 2018, 10(4), 496.
[http://dx.doi.org/10.3390/nu10040496] [PMID: 29659559]
[39]
Khammissa, R.A.; Fourie, J.; Motswaledi, M.H.; Ballyram, R.; Lemmer, J.; Feller, L. The biological activities of vitamin D and its receptor in relation to calcium and bone homeostasis, cancer, immune and cardiovascular systems, skin biology, and oral health. BioMed Res. Int., 2018, 2018, 9276380.
[http://dx.doi.org/10.1155/2018/9276380]
[40]
Battault, S.; Whiting, S.J.; Peltier, S.L.; Sadrin, S.; Gerber, G.; Maixent, J.M. Vitamin D metabolism, functions and needs: From science to health claims. Eur. J. Nutr., 2013, 52(2), 429-441.
[http://dx.doi.org/10.1007/s00394-012-0430-5] [PMID: 22886046]
[41]
Abdel-Rehim, W.M.; El-Tahan, R.A.; El-Tarawy, M.A.; Shehata, R.R.; Kamel, M.A. The possible antidiabetic effects of vitamin D receptors agonist in rat model of type 2 diabetes. Mol. Cell. Biochem., 2019, 450(1-2), 105-112.
[http://dx.doi.org/10.1007/s11010-018-3377-x] [PMID: 29909574]
[42]
Dawson, M.I.; Xia, Z. The retinoid X receptors and their ligands. Biochim. Biophys. Acta Mol. Cell Biol. Lipids, 2012, 1821(1), 21-56.
[http://dx.doi.org/10.1016/j.bbalip.2011.09.014] [PMID: 22020178]
[43]
Rosen, C.J.; Adams, J.S.; Bikle, D.D.; Black, D.M.; Demay, M.B.; Manson, J.E.; Murad, M.H.; Kovacs, C.S. The nonskeletal effects of vitamin D: An Endocrine Society scientific statement. Endocr. Rev., 2012, 33(3), 456-492.
[http://dx.doi.org/10.1210/er.2012-1000] [PMID: 22596255]
[44]
de la Puente Yagüe, M.; Collado Yurrita, L.; Ciudad Cabañas, M.; Cuadrado Cenzual, M. Role of vitamin d in athletes and their performance: Current concepts and new trends. Nutrients, 2020, 12(2), 579.
[http://dx.doi.org/10.3390/nu12020579] [PMID: 32102188]
[45]
Toteja, G.S.; Kamboj, P.; Dwivedi, S. Prevalence of hypovitaminosis D in India & way forward. Indian J. Med. Res., 2018, 148(5), 548-556.
[http://dx.doi.org/10.4103/ijmr.IJMR_1807_18] [PMID: 30666982]
[46]
Amrein, K.; Scherkl, M.; Hoffmann, M.; Neuwersch-Sommeregger, S.; Köstenberger, M.; Tmava Berisha, A.; Martucci, G.; Pilz, S.; Malle, O. Vitamin D deficiency 2.0: An update on the current status worldwide. Eur. J. Clin. Nutr., 2020, 74(11), 1498-1513.
[http://dx.doi.org/10.1038/s41430-020-0558-y] [PMID: 31959942]
[47]
Himmetoglu, S.; Teksoz, S.; Zengin, K.; Yesim, T.; Taskın, M.; Dincer, Y. Serum levels of fetuin A and 8-hydroxydeoxyguanosine in morbidly obese subjects. Exp. Clin. Endocrinol. Diabetes, 2013, 121(8), 505-508.
[http://dx.doi.org/10.1055/s-0033-1345162] [PMID: 23765754]
[48]
Galicia-Garcia, U.; Benito-Vicente, A.; Jebari, S.; Larrea-Sebal, A.; Siddiqi, H.; Uribe, K.B.; Ostolaza, H.; Martín, C. Pathophysiology of type 2 diabetes mellitus. Int. J. Mol. Sci., 2020, 21(17), 6275.
[http://dx.doi.org/10.3390/ijms21176275] [PMID: 32872570]
[49]
Nakashima, A.; Yokoyama, K.; Yokoo, T.; Urashima, M. Role of vitamin D in diabetes mellitus and chronic kidney disease. World J. Diabetes, 2016, 7(5), 89-100.
[http://dx.doi.org/10.4239/wjd.v7.i5.89] [PMID: 26981182]
[50]
Abbas, M.A. Physiological functions of Vitamin D in adipose tissue. J. Steroid Biochem. Mol. Biol., 2017, 165(Pt B), 369-381.
[http://dx.doi.org/10.1016/j.jsbmb.2016.08.004] [PMID: 27520301]
[51]
Mitri, J.; Pittas, A.G. Vitamin D and diabetes. Endocrinol. Metab. Clin. North Am., 2014, 43(1), 205-232.
[http://dx.doi.org/10.1016/j.ecl.2013.09.010] [PMID: 24582099]
[52]
Witham, M.D.; Dove, F.J.; Dryburgh, M.; Sugden, J.A.; Morris, A.D.; Struthers, A.D. The effect of different doses of vitamin D3 on markers of vascular health in patients with type 2 diabetes: A randomised controlled trial. Diabetologia, 2010, 53(10), 2112-2119.
[http://dx.doi.org/10.1007/s00125-010-1838-1] [PMID: 20596692]
[53]
Kayaniyil, S.; Vieth, R.; Retnakaran, R.; Knight, J.A.; Qi, Y.; Gerstein, H.C.; Perkins, B.A.; Harris, S.B.; Zinman, B.; Hanley, A.J. Association of vitamin D with insulin resistance and β-cell dysfunction in subjects at risk for type 2 diabetes. Diabetes Care, 2010, 33(6), 1379-1381.
[http://dx.doi.org/10.2337/dc09-2321] [PMID: 20215450]
[54]
Nikooyeh, B.; Neyestani, T.R.; Tayebinejad, N.; Alavi-Majd, H.; Shariatzadeh, N.; Kalayi, A.; Zahedirad, M.; Heravifard, S.; Salekzamani, S. Daily intake of vitamin D‐ or calcium‐vitamin D‐fortified Persian yogurt drink (doogh) attenuates diabetes‐induced oxidative stress: Evidence for antioxidative properties of vitamin D. J. Hum. Nutr. Diet., 2014, 27(s2)(Suppl. 2), 276-283.
[http://dx.doi.org/10.1111/jhn.12142] [PMID: 23829785]
[55]
George, P.S.; Pearson, E.R.; Witham, M.D. Effect of vitamin D supplementation on glycaemic control and insulin resistance: A systematic review and meta-analysis. Diabet. Med., 2012, 29(8), e142-e150.
[http://dx.doi.org/10.1111/j.1464-5491.2012.03672.x] [PMID: 22486204]
[56]
Talaei, A.; Mohamadi, M.; Adgi, Z. The effect of vitamin D on insulin resistance in patients with type 2 diabetes. Diabetol. Metab. Syndr., 2013, 5(1), 8.
[http://dx.doi.org/10.1186/1758-5996-5-8] [PMID: 23443033]
[57]
Yiu, Y.F.; Yiu, K.H.; Siu, C.W.; Chan, Y.H.; Li, S.W.; Wong, L.Y.; Lee, S.W.L.; Tam, S.; Wong, E.W.K.; Lau, C.P.; Cheung, B.M.Y.; Tse, H.F. Randomized controlled trial of vitamin D supplement on endothelial function in patients with type 2 diabetes. Atherosclerosis, 2013, 227(1), 140-146.
[http://dx.doi.org/10.1016/j.atherosclerosis.2012.12.013] [PMID: 23298824]
[58]
Nasri, H.; Behradmanesh, S.; Maghsoudi, A.R.; Ahmadi, A.; Nasri, P.; Rafieian-Kopaei, M. Efficacy of supplementary vitamin D on improvement of glycemic parameters in patients with type 2 diabetes mellitus; a randomized double blind clinical trial. J. Renal Inj. Prev., 2013, 3(1), 31-34.
[PMID: 25340161]
[59]
Kampmann, U.; Mosekilde, L.; Juhl, C.; Moller, N.; Christensen, B.; Rejnmark, L.; Wamberg, L.; Orskov, L. Effects of 12weeks high dose vitamin D3 treatment on insulin sensitivity, beta cell function, and metabolic markers in patients with type 2 diabetes and vitamin D insufficiency – a double-blind, randomized, placebo-controlled trial. Metabolism, 2014, 63(9), 1115-1124.
[http://dx.doi.org/10.1016/j.metabol.2014.06.008] [PMID: 25044176]
[60]
Anyanwu, A.; Fasanmade, O.; Odeniyi, I.; Iwuala, S.; Coker, H.; Ohwovoriole, A. Effect of Vitamin D supplementation on glycemic control in Type 2 diabetes subjects in Lagos, Nigeria. Indian J. Endocrinol. Metab., 2016, 20(2), 189-194.
[http://dx.doi.org/10.4103/2230-8210.176345] [PMID: 27042414]
[61]
Saif-Elnasr, M.; Ibrahim, I.; Alkady, M. Role of Vitamin D on glycemic control and oxidative stress in type 2 diabetes mellitus. J. Res. Med. Sci., 2017, 22(1), 22.
[http://dx.doi.org/10.4103/1735-1995.200278] [PMID: 28413419]
[62]
Li, X.; Liu, Y.; Zheng, Y.; Wang, P.; Zhang, Y. The effect of vitamin D supplementation on glycemic control in type 2 diabetes patients: A systematic review and meta-analysis. Nutrients, 2018, 10(3), 375.
[http://dx.doi.org/10.3390/nu10030375] [PMID: 29562681]
[63]
Pittas, A.G.; Dawson-Hughes, B.; Sheehan, P.; Ware, J.H.; Knowler, W.C.; Aroda, V.R.; Brodsky, I.; Ceglia, L.; Chadha, C.; Chatterjee, R.; Desouza, C.; Dolor, R.; Foreyt, J.; Fuss, P.; Ghazi, A.; Hsia, D.S.; Johnson, K.C.; Kashyap, S.R.; Kim, S.; LeBlanc, E.S.; Lewis, M.R.; Liao, E.; Neff, L.M.; Nelson, J.; O’Neil, P.; Park, J.; Peters, A.; Phillips, L.S.; Pratley, R.; Raskin, P.; Rasouli, N.; Robbins, D.; Rosen, C.; Vickery, E.M.; Staten, M. Vitamin D supplementation and prevention of type 2 diabetes. N. Engl. J. Med., 2019, 381(6), 520-530.
[http://dx.doi.org/10.1056/NEJMoa1900906] [PMID: 31173679]
[64]
Safarpour, P.; Daneshi-Maskooni, M.; Vafa, M.; Nourbakhsh, M.; Janani, L.; Maddah, M.; Amiri, F.S.; Mohammadi, F.; Sadeghi, H. Vitamin D supplementation improves SIRT1, Irisin, and glucose indices in overweight or obese type 2 diabetic patients: A double-blind randomized placebo-controlled clinical trial. BMC Fam. Pract., 2020, 21(1), 26.
[http://dx.doi.org/10.1186/s12875-020-1096-3] [PMID: 32033527]
[65]
Christakos, S.; Dhawan, P.; Porta, A.; Mady, L.J.; Seth, T. Vitamin D and intestinal calcium absorption. Mol. Cell. Endocrinol., 2011, 347(1-2), 25-29.
[http://dx.doi.org/10.1016/j.mce.2011.05.038] [PMID: 21664413]
[66]
Brewer, L.D.; Thibault, V.; Chen, K.C.; Langub, M.C.; Landfield, P.W.; Porter, N.M. Vitamin D hormone confers neuroprotection in parallel with downregulation of L-type calcium channel expression in hippocampal neurons. J. Neurosci., 2001, 21(1), 98-108.
[http://dx.doi.org/10.1523/JNEUROSCI.21-01-00098.2001] [PMID: 11150325]
[67]
Haussler, M.R.; Whitfield, G.R.; Kaneko, I Molecular mechanisms of Vitamin D action. Calcif. Tissue Int., 2013, 92(2), 77-98.
[68]
Pérez, A.V.; Picotto, G.; Carpentieri, A.R.; Rivoira, M.A.; Peralta López, M.E.; Tolosa de Talamoni, N.G. Minireview on regulation of intestinal calcium absorption. Emphasis on molecular mechanisms of transcellular pathway. Digestion, 2008, 77(1), 22-34.
[http://dx.doi.org/10.1159/000116623] [PMID: 18277073]
[69]
Gilon, P.; Chae, H.Y.; Rutter, G.A.; Ravier, M.A. Calcium signaling in pancreatic β-cells in health and in Type 2 diabetes. Cell Calcium, 2014, 56(5), 340-361.
[http://dx.doi.org/10.1016/j.ceca.2014.09.001] [PMID: 25239387]
[70]
Norman, A.W.; Frankel, B.J.; Heldt, A.M.; Grodsky, G.M. Vitamin D deficiency inhibits pancreatic secretion of insulin. Science, 1980, 209(4458), 823-825.
[http://dx.doi.org/10.1126/science.6250216] [PMID: 6250216]
[71]
Kadowaki, S.; Norman, A.W. Dietary vitamin D is essential for normal insulin secretion from the perfused rat pancreas. J. Clin. Invest., 1984, 73(3), 759-766.
[http://dx.doi.org/10.1172/JCI111269] [PMID: 6323527]
[72]
Cade, C.; Norman, A.W. Vitamin D3 improves impaired glucose tolerance and insulin secretion in the vitamin D-deficient rat in vivo. Endocrinology, 1986, 119(1), 84-90.
[http://dx.doi.org/10.1210/endo-119-1-84] [PMID: 3013599]
[73]
Altieri, B.; Grant, W.B.; Della Casa, S.; Orio, F.; Pontecorvi, A.; Colao, A.; Sarno, G.; Muscogiuri, G. Vitamin D and pancreas: The role of sunshine vitamin in the pathogenesis of diabetes mellitus and pancreatic cancer. Crit. Rev. Food Sci. Nutr., 2017, 57(16), 3472-3488.
[http://dx.doi.org/10.1080/10408398.2015.1136922] [PMID: 27030935]
[74]
Doyle, M.E.; Egan, J.M. Pharmacological agents that directly modulate insulin secretion. Pharmacol. Rev., 2003, 55(1), 105-131.
[http://dx.doi.org/10.1124/pr.55.1.7] [PMID: 12615955]
[75]
Dalle, S.; Quoyer, J.; Varin, E.; Costes, S. Roles and regulation of the transcription factor CREB in pancreatic β -cells. Curr. Mol. Pharmacol., 2011, 4(3), 187-195.
[http://dx.doi.org/10.2174/1874467211104030187] [PMID: 21488836]
[76]
Johnson, J.A.; Grande, J.P.; Roche, P.C.; Kumar, R. Immunohistochemical localization of the 1,25(OH)2D3 receptor and calbindin D28k in human and rat pancreas. Am. J. Physiol., 1994, 267(3 Pt 1), E356-E360.
[PMID: 7943215]
[77]
Dunlop, T.W.; Väisänen, S.; Frank, C.; Molnár, F.; Sinkkonen, L.; Carlberg, C. The human peroxisome proliferator-activated receptor δ gene is a primary target of 1α,25-dihydroxyvitamin D3 and its nuclear receptor. J. Mol. Biol., 2005, 349(2), 248-260.
[http://dx.doi.org/10.1016/j.jmb.2005.03.060] [PMID: 15890193]
[78]
Maestro, B.; Campión, J.; Dávila, N.; Calle, C. Stimulation by 1,25-dihydroxyvitamin D3 of insulin receptor expression and insulin responsiveness for glucose transport in U-937 human promonocytic cells. Endocr. J., 2000, 47(4), 383-391.
[http://dx.doi.org/10.1507/endocrj.47.383] [PMID: 11075718]
[79]
Maestro, B.; Molero, S.; Bajo, S.; Dávila, N.; Calle, C. Transcriptional activation of the human insulin receptor gene by 1,25-dihydroxyvitamin D 3. Cell Biochem. Funct., 2002, 20(3), 227-232.
[http://dx.doi.org/10.1002/cbf.951] [PMID: 12125099]
[80]
Maestro, B.; Dávila, N.; Carranza, M.C.; Calle, C. Identification of a Vitamin D response element in the human insulin receptor gene promoter. J. Steroid Biochem. Mol. Biol., 2003, 84(2-3), 223-230.
[http://dx.doi.org/10.1016/S0960-0760(03)00032-3] [PMID: 12711007]
[81]
Wright, D.C.; Hucker, K.A.; Holloszy, J.O.; Han, D.H. Ca2+ and AMPK both mediate stimulation of glucose transport by muscle contractions. Diabetes, 2004, 53(2), 330-335.
[http://dx.doi.org/10.2337/diabetes.53.2.330] [PMID: 14747282]
[82]
Karnieli, E.; Armoni, M. Regulation of glucose transporters in diabetes. Horm. Res., 1990, 33(2-4), 99-104.
[http://dx.doi.org/10.1159/000181491] [PMID: 2210626]
[83]
Peeyush, K.T.; Savitha, B.; Sherin, A.; Anju, T.R.; Jes, P.; Paulose, C.S. Cholinergic, dopaminergic and insulin receptors gene expression in the cerebellum of streptozotocin-induced diabetic rats: Functional regulation with Vitamin D3 supplementation. Pharmacol. Biochem. Behav., 2010, 95(2), 216-222.
[http://dx.doi.org/10.1016/j.pbb.2010.01.008] [PMID: 20096724]
[84]
Manna, P.; Jain, S.K. Vitamin D up-regulates glucose transporter 4 (GLUT4) translocation and glucose utilization mediated by cystathionine-γ-lyase (CSE) activation and H2S formation in 3T3L1 adipocytes. J. Biol. Chem., 2012, 287(50), 42324-42332.
[http://dx.doi.org/10.1074/jbc.M112.407833] [PMID: 23074218]
[85]
Tamilselvan, B.; Seshadri, K.G.; Venkatraman, G. Role of vitamin D on the expression of glucose transporters in L6 myotubes. Indian J. Endocrinol. Metab., 2013, 17(l1)(Suppl. 1), S326-S328.
[PMID: 24251203]
[86]
Sung, C.C.; Liao, M.T.; Lu, K.C.; Wu, C.C. Role of vitamin D in insulin resistance. J. Biomed. Biotechnol., 2012, 2012, 1-11.
[http://dx.doi.org/10.1155/2012/634195] [PMID: 22988423]
[87]
Manna, P.; Achari, A.E.; Jain, S.K. Vitamin D supplementation inhibits oxidative stress and upregulate SIRT1/AMPK/GLUT4 cascade in high glucose-treated 3T3L1 adipocytes and in adipose tissue of high fat diet-fed diabetic mice. Arch. Biochem. Biophys., 2017, 615, 22-34.
[http://dx.doi.org/10.1016/j.abb.2017.01.002] [PMID: 28063949]
[88]
Manna, P.; Achari, A.E.; Jain, S.K. 1, 25 (OH) 2-vitamin D 3 upregulates glucose uptake mediated by SIRT1/IRS1/GLUT4 signaling cascade in C2C12 myotubes. Mol. Cell. Biochem., 2018, 444(1-2), 103-3108.
[89]
He, Y.; Liu, Y.; Wang, Q.Z. Vitamin D3 Activates Phosphatidylinositol-3-Kinase/Protein Kinase B via Insulin-Like Growth Factor-1 to Improve Testicular Function in Diabetic Rats. J. Diabetes Res., 2019, 2019, 7894950.
[90]
Zhou, Q.G.; Hou, F.F.; Guo, Z.J.; Liang, M.; Wang, G.B.; Zhang, X. 1,25-Dihydroxyvitamin D improved the free fatty-acid-induced insulin resistance in cultured C2C12 cells. Diabetes Metab. Res. Rev., 2008, 24(6), 459-464.
[http://dx.doi.org/10.1002/dmrr.873] [PMID: 18551686]
[91]
Benetti, E.; Mastrocola, R.; Chiazza, F.; Nigro, D.; D’Antona, G.; Bordano, V.; Fantozzi, R.; Aragno, M.; Collino, M.; Minetto, M.A. Effects of vitamin D on insulin resistance and myosteatosis in diet-induced obese mice. PLoS One, 2018, 13(1), e0189707.
[http://dx.doi.org/10.1371/journal.pone.0189707] [PMID: 29342166]
[92]
Elseweidy, M.M.; Amin, R.S.; Atteia, H.H.; Ali, M.A. Vitamin D3 intake as regulator of insulin degrading enzyme and insulin receptor phosphorylation in diabetic rats. Biomed. Pharmacother., 2017, 85, 155-159.
[http://dx.doi.org/10.1016/j.biopha.2016.11.116] [PMID: 27930980]
[93]
Carling, D.; Sanders, M.J.; Woods, A. The regulation of AMP-activated protein kinase by upstream kinases. Int. J. Obes., 2008, 32(S4)(Suppl. 4), S55-S59.
[http://dx.doi.org/10.1038/ijo.2008.124] [PMID: 18719600]
[94]
Long, Y.C.; Zierath, J.R. AMP-activated protein kinase signaling in metabolic regulation. J. Clin. Invest., 2006, 116(7), 1776-1783.
[http://dx.doi.org/10.1172/JCI29044] [PMID: 16823475]
[95]
Barthel, A.; Schmoll, D.; Krüger, K.D.; Roth, R.A.; Joost, H.G. Regulation of the forkhead transcription factor FKHR (FOXO1a) by glucose starvation and AICAR, an activator of AMP-activated protein kinase. Endocrinology, 2002, 143(8), 3183-3186.
[http://dx.doi.org/10.1210/endo.143.8.8792]
[96]
Kamagate, A.; Kim, D.H.; Zhang, T.; Slusher, S.; Gramignoli, R.; Strom, S.C.; Bertera, S.; Ringquist, S.; Dong, H.H. FoxO1 links hepatic insulin action to endoplasmic reticulum stress. Endocrinology, 2010, 151(8), 3521-3535.
[http://dx.doi.org/10.1210/en.2009-1306] [PMID: 20501674]
[97]
Li, Y.; Xu, S.; Giles, A.; Nakamura, K.; Lee, J.W.; Hou, X.; Donmez, G.; Li, J.; Luo, Z.; Walsh, K.; Guarente, L.; Zang, M. Hepatic overexpression of SIRT1 in mice attenuates endoplasmic reticulum stress and insulin resistance in the liver. FASEB J., 2011, 25(5), 1664-1679.
[http://dx.doi.org/10.1096/fj.10-173492] [PMID: 21321189]
[98]
Leung, P. The Potential Protective Action of Vitamin D in Hepatic Insulin Resistance and Pancreatic Islet Dysfunction in Type 2 Diabetes Mellitus. Nutrients, 2016, 8(3), 147.
[http://dx.doi.org/10.3390/nu8030147] [PMID: 26959059]
[99]
Consiglio, M.; Viano, M.; Casarin, S.; Castagnoli, C.; Pescarmona, G.; Silvagno, F. Mitochondrial and lipogenic effects of vitamin D on differentiating and proliferating human keratinocytes. Exp. Dermatol., 2015, 24(10), 748-753.
[http://dx.doi.org/10.1111/exd.12761] [PMID: 26010336]
[100]
Kim, H.; Andreazza, A.; Yeung, P.; Isaacs-Trepanier, C.; Young, L.T. Oxidation and nitration in dopaminergic areas of the prefrontal cortex from patients with bipolar disorder and schizophrenia. J. Psychiatry Neurosci., 2014, 39(4), 276-285.
[http://dx.doi.org/10.1503/jpn.130155] [PMID: 24485387]
[101]
Scaini, G.; Rezin, G.T.; Carvalho, A.F.; Streck, E.L.; Berk, M.; Quevedo, J. Mitochondrial dysfunction in bipolar disorder: Evidence, pathophysiology and translational implications. Neurosci. Biobehav. Rev., 2016, 68, 694-713.
[http://dx.doi.org/10.1016/j.neubiorev.2016.06.040] [PMID: 27377693]
[102]
Westphal, C.; Dipp, M.; Guarente, L. A therapeutic role for sirtuins in diseases of aging? Trends Biochem. Sci., 2007, 32(12), 555-560.
[http://dx.doi.org/10.1016/j.tibs.2007.09.008] [PMID: 17980602]
[103]
An, B.S.; Tavera-Mendoza, L.E.; Dimitrov, V.; Wang, X.; Calderon, M.R.; Wang, H.J.; White, J.H. Stimulation of Sirt1-regulated FoxO protein function by the ligand-bound vitamin D receptor. Mol. Cell. Biol., 2010, 30(20), 4890-4900.
[http://dx.doi.org/10.1128/MCB.00180-10] [PMID: 20733005]
[104]
Polidoro, L.; Properzi, G.; Marampon, F.; Gravina, G.L.; Festuccia, C.; Di Cesare, E.; Scarsella, L.; Ciccarelli, C.; Zani, B.M.; Ferri, C. Vitamin D protects human endothelial cells from H2O2 oxidant injury through the Mek/Erk-Sirt1 axis activation. J. Cardiovasc. Transl. Res., 2013, 6(2), 221-231.
[http://dx.doi.org/10.1007/s12265-012-9436-x] [PMID: 23247634]
[105]
Chang, E.; Kim, Y. Vitamin D decreases adipocyte lipid storage and increases NAD-SIRT1 pathway in 3T3-L1 adipocytes. Nutrition, 2016, 32(6), 702-708.
[http://dx.doi.org/10.1016/j.nut.2015.12.032] [PMID: 26899162]
[106]
Marampon, F.; Gravina, G.L.; Festuccia, C.; Popov, V.M.; Colapietro, E.A.; Sanità, P.; Musio, D.; De Felice, F.; Lenzi, A.; Jannini, E.A.; Di Cesare, E.; Tombolini, V. Vitamin D protects endothelial cells from irradiation-induced senescence and apoptosis by modulating MAPK/SirT1 axis. J. Endocrinol. Invest., 2016, 39(4), 411-422.
[http://dx.doi.org/10.1007/s40618-015-0381-9] [PMID: 26335302]
[107]
Austin, S.; St-Pierre, J. PGC1α and mitochondrial metabolism – emerging concepts and relevance in ageing and neurodegenerative disorders. J. Cell Sci., 2012, 125(21), 4963-4971.
[http://dx.doi.org/10.1242/jcs.113662] [PMID: 23277535]
[108]
Sinha, A.; Hollingsworth, K.G.; Ball, S.; Cheetham, T. Improving the vitamin D status of vitamin D deficient adults is associated with improved mitochondrial oxidative function in skeletal muscle. J. Clin. Endocrinol. Metab., 2013, 98(3), E509-E513.
[http://dx.doi.org/10.1210/jc.2012-3592] [PMID: 23393184]
[109]
Fex, M.; Nicholas, L.M.; Vishnu, N.; Medina, A.; Sharoyko, V.V.; Nicholls, D.G.; Spégel, P.; Mulder, H. The pathogenetic role of β-cell mitochondria in type 2 diabetes. J. Endocrinol., 2018, 236(3), R145-R159.
[http://dx.doi.org/10.1530/JOE-17-0367] [PMID: 29431147]
[110]
Mokhtari, Z; Hekmatdoost, A; Nourian, M Antioxidant efficacy of vitamin D. J Parathyr Dis., 2016, 5(1), 11-6.
[111]
Bobilev, I.; Novik, V.; Levi, I.; Shpilberg, O.; Levy, J.; Sharoni, Y.; Studzinski, G.P.; Danilenko, M. The Nrf2 transcription factor is a positive regulator of myeloid differentiation of acute myeloid leukemia cells. Cancer Biol. Ther., 2011, 11(3), 317-329.
[http://dx.doi.org/10.4161/cbt.11.3.14098] [PMID: 21099366]
[112]
Zeldich, E.; Chen, C.D.; Colvin, T.A.; Bove-Fenderson, E.A.; Liang, J.; Tucker Zhou, T.B.; Harris, D.A.; Abraham, C.R. The neuroprotective effect of Klotho is mediated via regulation of members of the redox system. J. Biol. Chem., 2014, 289(35), 24700-24715.
[http://dx.doi.org/10.1074/jbc.M114.567321] [PMID: 25037225]
[113]
Wiederkehr, A.; Wollheim, C.B. Minireview: Implication of mitochondria in insulin secretion and action. Endocrinology, 2006, 147(6), 2643-2649.
[http://dx.doi.org/10.1210/en.2006-0057] [PMID: 16556766]
[114]
Montgomery, M.K.; Turner, N. Mitochondrial dysfunction and insulin resistance: An update. Endocr. Connect., 2015, 4(1), R1-R15.
[http://dx.doi.org/10.1530/EC-14-0092] [PMID: 25385852]
[115]
Inzucchi, S.E.; Tunceli, K.; Qiu, Y.; Rajpathak, S.; Brodovicz, K.G.; Engel, S.S.; Mavros, P.; Radican, L.; Brudi, P.; Li, Z.; Fan, C.P.S.; Hanna, B.; Tang, J.; Blonde, L. Progression to insulin therapy among patients with type 2 diabetes treated with sitagliptin or sulphonylurea plus metformin dual therapy. Diabetes Obes. Metab., 2015, 17(10), 956-964.
[http://dx.doi.org/10.1111/dom.12489] [PMID: 25962401]
[116]
Rena, G.; Pearson, E.R.; Sakamoto, K. Molecular action and pharmacogenetics of metformin: Current understanding of an old drug. Diabetes Manag. (Lond.), 2012, 2(5), 439-452.
[http://dx.doi.org/10.2217/dmt.12.42]
[117]
Rena, G.; Pearson, E.R.; Sakamoto, K. Molecular mechanism of action of metformin: Old or new insights? Diabetologia, 2013, 56(9), 1898-1906.
[http://dx.doi.org/10.1007/s00125-013-2991-0] [PMID: 23835523]
[118]
Rena, G.; Hardie, D.G.; Pearson, E.R. The mechanisms of action of metformin. Diabetologia, 2017, 60(9), 1577-1585.
[http://dx.doi.org/10.1007/s00125-017-4342-z] [PMID: 28776086]
[119]
Graham, G.G.; Punt, J.; Arora, M.; Day, R.O.; Doogue, M.P.; Duong, J.K.; Furlong, T.J.; Greenfield, J.R.; Greenup, L.C.; Kirkpatrick, C.M.; Ray, J.E.; Timmins, P.; Williams, K.M. Clinical pharmacokinetics of metformin. Clin. Pharmacokinet., 2011, 50(2), 81-98.
[http://dx.doi.org/10.2165/11534750-000000000-00000] [PMID: 21241070]
[120]
Stumvoll, M.; Nurjhan, N.; Perriello, G.; Dailey, G.; Gerich, J.E. Metabolic effects of metformin in non-insulin-dependent diabetes mellitus. N. Engl. J. Med., 1995, 333(9), 550-554.
[http://dx.doi.org/10.1056/NEJM199508313330903] [PMID: 7623903]
[121]
Zhou, G.; Myers, R.; Li, Y.; Chen, Y.; Shen, X.; Fenyk-Melody, J.; Wu, M.; Ventre, J.; Doebber, T.; Fujii, N.; Musi, N.; Hirshman, M.F.; Goodyear, L.J.; Moller, D.E. Role of AMP-activated protein kinase in mechanism of metformin action. J. Clin. Invest., 2001, 108(8), 1167-1174.
[http://dx.doi.org/10.1172/JCI13505] [PMID: 11602624]
[122]
Batandier, C.; Guigas, B.; Detaille, D.; El-Mir, M.; Fontaine, E.; Rigoulet, M.; Leverve, X.M. The ROS production induced by a reverse-electron flux at respiratory-chain complex 1 is hampered by metformin. J. Bioenerg. Biomembr., 2006, 38(1), 33-42.
[http://dx.doi.org/10.1007/s10863-006-9003-8] [PMID: 16732470]
[123]
Kim, Y.D.; Park, K.G.; Lee, Y.S.; Park, Y.Y.; Kim, D.K.; Nedumaran, B.; Jang, W.G.; Cho, W.J.; Ha, J.; Lee, I.K.; Lee, C.H.; Choi, H.S. Metformin inhibits hepatic gluconeogenesis through AMP-activated protein kinase-dependent regulation of the orphan nuclear receptor SHP. Diabetes, 2008, 57(2), 306-314.
[http://dx.doi.org/10.2337/db07-0381] [PMID: 17909097]
[124]
He, L.; Sabet, A.; Djedjos, S.; Miller, R.; Sun, X.; Hussain, M.A.; Radovick, S.; Wondisford, F.E. Metformin and insulin suppress hepatic gluconeogenesis through phosphorylation of CREB binding protein. Cell, 2009, 137(4), 635-646.
[http://dx.doi.org/10.1016/j.cell.2009.03.016] [PMID: 19450513]
[125]
Zhang, C.S.; Li, M.; Ma, T.; Zong, Y.; Cui, J.; Feng, J.W.; Wu, Y.Q.; Lin, S.Y.; Lin, S.C. Metformin activates AMPK through the lysosomal pathway. Cell Metab., 2016, 24(4), 521-522.
[http://dx.doi.org/10.1016/j.cmet.2016.09.003] [PMID: 27732831]
[126]
Kinaan, M.; Ding, H.; Triggle, C.R. Metformin: An old drug for the treatment of diabetes but a new drug for the protection of the endothelium. Med. Princ. Pract., 2015, 24(5), 401-415.
[http://dx.doi.org/10.1159/000381643] [PMID: 26021280]
[127]
Howell, JJ; Hellberg, K; Turner, M et al. Metformin inhibits hepatic mTORC1 signaling via dose-dependent mechanisms involving AMPK and the TSC complex. Cell Metab., 2017, 7, 25(2), 463-71.
[128]
Pernicova, I.; Korbonits, M. Metformin-mode of action and clinical implications for diabetes and cancer. Nat. Rev. Endocrinol., 2014, 10(3), 143-156.
[http://dx.doi.org/10.1038/nrendo.2013.256] [PMID: 24393785]
[129]
Ouyang, J.; Parakhia, R.A.; Ochs, R.S. Metformin activates AMP kinase through inhibition of AMP deaminase. J. Biol. Chem., 2011, 286(1), 1-11.
[http://dx.doi.org/10.1074/jbc.M110.121806] [PMID: 21059655]
[130]
Polianskyte-Prause, Z.; Tolvanen, T.A.; Lindfors, S.; Dumont, V.; Van, M.; Wang, H.; Dash, S.N.; Berg, M.; Naams, J.B.; Hautala, L.C.; Nisen, H.; Mirtti, T.; Groop, P.H.; Wähälä, K.; Tienari, J.; Lehtonen, S. Metformin increases glucose uptake and acts renoprotectively by reducing SHIP2 activity. FASEB J., 2019, 33(2), 2858-2869.
[http://dx.doi.org/10.1096/fj.201800529RR] [PMID: 30321069]
[131]
Miller, R.A.; Chu, Q.; Xie, J.; Foretz, M.; Viollet, B.; Birnbaum, M.J. Biguanides suppress hepatic glucagon signalling by decreasing production of cyclic AMP. Nature, 2013, 494(7436), 256-260.
[http://dx.doi.org/10.1038/nature11808] [PMID: 23292513]
[132]
Li, M.; Li, X.; Zhang, H.; Lu, Y. Molecular mechanisms of metformin for diabetes and cancer treatment. Front. Physiol., 2018, 9, 1039.
[http://dx.doi.org/10.3389/fphys.2018.01039] [PMID: 30108523]
[133]
Hunter, R.W.; Hughey, C.C.; Lantier, L.; Sundelin, E.I.; Peggie, M.; Zeqiraj, E.; Sicheri, F.; Jessen, N.; Wasserman, D.H.; Sakamoto, K. Metformin reduces liver glucose production by inhibition of fructose-1-6-bisphosphatase. Nat. Med., 2018, 24(9), 1395-1406.
[http://dx.doi.org/10.1038/s41591-018-0159-7] [PMID: 30150719]
[134]
An, H.; He, L. Current understanding of metformin effect on the control of hyperglycemia in diabetes. J. Endocrinol., 2016, 228(3), R97-R106.
[http://dx.doi.org/10.1530/JOE-15-0447] [PMID: 26743209]
[135]
Gunton, J.E.; Delhanty, P.J.D.; Takahashi, S.I.; Baxter, R.C. Metformin rapidly increases insulin receptor activation in human liver and signals preferentially through insulin-receptor substrate-2. J. Clin. Endocrinol. Metab., 2003, 88(3), 1323-1332.
[http://dx.doi.org/10.1210/jc.2002-021394] [PMID: 12629126]
[136]
Bailey, C.J.; Turner, R.C. Metformin. N. Engl. J. Med., 1996, 334(9), 574-579.
[http://dx.doi.org/10.1056/NEJM199602293340906] [PMID: 8569826]
[137]
Hardie, D.G. AMP-activated protein kinase as a drug target. Annu. Rev. Pharmacol. Toxicol., 2007, 47(1), 185-210.
[http://dx.doi.org/10.1146/annurev.pharmtox.47.120505.105304] [PMID: 16879084]
[138]
El-Mir, M.Y.; Nogueira, V.; Fontaine, E.; Avéret, N.; Rigoulet, M.; Leverve, X. Dimethylbiguanide inhibits cell respiration via an indirect effect targeted on the respiratory chain complex I. J. Biol. Chem., 2000, 275(1), 223-228.
[http://dx.doi.org/10.1074/jbc.275.1.223] [PMID: 10617608]
[139]
Owen, M.R.; Doran, E.; Halestrap, A.P. Evidence that metformin exerts its anti-diabetic effects through inhibition of complex 1 of the mitochondrial respiratory chain. Biochem. J., 2000, 348(3), 607-614.
[http://dx.doi.org/10.1042/bj3480607] [PMID: 10839993]
[140]
Fontaine, E. Metformin-induced mitochondrial complex I inhibition: Facts, uncertainties, and consequences. Front. Endocrinol. (Lausanne), 2018, 9, 753.
[http://dx.doi.org/10.3389/fendo.2018.00753] [PMID: 30619086]
[141]
Vial, G.; Detaille, D.; Guigas, B. Role of mitochondria in the mechanism (s) of action of metformin. Front. Endocrinol. (Lausanne), 2019, 10, 294.
[http://dx.doi.org/10.3389/fendo.2019.00294] [PMID: 31133988]
[142]
Fontaine, E. Metformin and respiratory chain complex I: The last piece of the puzzle? Biochem. J., 2014, 463(3), e3-e5.
[http://dx.doi.org/10.1042/BJ20141020] [PMID: 25301073]
[143]
Bridges, H.R.; Jones, A.J.Y.; Pollak, M.N.; Hirst, J. Effects of metformin and other biguanides on oxidative phosphorylation in mitochondria. Biochem. J., 2014, 462(3), 475-487.
[http://dx.doi.org/10.1042/BJ20140620] [PMID: 25017630]
[144]
Wessels, B.; Ciapaite, J.; van den Broek, N.M.A.; Nicolay, K.; Prompers, J.J. Metformin impairs mitochondrial function in skeletal muscle of both lean and diabetic rats in a dose-dependent manner. PLoS One, 2014, 9(6), e100525.
[http://dx.doi.org/10.1371/journal.pone.0100525] [PMID: 24950069]
[145]
Detaille, D.; Guigas, B.; Leverve, X.; Wiernsperger, N.; Devos, P. Obligatory role of membrane events in the regulatory effect of metformin on the respiratory chain function. Biochem. Pharmacol., 2002, 63(7), 1259-1272.
[http://dx.doi.org/10.1016/S0006-2952(02)00858-4] [PMID: 11960602]
[146]
El-Mir, M.Y.; Detaille, D. R-Villanueva, G.; Delgado-Esteban, M.; Guigas, B.; Attia, S.; Fontaine, E.; Almeida, A.; Leverve, X. Neuroprotective role of antidiabetic drug metformin against apoptotic cell death in primary cortical neurons. J. Mol. Neurosci., 2008, 34(1), 77-87.
[http://dx.doi.org/10.1007/s12031-007-9002-1] [PMID: 18040888]
[147]
Wang, Y.; An, H.; Liu, T.; Qin, C.; Sesaki, H.; Guo, S.; Radovick, S.; Hussain, M.; Maheshwari, A.; Wondisford, F.E.; O’Rourke, B.; He, L. Metformin improves mitochondrial respiratory activity through activation of AMPK. Cell Rep., 2019, 29(6), 1511-1523.e5.
[http://dx.doi.org/10.1016/j.celrep.2019.09.070] [PMID: 31693892]
[148]
Chakraborty, A.; Chowdhury, S.; Bhattacharyya, M. Effect of metformin on oxidative stress, nitrosative stress and inflammatory biomarkers in type 2 diabetes patients. Diabetes Res. Clin. Pract., 2011, 93(1), 56-62.
[http://dx.doi.org/10.1016/j.diabres.2010.11.030] [PMID: 21146883]
[149]
Cho, J.G.; Song, J.J.; Choi, J.; Im, G.J.; Jung, H.H.; Chae, S.W. The suppressive effects of metformin on inflammatory response of otitis media model in human middle ear epithelial cells. Int. J. Pediatr. Otorhinolaryngol., 2016, 89, 28-32.
[http://dx.doi.org/10.1016/j.ijporl.2016.07.025] [PMID: 27619024]
[150]
Diniz Vilela, D.; Gomes Peixoto, L.; Teixeira, R.R.; Belele Baptista, N.; Carvalho Caixeta, D. Vieira de Souza, A The role of metformin in controlling oxidative stress in muscle of diabetic rats. Oxid. Med. Cell. Longev., 2016, 2016, 6978625.
[http://dx.doi.org/10.1155/2016/6978625]
[151]
Kelly, B.; Tannahill, G.M.; Murphy, M.P.; O’Neill, L.A.J. Metformin inhibits the production of reactive oxygen species from NADH: Ubiquinone oxidoreductase to limit induction of interleukin-1β (IL-1β) and boosts interleukin-10 (IL-10) in lipopolysaccharide (LPS)-activated macrophages. J. Biol. Chem., 2015, 290(33), 20348-20359.
[http://dx.doi.org/10.1074/jbc.M115.662114] [PMID: 26152715]
[152]
Batchuluun, B.; Inoguchi, T.; Sonoda, N.; Sasaki, S.; Inoue, T.; Fujimura, Y.; Miura, D.; Takayanagi, R. Metformin and liraglutide ameliorate high glucose-induced oxidative stress via inhibition of PKC-NAD(P)H oxidase pathway in human aortic endothelial cells. Atherosclerosis, 2014, 232(1), 156-164.
[http://dx.doi.org/10.1016/j.atherosclerosis.2013.10.025] [PMID: 24401231]
[153]
Mummidi, S.; Das, N.A.; Carpenter, A.J.; Kandikattu, H.; Krenz, M.; Siebenlist, U.; Valente, A.J.; Chandrasekar, B. Metformin inhibits aldosterone-induced cardiac fibroblast activation, migration and proliferation in vitro, and reverses aldosterone+salt-induced cardiac fibrosis in vivo. J. Mol. Cell. Cardiol., 2016, 98, 95-102.
[http://dx.doi.org/10.1016/j.yjmcc.2016.07.006] [PMID: 27423273]
[154]
Bułdak, Ł.; Łabuzek, K.; Bułdak, R.J.; Kozłowski, M.; Machnik, G.; Liber, S.; Suchy, D.; Duława-Bułdak, A.; Okopień, B. Metformin affects macrophages’ phenotype and improves the activity of glutathione peroxidase, superoxide dismutase, catalase and decreases malondialdehyde concentration in a partially AMPK-independent manner in LPS-stimulated human monocytes/macrophages. Pharmacol. Rep., 2014, 66(3), 418-429.
[http://dx.doi.org/10.1016/j.pharep.2013.11.008] [PMID: 24905518]
[155]
Ahn, J.Y.; Kim, M.H.; Lim, M.J.; Park, S.; Lee, S.; Yun, Y.S.; Song, J.Y. The inhibitory effect of ginsan on TGF-β mediated fibrotic process. J. Cell. Physiol., 2011, 226(5), 1241-1247.
[http://dx.doi.org/10.1002/jcp.22452] [PMID: 20945375]
[156]
Kandhare, A.D.; Bodhankar, S.L.; Mohan, V.; Thakurdesai, P.A. Effect of glycosides based standardized fenugreek seed extract in bleomycin-induced pulmonary fibrosis in rats: Decisive role of Bax, Nrf2, NF-κB, Muc5ac, TNF-α and IL- 1β. Chem. Biol. Interact., 2015, 237, 151-165.
[157]
Ma, J.; Yu, H.; Liu, J.; Chen, Y.; Wang, Q.; Xiang, L. Metformin attenuates hyperalgesia and allodynia in rats with painful diabetic neuropathy induced by streptozotocin. Eur. J. Pharmacol., 2015, 764, 599-6506.
[http://dx.doi.org/10.1016/j.ejphar.2015.06.010]
[158]
Gamad, N.; Malik, S.; Suchal, K.; Vasisht, S.; Tomar, A.; Arava, S.; Arya, D.S.; Bhatia, J. Metformin alleviates bleomycin-induced pulmonary fibrosis in rats: Pharmacological effects and molecular mechanisms. Biomed. Pharmacother., 2018, 97, 1544-1553.
[http://dx.doi.org/10.1016/j.biopha.2017.11.101] [PMID: 29793317]
[159]
Shin, H.S.; Ko, J.; Kim, D.A.; Ryu, E.S.; Ryu, H.M.; Park, S.H.; Kim, Y.L.; Oh, E.S.; Kang, D.H. Metformin ameliorates the phenotype transition of peritoneal mesothelial cells and peritoneal fibrosis via a modulation of oxidative stress. Sci. Rep., 2017, 7(1), 5690.
[http://dx.doi.org/10.1038/s41598-017-05836-6] [PMID: 28720775]
[160]
Onken, B.; Driscoll, M. Metformin induces a dietary restriction-like state and the oxidative stress response to extend C. elegans Healthspan via AMPK, LKB1, and SKN-1. PLoS One, 2010, 5(1), e8758.
[http://dx.doi.org/10.1371/journal.pone.0008758] [PMID: 20090912]
[161]
Ricca, C.; Aillon, A.; Bergandi, L.; Alotto, D.; Castagnoli, C.; Silvagno, F. Vitamin D receptor is necessary for mitochondrial function and cell health. Int. J. Mol. Sci., 2018, 19(6), 1672.
[http://dx.doi.org/10.3390/ijms19061672] [PMID: 29874855]
[162]
Foretz, M.; Guigas, B.; Viollet, B. Understanding the glucoregulatory mechanisms of metformin in type 2 diabetes mellitus. Nat. Rev. Endocrinol., 2019, 15(10), 569-589.
[http://dx.doi.org/10.1038/s41574-019-0242-2] [PMID: 31439934]
[163]
Li, W.; Wang, Q.L.; Liu, X.; Dong, S.H.; Li, H.X.; Li, C.Y.; Guo, L.S.; Gao, J.M.; Berger, N.A.; Li, L.; Ma, L.; Wu, Y.J. Combined use of vitamin D3 and metformin exhibits synergistic chemopreventive effects on colorectal neoplasia in rats and mice. Cancer Prev. Res. (Phila.), 2015, 8(2), 139-148.
[http://dx.doi.org/10.1158/1940-6207.CAPR-14-0128] [PMID: 25416412]
[164]
Li, H.X.; Gao, J.M.; Liang, J.Q.; Xi, J.M.; Fu, M.; Wu, Y.J. Vitamin D 3 potentiates the growth inhibitory effects of metformin in DU 145 human prostate cancer cells mediated by AMPK/MTOR signalling pathway. Clin. Exp. Pharmacol. Physiol., 2015, 42(6), 711-717.
[http://dx.doi.org/10.1111/1440-1681.12409] [PMID: 25903858]
[165]
Kabel, A.M.; Alotaibi, S.N.; Alswat, N.M.; Aldajani, M.S.; Alnefaie, M.S. Effect of the combination between Metformin and Vitamin D on Experimentally-Induced Diabetic Nephropathy. International Journal of Pharma Sciences and Scientific Research, 2016, 2(2), 103-109.
[http://dx.doi.org/10.25141/2471-6782-2016-2.0103]
[166]
Amin, S.N.; Hussein, U.K.; Yassa, H.D.; Hassan, S.S.; Rashed, L.A. Synergistic actions of vitamin D and metformin on skeletal muscles and insulin resistance of type 2 diabetic rats. J. Cell. Physiol., 2018, 233(8), 5768-5779.
[http://dx.doi.org/10.1002/jcp.26300] [PMID: 29205344]
[167]
Shojaei Zarghani, S.; Abbaszadeh, S.; Alizadeh, M.; Rameshrad, M.; Garjani, A.; Soraya, H. The effect of metformin combined with calcium-vitamin d3 against diet-induced nonalcoholic fatty liver disease. Adv. Pharm. Bull., 2018, 8(1), 97-105.
[http://dx.doi.org/10.15171/apb.2018.012] [PMID: 29670844]
[168]
Kadoura, S.; Alhalabi, M.; Nattouf, A.H. Effect of calcium and vitamin D supplements as an adjuvant therapy to metformin on menstrual cycle abnormalities, hormonal profile, and IGF-1 system in polycystic ovary syndrome patients: a randomized, placebo-controlled clinical trial. Adv. Pharmacol. Sci., 2019.
[169]
Wahba, N.S.; Ghareib, S.A.; Abdelghany, R.H. Vitamin D3 potentiates the nephroprotective effects of metformin in a rat model of metabolic syndrome: Role of AMPK/SIRT1 activation and DPP-4 inhibition. Can. J. Physiol. Pharmacol., 2020.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy