Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Research Article

Combinatorial Synthesis of Indole Derivatives as Anti-oomycetes Agents

Author(s): Fei Hai, Ruxue Wei, Yan Li, Ruiguang Wang, Yuee Tian, Shengming Liu, Genqiang Chen and Zhiping Che*

Volume 27, Issue 19, 2024

Published on: 27 October, 2023

Page: [2816 - 2823] Pages: 8

DOI: 10.2174/0113862073252234231017062643

Price: $65

Abstract

Background: Developing high-efficiency and low-risk small-molecule green fungicide is the key to effective control of the plant pathogenic oomycetes. Indole is an important raw material for drug synthesis. Due to its unique structural skeleton, indole, and its derivatives have exhibited a wide range of biological activities. However, a study on the synthesis of novel indole derivatives as fungicidal agents against Phytophthora capsici has not yet been reported.

Methods: The important intermediates 2a-c and 3a-c were synthesized in high yields by Vilsmeier- Haack and Knoevenagel reactions with indole as the lead compound. Furthermore, different substituted benzenesulfonyl groups were introduced into the NH position of the indole ring, and twelve indole derivatives (I-a-l) were prepared. Their structures were well characterized by 1H NMR, HRMS, and melting point.

Results: The results showed that 2-[(N-(4-nitrobenzenesulfonyl)-indole-3)-methylene]-diethyl malonate (I-d) and 2-[(N-(4-nitrobenzenesulfonyl)-5-cyanoindole-3)-methylene]-diethyl malonate (I-l) showed more anti-oomycete activity against P. capsici than the commercialized fungicide zoxamide, with corresponding EC50 values of 26.53, 23.48 and 28.16 mg/L, respectively, and the protective effect of the compounds against P. capsici in vivo further confirmed the above results.

Conclusion: The preliminary structure-activity relationship showed that the formyl group modification at the C-3 position of the indole ring was acceptable, and the different anti-oomycete activities of R1 and R2 were significantly different, with R1 being 5-CN > H > 6-Me, and R2 being 4-NO2 > 3-NO2, H > 4-Me.

Keywords: Natural product, indole synthesis, anti-oomycete activity, Phytophthora capsici, indole derivatives, plant secondary metabolites.

Graphical Abstract
[1]
Savary, S.; Willocquet, L. Modeling the impact of crop diseases on global food security. Annu. Rev. Phytopathol., 2020, 58(1), 313-341.
[http://dx.doi.org/10.1146/annurev-phyto-010820-012856] [PMID: 32511041]
[2]
Shimizu, T.; Miyashita, M. Frontiers of pesticide science in terms of the mode of action. J. Pestic. Sci., 2011, 36(4), 510.
[http://dx.doi.org/10.1584/jpestics.W11-33]
[3]
Masi, M.; Nocera, P.; Reveglia, P.; Cimmino, A.; Evidente, A. Fungal metabolites antagonists towards plant pests and human pathogens: Structure-activity relationship studies. Molecules, 2018, 23(4), 834.
[http://dx.doi.org/10.3390/molecules23040834] [PMID: 29621148]
[4]
Miresmailli, S.; Isman, M.B. Botanical insecticides inspired by plant–herbivore chemical interactions. Trends Plant Sci., 2014, 19(1), 29-35.
[http://dx.doi.org/10.1016/j.tplants.2013.10.002] [PMID: 24216132]
[5]
Sparks, T.C.; Hahn, D.R.; Garizi, N.V. Natural products, their derivatives, mimics and synthetic equivalents: Role in agrochemical discovery. Pest Manag. Sci., 2017, 73(4), 700-715.
[http://dx.doi.org/10.1002/ps.4458] [PMID: 27739147]
[6]
Che, Z.; Guo, X.; Li, Y.; Zhang, S.; Zhu, L.; He, J.; Sun, D.; Guo, Y.; Liu, Y.; Wei, R.; Huang, X.; Liu, S.; Chen, G.; Tian, Y. Synthesis of paeonol ester derivatives and their insecticidal, nematicidal, and anti‐oomycete activities. Pest Manag. Sci., 2022, 78(8), 3442-3455.
[http://dx.doi.org/10.1002/ps.6985] [PMID: 35567371]
[7]
Austin, J.F.; MacMillan, D.W.C. Enantioselective organocatalytic indole alkylations. Design of a new and highly effective chiral amine for iminium catalysis. J. Am. Chem. Soc., 2002, 124(7), 1172-1173.
[http://dx.doi.org/10.1021/ja017255c] [PMID: 11841277]
[8]
Lamour, K.H.; Stam, R.; Jupe, J.; Huitema, E. The oomycete broad-host-range pathogen Phytophthora capsici. Mol. Plant Pathol., 2012, 13(4), 329-337.
[http://dx.doi.org/10.1111/j.1364-3703.2011.00754.x] [PMID: 22013895]
[9]
Meitz, J.C.; Linde, C.C.; Thompson, A.; Langenhoven, S.; McLeod, A. Phytophthora capsici on vegetable hosts in South Africa: Distribution, host range and genetic diversity. Australas. Plant Pathol., 2010, 39(5), 431-439.
[http://dx.doi.org/10.1071/AP09075]
[10]
Hausbeck, M.K.; Lamour, K.H. Phytophthora capsici on vegetable crops: Research progress and management challenges. Plant Dis., 2004, 88(12), 1292-1303.
[http://dx.doi.org/10.1094/PDIS.2004.88.12.1292] [PMID: 30795189]
[11]
Lamour, K.H.; Hausbeck, M.K. The dynamics of mefenoxam insensitivity in a recombining population of Phytophthora capsici characterized with amplified fragment length polymorphism markers. Phytopathology, 2001, 91(6), 553-557.
[http://dx.doi.org/10.1094/PHYTO.2001.91.6.553] [PMID: 18943943]
[12]
Parra, G.; Ristaino, J.B. Resistance to mefenoxam and metalaxyl among field isolates of Phytophthora capsici causing Phytophthora blight of bell pepper. Plant Dis., 2001, 85(10), 1069-1075.
[http://dx.doi.org/10.1094/PDIS.2001.85.10.1069] [PMID: 30823278]
[13]
Che, Z.P.; Liu, S.M.; Wei, S.L.; Chen, G.Q. Synthesis and antifungal activities of 3-formylindoles against Exserohilum turcicum and Helminthosporium maydis in vitro. Agrochemicals, 2015, 54(3), 177-179.
[14]
Chen, G.Q.; Che, Z.P.; Tian, Y.E.; Liu, S.M.; Xu, J.Q.; Cui, L.K.; Wei, S.L. Antifungal activities of substituted indole-3-carboxaldehyde derivatives. Modern Agrochemicals, 2016, 15(5), 12-14.
[15]
Tian, Y.E.; Che, Z.P.; Liu, S.M.; Xia, Y.F.; Yang, C.G.; Hu, M.; Chen, G.Q. Antifungal activities of 2-(N-arylsulfonylindol-3-yl)-3-N-acyl-5-phenyl-1,3,4-oxadiazolines. Modern Agrochemicals, 2018, 17(4), 8-11.
[16]
Dayan, F.E.; Cantrell, C.L.; Duke, S.O. Natural products in crop protection. Bioorg. Med. Chem., 2009, 17(12), 4022-4034.
[http://dx.doi.org/10.1016/j.bmc.2009.01.046] [PMID: 19216080]
[17]
Tian, Y.E.; Sun, D.; Han, X.X.; Yang, J.M.; Zhang, S.; Feng, N.N.; Zhu, L.N.; Xu, Z.Y.; Che, Z.P.; Liu, S.M.; Lin, X.M.; Jiang, J.; Chen, G.Q. Synthesis, anti-oomycete activity, and SAR studies of paeonol derivatives. J. Asian Nat. Prod. Res., 2021, 23(2), 138-149.
[http://dx.doi.org/10.1080/10286020.2020.1718116] [PMID: 32009450]
[18]
Che, Z.; Li, Y.; Guo, X.; He, J.; Zhang, S.; Zhu, L.; Liu, Y.; Wei, R.; Yang, Y.; Huang, X.; Liu, S.; Chen, G.; Tian, Y. Synthesis and anti-oomycete activity of sulfonate derivatives of Fenjuntong. Chem. Biodivers., 2022, 19(4), e202101039.
[http://dx.doi.org/10.1002/cbdv.202101039] [PMID: 35261147]
[19]
Tian, Y.E.; Sun, D.; Yang, J.M.; Che, Z.P.; Liu, S.M.; Lin, X.M.; Jiang, J.; Chen, G.Q. Synthesis of sulfonate derivatives of maltol and their biological activity against Phytophthora capsici and Bursaphelenchus xylophilus in vitro. J. Asian Nat. Prod. Res., 2020, 22(6), 578-587.
[http://dx.doi.org/10.1080/10286020.2019.1608958] [PMID: 31046458]
[20]
Xing, P.; Che, Z.; Liu, Y.; He, J.; Wei, R.; Chen, L.; Zhang, S.; Huang, X.; Yang, Y.; Liu, S.; Chen, G.; Tian, Y. Synthesis and anti-oomycete preliminary mechanism of sulfonate derivatives of ethyl maltol. Chem. Biodivers., 2022, 19(6), e202200255.
[http://dx.doi.org/10.1002/cbdv.202200255] [PMID: 35560978]
[21]
Che, Z.; Zhang, S.; He, J.; Sun, D.; Guo, X.; Li, Y.; Zhu, L.; Guo, Y.; Liu, Y.; Tian, Y.; Huang, X.; Liu, S.; Chen, G. Combinatorial synthesis of sulfonate derivatives of α/β-naphthol as anti-oomycetes agents. Comb. Chem. High T. Scr., 2022, 25(12), 2026-2032.
[PMID: 35088660]
[22]
Chen, G.; Zhu, L.; He, J.; Zhang, S.; Li, Y.; Guo, X.; Sun, D.; Tian, Y.; Liu, S.; Huang, X.; Che, Z. Combinatorial synthesis of novel 1-sulfonyloxy/acyloxyeugenol derivatives as fungicidal agents. Comb. Chem. High T. Scr., 2022, 25(9), 1545-1551.
[PMID: 34391376]
[23]
Chen, G.; Zhu, L.; He, J.; Zhang, S.; Li, Y.; Guo, X.; Sun, D.; Tian, Y.; Liu, S.; Huang, X.; Che, Z. Synthesis and anti-oomycete activity of 1-sulfonyloxy/acyloxydihydroeugenol derivatives. Chem. Biodivers., 2021, 18(9), e2100329.
[http://dx.doi.org/10.1002/cbdv.202100329] [PMID: 34346150]
[24]
Chen, G.Q.; Sun, D.; Yang, J.M.; Zhang, S.; Tian, Y.E.; Che, Z.P.; Liu, S.M.; Jiang, J.; Lin, X.M. Synthesis of sulfonate derivatives of carvacrol and thymol as anti-oomycetes agents. J. Asian Nat. Prod. Res., 2021, 23(7), 692-702.
[http://dx.doi.org/10.1080/10286020.2020.1758675] [PMID: 32406756]
[25]
Che, Z.; Liu, Y.; Chen, L.; Xing, P.; Li, X.; Huang, X.; Liu, S.; Chen, G.; Lin, X.; Tian, Y. Synthesis of hinokitiol sulfonate derivatives and their anti-oomycete and nematicidal activities. Chem. Biodivers., 2022, 19(9), e202200580.
[http://dx.doi.org/10.1002/cbdv.202200580] [PMID: 35975883]
[26]
Ge, Y.H.; Wu, Y.M.; Xue, Z.J. Synthesis of substituted indole-3-carboxaidehyde derivatives. Youji Huaxue, 2006, 26(4), 563-567.
[27]
Nishimura, T.; Yamada, K.; Takebe, T.; Yokoshima, S.; Fukuyama, T. (1-nosyl-5-nitroindol-3-yl)methyl ester: A novel protective group for carboxylic acids. Org. Lett., 2008, 10(12), 2601-2604.
[http://dx.doi.org/10.1021/ol8008655] [PMID: 18484732]
[28]
Che, Z.; Zhang, S.; Shao, Y.; Fan, L.; Xu, H.; Yu, X.; Zhi, X.; Yao, X.; Zhang, R. Synthesis and quantitative structure-activity relationship (QSAR) study of novel N-arylsulfonyl-3-acylindole arylcarbonyl hydrazone derivatives as nematicidal agents. J. Agric. Food Chem., 2013, 61(24), 5696-5705.
[http://dx.doi.org/10.1021/jf400536q] [PMID: 23738496]
[29]
Deng, G.; Li, W.; Shen, J.; Jiang, H.; Chen, K.; Liu, H. Pyrazolidine-3,5-dione derivatives as potent non-steroidal agonists of farnesoid X receptor: Virtual screening, synthesis, and biological evaluation. Bioorg. Med. Chem. Lett., 2008, 18(20), 5497-5502.
[http://dx.doi.org/10.1016/j.bmcl.2008.09.027] [PMID: 18815030]
[30]
McNab, H.; Tyas, R.G. A thermal cascade route to pyrroloisoindolone and pyrroloimidazolones. J. Org. Chem., 2007, 72(23), 8760-8769.
[http://dx.doi.org/10.1021/jo0712502] [PMID: 17949040]
[31]
Peng, J.N.; Zhang, H.Z.; Li, C.L.; Li, X.H.; Qi, Z.Q. Antifungal activity of compound1S,2R-((3-bromophenethyl)amino)-N-(4-chloro-2-trifluoromethylphenyl) cyclohexane-1-sulfonamide against Botrytis cinerea and its mode of action. Chin. J. Pestic. Sci, 2021, 23(3), 509-514.
[32]
Tian, Y.; Che, Z.; Sun, D.; He, J.; Liu, S.; Lin, X. In vitro effects of five different classes of fungicides on growth and development of Botrytis cinerea isolated from tree peony in China. HortScience, 2019, 54(11), 1984-1988.
[http://dx.doi.org/10.21273/HORTSCI14431-19]
[33]
Tian, Y.; Che, Z.; Sun, D.; Yang, Y.; Lin, X.; Liu, S.; Liu, X.; Gao, J. Resistance identification of tree peony varieties of different flowering time to gray mold pathogen Botrytis cinerea. HortScience, 2019, 54(2), 328-330.
[http://dx.doi.org/10.21273/HORTSCI13626-18]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy