Generic placeholder image

Coronaviruses

Editor-in-Chief

ISSN (Print): 2666-7967
ISSN (Online): 2666-7975

Review Article

Amidst Cytokine Storm in Metabolic Diseases: Can 2-deoxy-D-glucose (2-DG) Cure COVID-19?

Author(s): Shweta Shrivastava, Ayush Kumar, Manish Kumar Jeengar, Elsy Xavier and Prashant Tiwari*

Volume 5, Issue 2, 2024

Published on: 27 October, 2023

Article ID: e271023222860 Pages: 11

DOI: 10.2174/0126667975246836231019052126

Price: $65

Open Access Journals Promotions 2
Abstract

The SARS-CoV-2 (Severe Acute Respiratory Syndrome Coronavirus 2)-related pandemic disease COVID-19, which began in China in 2019, became the leading cause of fatalities globally. The transmission rate of the virus is directly proportional to the so-called ‘dance dynamic’ energy of the spike protein as this phenomenon favours the ligand-receptor binding. The clinical spectrum of the COVID-19 disease, which includes (inflammation, cytokine storm, and multi-organ dysfunction), puts Corona Warriors active in various aspects of the disease, such as the efficient management of critically ill COVID-19 patients, in danger of losing their lives. Due to its effects on an ancient oxygen- independent glycolytic pathway, anti-inflammatory properties, and competitive interaction with viral proteins, 2-deoxy-D-glucose (2-DG), which is being developed in India at the Defence Research and Development Organization (DRDO), has emerged as a ground-breaking agent for COVID-19 treatment. After a virus gains entry into host cells, it is found that metabolic reprogramming takes place to meet the nutritional and energy requirements for virus reproduction. The recent approval of 2-DG for adjunctive emergency usage by the Drug Controller General of India (DCGI) may mark a turning point in the management of mild to moderate COVID-19 infection.

Keywords: SARS-CoV-2, COVID-19, 2-deoxy-D-glucose, metabolic disease, spike protein dynamics, aerobic glycolysis.

Graphical Abstract
[1]
Mukherjee S, Boral S, Siddiqi H, Mishra A, Meikap BC. Present cum future of SARS-CoV-2 virus and its associated control of virus-laden air pollutants leading to potential environmental threat – A global review. J Environ Chem Eng 2021; 9(2): 104973.
[http://dx.doi.org/10.1016/j.jece.2020.104973] [PMID: 33462561]
[2]
Lombardi R, Mura VL, Cespiati A, et al. Usefulness of fibrosis-4 (FIB-4) score and metabolic alterations in the prediction of SARS-CoV-2 severity. Intern Emerg Med 2022; 17(6): 1739-49.
[http://dx.doi.org/10.1007/s11739-022-03000-1] [PMID: 35754075]
[3]
Makhoul E, Aklinski JL, Miller J, et al. A review of COVID-19 in relation to metabolic syndrome: Obesity, hypertension, diabetes, and dyslipidemia. Cureus 2022; 14(7): e27438.
[http://dx.doi.org/10.7759/cureus.27438] [PMID: 36051728]
[4]
Lim S, Bae JH, Kwon HS, Nauck MA. COVID-19 and diabetes mellitus: From pathophysiology to clinical management. Nat Rev Endocrinol 2021; 17(1): 11-30.
[http://dx.doi.org/10.1038/s41574-020-00435-4] [PMID: 33188364]
[5]
Roy B, Runa SA. SARS-CoV-2 infection and diabetes: Pathophysiological mechanism of multi-system organ failure. World J Virol 2022; 11(5): 252-74.
[http://dx.doi.org/10.5501/wjv.v11.i5.252] [PMID: 36188734]
[6]
Beeraka NM, Tulimilli SV, Karnik M, et al. The current status and challenges in the development of vaccines and drugs against severe acute respiratory syndrome-corona virus-2 (SARS-CoV-2). BioMed Res Int 2021; 2021: 1-20.
[http://dx.doi.org/10.1155/2021/8160860] [PMID: 34159203]
[7]
Ganesh A, Randall MD. Does metformin affect outcomes in COVID‐19 patients with new or pre‐existing diabetes mellitus? A systematic review and meta‐analysis. Br J Clin Pharmacol 2022; 88(6): 2642-56.
[http://dx.doi.org/10.1111/bcp.15258] [PMID: 35122284]
[8]
Ng CY, Wang L, Chowdhury A, Maranas CD. Pareto optimality explanation of the glycolytic alternatives in nature. Sci Rep 2019; 9(1): 2633.
[http://dx.doi.org/10.1038/s41598-019-38836-9] [PMID: 30796263]
[9]
Yan T, Xiao R, Wang N, Shang R, Lin G. Obesity and severe coronavirus disease 2019: Molecular mechanisms, paths forward, and therapeutic opportunities. Theranostics 2021; 11(17): 8234-53.
[http://dx.doi.org/10.7150/thno.59293] [PMID: 34373739]
[10]
Faas MM, de Vos P. Mitochondrial function in immune cells in health and disease. Biochim Biophys Acta Mol Basis Dis 2020; 1866(10): 165845.
[http://dx.doi.org/10.1016/j.bbadis.2020.165845] [PMID: 32473386]
[11]
Rashedi J, Mahdavi Poor B, Asgharzadeh V, et al. Risk Factors for COVID-19. Infez Med 2020; 28(4): 469-74.
[PMID: 33257620]
[12]
Rajpal A, Rahimi L, Ismail-Beigi F. Factors leading to high morbidity and mortality of COVID‐19 in patients with type 2 diabetes. J Diabetes 2020; 12(12): 895-908.
[http://dx.doi.org/10.1111/1753-0407.13085] [PMID: 32671936]
[13]
Abu-Farha M, Thanaraj TA, Qaddoumi MG, Hashem A, Abubaker J, Al-Mulla F. The role of lipid metabolism in COVID-19 virus infection and as a drug target. Int J Mol Sci 2020; 21(10): 3544.
[http://dx.doi.org/10.3390/ijms21103544] [PMID: 32429572]
[14]
Ardestani A, Azizi Z. Targeting glucose metabolism for treatment of COVID-19. Signal Transduct Target Ther 2021; 6(1): 112.
[http://dx.doi.org/10.1038/s41392-021-00532-4] [PMID: 33677470]
[15]
Fan JG, Cao HX. Role of diet and nutritional management in non-alcoholic fatty liver disease. J Gastroenterol Hepatol 2013; 28(S24): 81-7.
[http://dx.doi.org/10.1111/jgh.12244] [PMID: 24251710]
[16]
Shi J, Fan J, Su Q, Yang Z. Cytokines and abnormal glucose and lipid metabolism. Front Endocrinol 2019; 10: 703.
[http://dx.doi.org/10.3389/fendo.2019.00703] [PMID: 31736870]
[17]
Thyfault JP, Bergouignan A. Exercise and metabolic health: Beyond skeletal muscle. Diabetologia 2020; 63(8): 1464-74.
[http://dx.doi.org/10.1007/s00125-020-05177-6] [PMID: 32529412]
[18]
Song JW, Lam SM, Fan X, et al. Omics-driven systems interrogation of metabolic dysregulation in COVID-19 pathogenesis. Cell Metab 2020; 32(2): 188-202.e5.
[http://dx.doi.org/10.1016/j.cmet.2020.06.016] [PMID: 32610096]
[19]
Medina-Enríquez MM, Lopez-León S, Carlos-Escalante JA, Aponte-Torres Z, Cuapio A, Wegman-Ostrosky T. ACE2: The molecular doorway to SARS-CoV-2. Cell Biosci 2020; 10(1): 148.
[http://dx.doi.org/10.1186/s13578-020-00519-8] [PMID: 33380340]
[20]
Shin J, Toyoda S, Nishitani S, et al. Possible involvement of adipose tissue in patients with older age, obesity, and diabetes with SARS-CoV-2 infection (COVID-19) via GRP78 (BIP/HSPA5): Significance of hyperinsulinemia management in COVID-19. Diabetes 2021; 70(12): 2745-55.
[http://dx.doi.org/10.2337/db20-1094] [PMID: 34615619]
[21]
Soliman S, Faris ME, Ratemi Z, Halwani R. Switching host metabolism as an approach to dampen SARS-CoV-2 infection. Ann Nutr Metab 2020; 76(5): 297-303.
[http://dx.doi.org/10.1159/000510508] [PMID: 32950986]
[22]
Zhu J, Thompson CB. Metabolic regulation of cell growth and proliferation. Nat Rev Mol Cell Biol 2019; 20(7): 436-50.
[http://dx.doi.org/10.1038/s41580-019-0123-5] [PMID: 30976106]
[23]
Guerra S, Gastaldelli A. The role of the liver in the modulation of glucose and insulin in non alcoholic fatty liver disease and type 2 diabetes. Curr Opin Pharmacol 2020; 55: 165-74.
[http://dx.doi.org/10.1016/j.coph.2020.10.016] [PMID: 33278735]
[24]
Barella LF, Jain S, Kimura T, Pydi SP. Metabolic roles of G protein‐coupled receptor signaling in obesity and type 2 diabetes. FEBS J 2021; 288(8): 2622-44.
[http://dx.doi.org/10.1111/febs.15800] [PMID: 33682344]
[25]
Kiran S, Kumar V, Kumar S, Price RL, Singh UP. Adipocyte, immune cells, and miRNA crosstalk: A novel regulator of metabolic dysfunction and obesity. Cells 2021; 10(5): 1004.
[http://dx.doi.org/10.3390/cells10051004] [PMID: 33923175]
[26]
Means C. Letter to the Editor: Mechanisms of increased morbidity and mortality of SARS-CoV-2 infection in individuals with diabetes: what this means for an effective management strategy. Metabolism 2020; 108: 154254.
[http://dx.doi.org/10.1016/j.metabol.2020.154254] [PMID: 32360397]
[27]
Malato J, Sotzny F, Bauer S, et al. The SARS-CoV-2 receptor angiotensin-converting enzyme 2 (ACE2) in myalgic encephalomyelitis/chronic fatigue syndrome: A meta-analysis of public DNA methylation and gene expression data. Heliyon 2021; 7(8): e07665.
[http://dx.doi.org/10.1016/j.heliyon.2021.e07665] [PMID: 34341773]
[28]
Gheblawi M, Wang K, Viveiros A, et al. Angiotensin-converting enzyme 2: SARS-CoV-2 receptor and regulator of the renin-angiotensin system: celebrating the 20th anniversary of the discovery of ACE2. Circ Res 2020; 126(10): 1456-74.
[http://dx.doi.org/10.1161/CIRCRESAHA.120.317015] [PMID: 32264791]
[29]
Lima-Martínez MM, Carrera Boada C, Madera-Silva MD, Marín W, Contreras M. COVID-19 and diabetes: A bidirectional relationship. Clin Investig Arterioscler 2021; 33(3): 151-7. [English Edition].
[PMID: 33303218]
[30]
Conti P, Ronconi G, Caraffa A, et al. Induction of pro-inflammatory cytokines (IL-1 and IL-6) and lung inflammation by Coronavirus-19 (COVI-19 or SARS-CoV-2): Anti-inflammatory strategies. J Biol Regul Homeost Agents 2020; 34(2): 327-31.
[PMID: 32171193]
[31]
Manik M, Singh RK. Role of toll‐like receptors in modulation of cytokine storm signaling in SARS‐CoV‐2‐induced COVID‐19. J Med Virol 2022; 94(3): 869-77.
[http://dx.doi.org/10.1002/jmv.27405] [PMID: 34672376]
[32]
Costela-Ruiz VJ, Illescas-Montes R, Puerta-Puerta JM, Ruiz C, Melguizo-Rodríguez L. SARS-CoV-2 infection: The role of cytokines in COVID-19 disease. Cytokine Growth Factor Rev 2020; 54: 62-75.
[http://dx.doi.org/10.1016/j.cytogfr.2020.06.001] [PMID: 32513566]
[33]
Nidadavolu LS, Walston JD. Underlying vulnerabilities to the cytokine storm and adverse COVID-19 outcomes in the aging immune system. J Gerontol 2021; 76(3): e13-8.
[34]
Soy M, Keser G, Atagündüz P, Tabak F, Atagündüz I, Kayhan S. Cytokine storm in COVID-19: Pathogenesis and overview of anti-inflammatory agents used in treatment. Clin Rheumatol 2020; 39(7): 2085-94.
[http://dx.doi.org/10.1007/s10067-020-05190-5] [PMID: 32474885]
[35]
Gadanec LK, McSweeney KR, Qaradakhi T, Ali B, Zulli A, Apostolopoulos V. Can SARS-CoV-2 virus use multiple receptors to enter host cells? Int J Mol Sci 2021; 22(3): 992.
[http://dx.doi.org/10.3390/ijms22030992] [PMID: 33498183]
[36]
Pisoschi AM, Iordache F, Stanca L, et al. Antioxidant, anti-inflammatory, and immunomodulatory roles of nonvitamin antioxidants in anti-SARS-CoV-2 therapy. J Med Chem 2022; 65(19): 12562-93.
[http://dx.doi.org/10.1021/acs.jmedchem.2c01134] [PMID: 36136726]
[37]
Bagheri A, Moezzi SMI, Mosaddeghi P, et al. Interferon-inducer antivirals: Potential candidates to combat COVID-19. Int Immunopharmacol 2021; 91: 107245.
[http://dx.doi.org/10.1016/j.intimp.2020.107245] [PMID: 33348292]
[38]
Gubernatorova EO, Gorshkova EA, Polinova AI, Drutskaya MS. IL-6: Relevance for immunopathology of SARS-CoV-2. Cytokine Growth Factor Rev 2020; 53: 13-24.
[http://dx.doi.org/10.1016/j.cytogfr.2020.05.009] [PMID: 32475759]
[39]
Codo AC, Davanzo GG, Monteiro LB, et al. Elevated glucose levels favor SARS-CoV-2 infection and monocyte response through a HIF-1α/glycolysis-dependent axis. Cell Metab 2020; 32(3): 437-446.e5.
[http://dx.doi.org/10.1016/j.cmet.2020.07.007] [PMID: 32697943]
[40]
Maher AK, Burnham KL, Jones E, et al. Transcriptional reprogramming from innate immune functions to a pro-thrombotic signature upon SARS-CoV-2 sensing by monocytes in COVID-19. BioRxiv 2022.
[http://dx.doi.org/10.1101/2022.04.03.486830]
[41]
Albini A, Calabrone L, Carlini V, et al. Preliminary evidence for IL-10-Induced ACE2 mRNA expression in lung-derived and endothelial cells: implications for SARS-Cov-2 ARDS pathogenesis. Front Immunol 2021; 12: 718136.
[http://dx.doi.org/10.3389/fimmu.2021.718136] [PMID: 34646263]
[42]
Ragab D, Salah Eldin H, Taeimah M, Khattab R, Salem R. The COVID-19 cytokine storm; what we know so far. Front Immunol 2020; 11: 1446.
[http://dx.doi.org/10.3389/fimmu.2020.01446] [PMID: 32612617]
[43]
Mangalmurti N, Hunter CA. Cytokine Storms: Understanding COVID-19. Immunity 2020; 53(1): 19-25.
[http://dx.doi.org/10.1016/j.immuni.2020.06.017] [PMID: 32610079]
[44]
Soldevila B, Puig-Domingo M, Marazuela M. Basic mechanisms of SARS-CoV-2 infection. What endocrine systems could be implicated? Rev Endocr Metab Disord 2021; 31: 1-4.
[PMID: 34333732]
[45]
Navale AM, Paranjape AN. Glucose transporters: Physiological and pathological roles. Biophys Rev 2016; 8(1): 5-9.
[http://dx.doi.org/10.1007/s12551-015-0186-2] [PMID: 28510148]
[46]
Boden G, Shulman GI. Free fatty acids in obesity and type 2 diabetes: Defining their role in the development of insulin resistance and β-cell dysfunction. Eur J Clin Invest 2002; 32(S3): 14-23.
[http://dx.doi.org/10.1046/j.1365-2362.32.s3.3.x] [PMID: 12028371]
[47]
Laviada-Molina HA, Leal-Berumen I, Rodriguez-Ayala E, Bastarrachea RA. Working hypothesis for glucose metabolism and SARS-CoV-2 replication: Interplay between the hexosamine pathway and interferon RF5 triggering hyperinflammation. Role of BCG vaccine? Front Endocrinol 2020; 11: 514.
[http://dx.doi.org/10.3389/fendo.2020.00514] [PMID: 32733388]
[48]
Stefano GB, Challenger S, Kream RM. Hyperglycemia-associated alterations in cellular signaling and dysregulated mitochondrial bioenergetics in human metabolic disorders. Eur J Nutr 2016; 55(8): 2339-45.
[http://dx.doi.org/10.1007/s00394-016-1212-2] [PMID: 27084094]
[49]
Trapannone R, Rafie K, van Aalten DMF. O-GlcNAc transferase inhibitors: Current tools and future challenges. Biochem Soc Trans 2016; 44(1): 88-93.
[http://dx.doi.org/10.1042/BST20150189] [PMID: 26862193]
[50]
Niemann MCE, Bartrina I, Ashikov A, et al. Arabidopsis ROCK1 transports UDP-GlcNAc/UDP-GalNAc and regulates ER protein quality control and cytokinin activity. Proc Natl Acad Sci USA 2015; 112(1): 291-6.
[http://dx.doi.org/10.1073/pnas.1419050112] [PMID: 25535363]
[51]
Cole SA, Laviada-Molina HA, Serres-Perales JM, Rodriguez-Ayala E, Bastarrachea RA. The COVID-19 pandemic during the time of the diabetes pandemic: Likely fraternal twins? Pathogens 2020; 9(5): 389.
[http://dx.doi.org/10.3390/pathogens9050389] [PMID: 32438687]
[52]
Werner H, Bruchim I. The insulin-like growth factor-I receptor as an oncogene. Arch Physiol Biochem 2009; 115(2): 58-71.
[http://dx.doi.org/10.1080/13813450902783106] [PMID: 19485702]
[53]
Liao H, Cai D, Sun Y. VirStrain: A strain identification tool for RNA viruses. Genome Biol 2022; 23(1): 38.
[http://dx.doi.org/10.1186/s13059-022-02609-x] [PMID: 35101081]
[54]
Zimmerman AE, Howard-Varona C, Needham DM, et al. Metabolic and biogeochemical consequences of viral infection in aquatic ecosystems. Nat Rev Microbiol 2020; 18(1): 21-34.
[http://dx.doi.org/10.1038/s41579-019-0270-x] [PMID: 31690825]
[55]
Hirabara SM, Gorjao R, Levada-Pires AC, et al. Host cell glutamine metabolism as a potential antiviral target. Clin Sci (Lond) 2021; 135(2): 305-25.
[http://dx.doi.org/10.1042/CS20201042] [PMID: 33480424]
[56]
Nagy PD, Lin W. Taking over cellular energy-metabolism for TBSV replication: The high ATP requirement of an RNA virus within the viral replication organelle. Viruses 2020; 12(1): 56.
[http://dx.doi.org/10.3390/v12010056] [PMID: 31947719]
[57]
Bojkova D, Klann K, Koch B, et al. Proteomics of SARS-CoV-2-infected host cells reveals therapy targets. Nature 2020; 583(7816): 469-72.
[http://dx.doi.org/10.1038/s41586-020-2332-7] [PMID: 32408336]
[58]
Malgotra V, Sharma V. 2-Deoxy-d-glucose inhibits replication of novel coronavirus (SARS-CoV-2) with adverse effects on host cell metabolism. Clin Trials 2021; 7(10)
[59]
Alfi O, Yakirevitch A, Wald O, et al. Human nasal and lung tissues infected ex vivo with SARS-CoV-2 provide insights into differential tissue-specific and virus-specific innate immune responses in the upper and lower respiratory tract. J Virol 2021; 95(14): e00130-21.
[http://dx.doi.org/10.1128/JVI.00130-21] [PMID: 33893170]
[60]
Pozzi G, Masselli E, Gobbi G, et al. Hydrogen sulfide inhibits TMPRSS2 in human airway epithelial cells: Implications for SARS-CoV-2 infection. Biomedicines 2021; 9(9): 1273.
[http://dx.doi.org/10.3390/biomedicines9091273] [PMID: 34572459]
[61]
Mahajan S, Choudhary S, Kumar P, Tomar S. Antiviral strategies targeting host factors and mechanisms obliging +ssRNA viral pathogens. Bioorg Med Chem 2021; 46: 116356.
[http://dx.doi.org/10.1016/j.bmc.2021.116356] [PMID: 34416512]
[62]
Zhang S, Xin F, Zhang X. The compound packaged in virions is the key to trigger host glycolysis machinery for virus life cycle in the cytoplasm. iScience 2021; 24(1): 101915.
[http://dx.doi.org/10.1016/j.isci.2020.101915] [PMID: 33385116]
[63]
Jain V, Yuan JM. Predictive symptoms and comorbidities for severe COVID-19 and intensive care unit admission: A systematic review and meta-analysis. Int J Public Health 2020; 65(5): 533-46.
[http://dx.doi.org/10.1007/s00038-020-01390-7] [PMID: 32451563]
[64]
Grande E, Fedeli U, Pappagallo M, et al. Variation in cause-specific mortality rates in Italy during the first wave of the COVID-19 pandemic: a study based on nationwide data. Int J Environ Res Public Health 2022; 19(2): 805.
[http://dx.doi.org/10.3390/ijerph19020805] [PMID: 35055627]
[65]
Carethers JM. Insights into disparities observed with COVID‐19. J Intern Med 2021; 289(4): 463-73.
[http://dx.doi.org/10.1111/joim.13199] [PMID: 33164230]
[66]
Rudiansyah M, Jasim SA, Mohammad pour ZG, et al. Coronavirus disease 2019 (COVID‐19) update: From metabolic reprogramming to immunometabolism. J Med Virol 2022; 94(10): 4611-27.
[http://dx.doi.org/10.1002/jmv.27929] [PMID: 35689351]
[67]
Nirmaladevi J, Vidhyalakshmi M, Edwin EB, et al. Deep convolutional neural network mechanism assessment of COVID-19 severity. BioMed Res Int 2022; 2022: 1289221.
[68]
Smith SM, Boppana A, Traupman JA, et al. Impaired glucose metabolism in patients with diabetes, prediabetes, and obesity is associated with severe COVID‐19. J Med Virol 2021; 93(1): 409-15.
[http://dx.doi.org/10.1002/jmv.26227] [PMID: 32589756]
[69]
Brufsky A. Hyperglycemia, hydroxychloroquine, and the COVID‐19 pandemic. J Med Virol 2020; 92(7): 770-5.
[http://dx.doi.org/10.1002/jmv.25887] [PMID: 32293710]
[70]
Yang P, Wang N, Wang J, Luo A, Gao F, Tu Y. Admission fasting plasma glucose is an independent risk factor for 28‐day mortality in patients with COVID‐19. J Med Virol 2021; 93(4): 2168-76.
[http://dx.doi.org/10.1002/jmv.26608] [PMID: 33073361]
[71]
Singh NP, Sharma S, Kumar H, Singh A. Role of immunity booster to manage COVID 19 pandemic. Ann Rom Soc Cell Biol 2021; 25(7): 611-23.
[72]
Kalra S, Unnikrishnan AG, Baruah MP, Sahay R, Bantwal G. Metabolic and energy imbalance in dysglycemia-based chronic disease. Diabetes Metab Syndr Obes 2021; 14: 165-84.
[http://dx.doi.org/10.2147/DMSO.S286888] [PMID: 33488105]
[73]
Spano M, Di Matteo G, Ingallina C, et al. Modulatory properties of food and nutraceutical components targeting NLRP3 inflammasome activation. Nutrients 2022; 14(3): 490.
[http://dx.doi.org/10.3390/nu14030490] [PMID: 35276849]
[74]
Saklayen MG. The global epidemic of the metabolic syndrome. Curr Hypertens Rep 2018; 20(2): 12.
[http://dx.doi.org/10.1007/s11906-018-0812-z] [PMID: 29480368]
[75]
Esser N, Legrand-Poels S, Piette J, Scheen AJ, Paquot N. Inflammation as a link between obesity, metabolic syndrome and type 2 diabetes. Diabetes Res Clin Pract 2014; 105(2): 141-50.
[http://dx.doi.org/10.1016/j.diabres.2014.04.006] [PMID: 24798950]
[76]
Johnson AR, Justin Milner J, Makowski L. The inflammation highway: Metabolism accelerates inflammatory traffic in obesity. Immunol Rev 2012; 249(1): 218-38.
[http://dx.doi.org/10.1111/j.1600-065X.2012.01151.x] [PMID: 22889225]
[77]
Pedersen BK, Febbraio MA. Muscles, exercise and obesity: Skeletal muscle as a secretory organ. Nat Rev Endocrinol 2012; 8(8): 457-65.
[http://dx.doi.org/10.1038/nrendo.2012.49] [PMID: 22473333]
[78]
Villaescusa L, Zaragozá F, Gayo-Abeleira I, Zaragozá C. A new approach to the management of COVID-19. Antagonists of IL-6: Siltuximab. Adv Ther 2022; 39(3): 1126-48.
[http://dx.doi.org/10.1007/s12325-022-02042-3] [PMID: 35072887]
[79]
Garbers C, Heink S, Korn T, Rose-John S. Interleukin-6: Designing specific therapeutics for a complex cytokine. Nat Rev Drug Discov 2018; 17(6): 395-412.
[http://dx.doi.org/10.1038/nrd.2018.45] [PMID: 29725131]
[80]
Lee J. Adipose tissue macrophages in the development of obesity-induced inflammation, insulin resistance and type 2 Diabetes. Arch Pharm Res 2013; 36(2): 208-22.
[http://dx.doi.org/10.1007/s12272-013-0023-8] [PMID: 23397293]
[81]
Muñoz MC, Giani JF, Dominici FP, Turyn D, Toblli JE. Long-term treatment with an angiotensin II receptor blocker decreases adipocyte size and improves insulin signaling in obese Zucker rats. J Hypertens 2009; 27(12): 2409-20.
[http://dx.doi.org/10.1097/HJH.0b013e3283310e1b] [PMID: 19901849]
[82]
Lyu K, Zhang D, Song J, et al. Short-term overnutrition induces white adipose tissue insulin resistance through sn-1,2-diacylglycerol/PKCε/insulin receptor Thr1160 phosphorylation. JCI Insight 2021; 6(4): e139946.
[PMID: 33411692]
[83]
Klover PJ, Clementi AH, Mooney RA. Interleukin-6 depletion selectively improves hepatic insulin action in obesity. Endocrinology 2005; 146(8): 3417-27.
[84]
Daryabor G, Atashzar MR, Kabelitz D, Meri S, Kalantar K. The effects of type 2 diabetes mellitus on organ metabolism and the immune system. Front Immunol 2020; 11: 1582.
[http://dx.doi.org/10.3389/fimmu.2020.01582] [PMID: 32793223]
[85]
Pant A, Dsouza L, Yang Z. Alteration in cellular signaling and metabolic reprogramming during viral infection. MBio 2021; 12(5): e00635-21.
[http://dx.doi.org/10.1128/mBio.00635-21] [PMID: 34517756]
[86]
Pająk B, Zieliński R, Manning JT, et al. The antiviral effects of 2-deoxy-d-glucose (2-DG), a Dual D-Glucose and D-Mannose Mimetic, against SARS-CoV-2 and other highly pathogenic viruses. Molecules 2022; 27(18): 5928.
[http://dx.doi.org/10.3390/molecules27185928] [PMID: 36144664]
[87]
Bhatt AN, Kumar A, Rai Y, et al. Glycolytic inhibitor 2-deoxy-d-glucose attenuates SARS-CoV-2 multiplication in host cells and weakens the infective potential of progeny virions. Life Sci 2022; 295: 120411.
[http://dx.doi.org/10.1016/j.lfs.2022.120411] [PMID: 35181310]
[88]
Shen XR, Geng R, Li Q, et al. ACE2-independent infection of T lymphocytes by SARS-CoV-2. Signal Transduct Target Ther 2022; 7(1): 83.
[http://dx.doi.org/10.1038/s41392-022-00919-x] [PMID: 35277473]
[89]
Karagiannis F, Peukert K, Surace L, et al. Impaired ketogenesis ties metabolism to T cell dysfunction in COVID-19. Nature 2022; 609(7928): 801-7.
[http://dx.doi.org/10.1038/s41586-022-05128-8] [PMID: 35901960]
[90]
Dey S, Murmu N, Mondal T, et al. Multifaceted entrancing role of glucose and its analogue, 2-deoxy-D-glucose in cancer cell proliferation, inflammation, and virus infection. Biomed Pharmacother 2022; 156: 113801.
[http://dx.doi.org/10.1016/j.biopha.2022.113801] [PMID: 36228369]
[91]
Von Ah Morano AE, Dorneles GP, Peres A, Lira FS. The role of glucose homeostasis on immune function in response to exercise: The impact of low or higher energetic conditions. J Cell Physiol 2020; 235(4): 3169-88.
[http://dx.doi.org/10.1002/jcp.29228] [PMID: 31565806]
[92]
Bere J, Jonnalagadda ND, Kappari L, Karangula J, Boggula N, Kappari V. 2-Deoxy-D-glucose: An update review. J Innov Dev Pharm Tech Sci 2021; 4(5): 68-78.
[93]
Seidu S, Khunti K, Yates T, Almaqhawi A, Davies MJ, Sargeant J. The importance of physical activity in management of type 2 diabetes and COVID-19. Ther Adv Endocrinol Metab 2021; 12.
[http://dx.doi.org/10.1177/20420188211054686] [PMID: 34721838]
[94]
Rabiu Abubakar A, Ahmad R, Rowaiye AB, et al. Targeting specific checkpoints in the management of SARS-CoV-2 induced cytokine storm. Life 2022; 12(4): 478.
[http://dx.doi.org/10.3390/life12040478] [PMID: 35454970]
[95]
Fajgenbaum DC, June CH. Cytokine Storm. N Engl J Med 2020; 383(23): 2255-73.
[http://dx.doi.org/10.1056/NEJMra2026131] [PMID: 33264547]
[96]
Bülow Anderberg S, Luther T, Berglund M, et al. Increased levels of plasma cytokines and correlations to organ failure and 30-day mortality in critically ill Covid-19 patients. Cytokine 2021; 138: 155389.
[http://dx.doi.org/10.1016/j.cyto.2020.155389] [PMID: 33348065]
[97]
Huang Q, Wu X, Zheng X, Luo S, Xu S, Weng J. Targeting inflammation and cytokine storm in COVID-19. Pharmacol Res 2020; 159: 105051.
[http://dx.doi.org/10.1016/j.phrs.2020.105051] [PMID: 32603772]
[98]
Ur A, Verma K. Cytokine storm in COVID19: A neural hypothesis. ACS Chem Neurosci 2020; 11(13): 1868-70.
[http://dx.doi.org/10.1021/acschemneuro.0c00346] [PMID: 32605374]
[99]
Satış H, Özger HS, Aysert Yıldız P, et al. Prognostic value of interleukin-18 and its association with other inflammatory markers and disease severity in COVID-19. Cytokine 2021; 137: 155302.
[http://dx.doi.org/10.1016/j.cyto.2020.155302] [PMID: 33002740]
[100]
Levy M, Kolodziejczyk AA, Thaiss CA, Elinav E. Dysbiosis and the immune system. Nat Rev Immunol 2017; 17(4): 219-32.
[http://dx.doi.org/10.1038/nri.2017.7] [PMID: 28260787]
[101]
Rios-Navarro C, Dios E, Forteza MJ, Bodi V. Unraveling the thread of uncontrolled immune response in COVID-19 and STEMI: An emerging need for knowledge sharing. Am J Physiol Heart Circ Physiol 2021; 320(6): H2240-54.
[http://dx.doi.org/10.1152/ajpheart.00934.2020] [PMID: 33844596]
[102]
Cairo C, Surendran N, Harris KM, et al. V γ 2V δ 2 T-cell co-stimulation increases natural killer cell killing of monocyte-derived dendritic cells. Immunology 2015; 144(3): 422-30.
[http://dx.doi.org/10.1111/imm.12386] [PMID: 25227493]
[103]
Conti P, Lauritano D, Caraffa A, et al. Microglia and mast cells generate proinflammatory cytokines in the brain and worsen inflammatory state: Suppressor effect of IL-37. Eur J Pharmacol 2020; 875: 173035.
[http://dx.doi.org/10.1016/j.ejphar.2020.173035] [PMID: 32097657]
[104]
Janeway CA Jr, Medzhitov R. Innate immune recognition. Annu Rev Immunol 2002; 20(1): 197-216.
[http://dx.doi.org/10.1146/annurev.immunol.20.083001.084359] [PMID: 11861602]
[105]
Kim YK, Shin JS, Nahm MH. NOD-like receptors in infection, immunity, and diseases. Yonsei Med J 2016; 57(1): 5-14.
[http://dx.doi.org/10.3349/ymj.2016.57.1.5] [PMID: 26632377]
[106]
Newton K, Dixit VM. Signaling in innate immunity and inflammation. Cold Spring Harb Perspect Biol 2012; 4(3): a006049.
[http://dx.doi.org/10.1101/cshperspect.a006049] [PMID: 22296764]
[107]
Rouse BT, Sarangi PP, Suvas S. Regulatory T cells in virus infections. Immunol Rev 2006; 212(1): 272-86.
[http://dx.doi.org/10.1111/j.0105-2896.2006.00412.x] [PMID: 16903920]
[108]
Striz I, Brabcova E, Kolesar L, Sekerkova A. Cytokine networking of innate immunity cells: A potential target of therapy. Clin Sci 2014; 126(9): 593-612.
[http://dx.doi.org/10.1042/CS20130497] [PMID: 24450743]
[109]
Gupta KK, Khan MA, Singh SK. Constitutive inflammatory cytokine storm: A major threat to human health. J Interferon Cytokine Res 2020; 40(1): 19-23.
[http://dx.doi.org/10.1089/jir.2019.0085] [PMID: 31755797]
[110]
Huang Z, Rose AH, Hoffmann PR. The role of selenium in inflammation and immunity: From molecular mechanisms to therapeutic opportunities. Antioxid Redox Signal 2012; 16(7): 705-43.
[http://dx.doi.org/10.1089/ars.2011.4145] [PMID: 21955027]
[111]
McGonagle D, Ramanan AV, Bridgewood C. Immune cartography of macrophage activation syndrome in the COVID-19 era. Nat Rev Rheumatol 2021; 17(3): 145-57.
[http://dx.doi.org/10.1038/s41584-020-00571-1] [PMID: 33547426]
[112]
Ombrello MJ, Schulert GS. COVID-19 and cytokine storm syndrome: Are there lessons from macrophage activation syndrome? Transl Res 2021; 232: 1-12.
[http://dx.doi.org/10.1016/j.trsl.2021.03.002] [PMID: 33684592]
[113]
Kang S, Kishimoto T. Interplay between interleukin-6 signaling and the vascular endothelium in cytokine storms. Exp Mol Med 2021; 53(7): 1116-23.
[http://dx.doi.org/10.1038/s12276-021-00649-0] [PMID: 34253862]
[114]
Soy M, Atagündüz P, Atagündüz I, Sucak GT. Hemophagocytic lymphohistiocytosis: A review inspired by the COVID-19 pandemic. Rheumatol Int 2021; 41(1): 7-18.
[http://dx.doi.org/10.1007/s00296-020-04636-y] [PMID: 32588191]
[115]
Simmons GL, Castaneda Puglianini O. T-cell-based cellular immunotherapy of multiple myeloma: Current developments. Cancers 2022; 14(17): 4249.
[http://dx.doi.org/10.3390/cancers14174249] [PMID: 36077787]
[116]
Kavianpour M, Saleh M, Verdi J. The role of mesenchymal stromal cells in immune modulation of COVID-19: focus on cytokine storm. Stem Cell Res Ther 2020; 11(1): 404.
[http://dx.doi.org/10.1186/s13287-020-01849-7] [PMID: 32948252]
[117]
Raveendran AV, Misra A. Post COVID-19 syndrome (“Long COVID”) and diabetes: Challenges in diagnosis and management. Diabetes Metab Syndr 2021; 15(5): 102235.
[http://dx.doi.org/10.1016/j.dsx.2021.102235] [PMID: 34384972]
[118]
Jamilloux Y, Henry T, Belot A, et al. Should we stimulate or suppress immune responses in COVID-19? Cytokine and anti-cytokine interventions. Autoimmun Rev 2020; 19(7): 102567.
[http://dx.doi.org/10.1016/j.autrev.2020.102567] [PMID: 32376392]
[119]
Erener S. Diabetes, infection risk and COVID-19. Mol Metab 2020; 39: 101044.
[http://dx.doi.org/10.1016/j.molmet.2020.101044] [PMID: 32585364]
[120]
Guo W, Li M, Dong Y, et al. Diabetes is a risk factor for the progression and prognosis of COVID‐19. Diabetes Metab Res Rev 2020; 36(7): e3319.
[http://dx.doi.org/10.1002/dmrr.3319] [PMID: 32233013]
[121]
Shenoy A, Ismaily M, Bajaj M. Diabetes and covid-19: A global health challenge. BMJ Open Diabetes Res Care 2020; 8(1): e001450.
[http://dx.doi.org/10.1136/bmjdrc-2020-001450] [PMID: 32345580]
[122]
Zheng M, Wang X, Guo H, et al. The cytokine profiles and immune response are increased in COVID-19 patients with type 2 diabetes mellitus. J Diabetes Res 2021; 2021: 1-8.
[http://dx.doi.org/10.1155/2021/9526701] [PMID: 33490288]
[123]
Dandona P, Ghanim H. Diabetes, obesity, COVID-19, insulin, and other antidiabetes drugs. Diabetes Care 2021; 44(9): 1929-33.
[http://dx.doi.org/10.2337/dci21-0003] [PMID: 34244331]
[124]
Gazzaz ZJ. Diabetes and COVID-19. Open Life Sci 2021; 16(1): 297-302.
[http://dx.doi.org/10.1515/biol-2021-0034] [PMID: 33817321]
[125]
Sen S, Chakraborty R, Kalita P, Pathak MP. Diabetes mellitus and COVID-19: Understanding the association in light of current evidence. World J Clin Cases 2021; 9(28): 8327-39.
[http://dx.doi.org/10.12998/wjcc.v9.i28.8327] [PMID: 34754842]
[126]
Miyazawa D. Why obesity, hypertension, diabetes, and ethnicities are common risk factors for COVID‐19 and H1N1 influenza infections. J Med Virol 2021; 93(1): 127-8.
[http://dx.doi.org/10.1002/jmv.26220] [PMID: 32579235]
[127]
Apicella M, Campopiano MC, Mantuano M, Mazoni L, Coppelli A, Del Prato S. COVID-19 in people with diabetes: Understanding the reasons for worse outcomes. Lancet Diabetes Endocrinol 2020; 8(9): 782-92.
[http://dx.doi.org/10.1016/S2213-8587(20)30238-2] [PMID: 32687793]
[128]
Noch E, Khalili K. Oncogenic viruses and tumor glucose metabolism: Like kids in a candy store. Mol Cancer Ther 2012; 11(1): 14-23.
[http://dx.doi.org/10.1158/1535-7163.MCT-11-0517] [PMID: 22234809]
[129]
Jin R, Hao J, Yi Y, Sauter E, Li B. Regulation of macrophage functions by FABP-mediated inflammatory and metabolic pathways. Biochim Biophys Acta Mol Cell Biol Lipids 2021; 1866(8): 158964.
[http://dx.doi.org/10.1016/j.bbalip.2021.158964] [PMID: 33984518]
[130]
Soto-Heredero G, Gómez de las Heras MM, Gabandé-Rodríguez E, Oller J, Mittelbrunn M. Glycolysis – a key player in the inflammatory response. FEBS J 2020; 287(16): 3350-69.
[http://dx.doi.org/10.1111/febs.15327] [PMID: 32255251]
[131]
Santos AF, Póvoa P, Paixão P, Mendonça A, Taborda-Barata L. Changes in glycolytic pathway in SARS-COV 2 infection and their importance in understanding the severity of COVID-19. Front Chem 2021; 9: 685196.
[http://dx.doi.org/10.3389/fchem.2021.685196] [PMID: 34568275]
[132]
Elieh Ali Komi D, Ribatti D. Mast cell-mediated mechanistic pathways in organ transplantation. Eur J Pharmacol 2019; 857: 172458.
[http://dx.doi.org/10.1016/j.ejphar.2019.172458] [PMID: 31202799]
[133]
Thirumalaisamy R, Aroulmoji V, Khan R, Sivasankar C, Deepa M. Hyaluronic Acid-2-Deoxy-D-glucose conjugate act as a promising targeted drug delivery option for the treatment of COVID-19. Int J Adv Sci Eng 2021; 7(4): 1995-2005.
[134]
Balkrishna A, Thakur P, Singh S, et al. Glucose antimetabolite 2-Deoxy-D-Glucose and its derivative as promising candidates for tackling COVID-19: Insights derived from in silico docking and molecular simulations. Authorea 2020.
[135]
Menshawey E, Menshawey R, Nabeh OA. Shedding light on vitamin D: The shared mechanistic and pathophysiological role between hypovitaminosis D and COVID-19 risk factors and complications. Inflammopharmacology 2021; 29(4): 1017-31.
[http://dx.doi.org/10.1007/s10787-021-00835-6] [PMID: 34185200]
[136]
Li J, Guo M, Tian X, et al. Virus-host interactome and proteomic survey reveal potential virulence factors influencing SARS-CoV-2 pathogenesis. Med 2021; 2(1): 99-112.e7.
[http://dx.doi.org/10.1016/j.medj.2020.07.002] [PMID: 32838362]
[137]
Abd El-Aziz TM, Stockand JD. Recent progress and challenges in drug development against COVID-19 coronavirus (SARS-CoV-2) - an update on the status. Infect Genet Evol 2020; 83: 104327.
[http://dx.doi.org/10.1016/j.meegid.2020.104327] [PMID: 32320825]
[138]
Khurana P, Varshney R, Gupta A. A network-biology led computational drug repurposing strategy to prioritize therapeutic options for COVID-19. Heliyon 2022; 8(5): e09387.
[http://dx.doi.org/10.1016/j.heliyon.2022.e09387] [PMID: 35578630]
[139]
Jabbarzadeh Kaboli P, Shabani S, Sharma S, Partovi Nasr M, Yamaguchi H, Hung MC. Shedding light on triple-negative breast cancer with Trop2-targeted antibody-drug conjugates. Am J Cancer Res 2022; 12(4): 1671-85.
[PMID: 35530278]
[140]
El Mjiyad N, Caro-Maldonado A, Ramírez-Peinado S, Muñoz-Pinedo C. Sugar-free approaches to cancer cell killing. Oncogene 2011; 30(3): 253-64.
[http://dx.doi.org/10.1038/onc.2010.466] [PMID: 20972457]
[141]
Pouysségur J, Marchiq I, Parks SK, Durivault J, Ždralević M, Vucetic M. ‘Warburg effect’controls tumor growth, bacterial, viral infections and immunity-Genetic deconstruction and therapeutic perspectives. In: Seminars in Cancer Biology. Academic Press 2022.
[142]
Walsh D, Mohr I. Viral subversion of the host protein synthesis machinery. Nat Rev Microbiol 2011; 9(12): 860-75.
[http://dx.doi.org/10.1038/nrmicro2655] [PMID: 22002165]
[143]
Wijayasinghe YS, Bhansali MP, Borkar MR, et al. A comprehensive biological and synthetic perspective on 2-deoxy-d-glucose (2-DG), a sweet molecule with therapeutic and diagnostic potentials. J Med Chem 2022; 65(5): 3706-28.
[http://dx.doi.org/10.1021/acs.jmedchem.1c01737] [PMID: 35192360]
[144]
Kaushik N, Lee SJ, Choi TG, et al. Non-thermal plasma with 2-deoxy-D-glucose synergistically induces cell death by targeting glycolysis in blood cancer cells. Sci Rep 2015; 5(1): 8726.
[http://dx.doi.org/10.1038/srep08726] [PMID: 25735798]
[145]
Kurtoglu M, Gao N, Shang J, et al. Under normoxia, 2-deoxy-d-glucose elicits cell death in select tumor types not by inhibition of glycolysis but by interfering with N-linked glycosylation. Mol Cancer Ther 2007; 6(11): 3049-58.
[http://dx.doi.org/10.1158/1535-7163.MCT-07-0310] [PMID: 18025288]
[146]
Defenouillère Q, Verraes A, Laussel C, Friedrich A, Schacherer J, Léon S. The regulation of HAD-like phosphatases by signaling pathways modulates cellular resistance to the metabolic inhibitor, 2-deoxyglucose. Sci Signal 2019; 12(597): eaaw8000.
[http://dx.doi.org/10.1126/scisignal.aaw8000] [PMID: 31481524]
[147]
Xi H, Kurtoglu M, Liu H, et al. 2-Deoxy-d-glucose activates autophagy via endoplasmic reticulum stress rather than ATP depletion. Cancer Chemother Pharmacol 2011; 67(4): 899-910.
[http://dx.doi.org/10.1007/s00280-010-1391-0] [PMID: 20593179]
[148]
Casalino L, Gaieb Z, Goldsmith JA, et al. Beyond shielding: The roles of glycans in the SARS-CoV-2 spike protein. ACS Cent Sci 2020; 6(10): 1722-34.
[http://dx.doi.org/10.1021/acscentsci.0c01056] [PMID: 33140034]
[149]
Roy S, Jaiswar A, Sarkar R. Dynamic asymmetry exposes 2019-nCoV prefusion spike. J Phys Chem Lett 2020; 11(17): 7021-7.
[http://dx.doi.org/10.1021/acs.jpclett.0c01431] [PMID: 32787330]
[150]
D’Onofrio N, Scisciola L, Sardu C, et al. Glycated ACE2 receptor in diabetes: Open door for SARS-COV-2 entry in cardiomyocyte. Cardiovasc Diabetol 2021; 20(1): 99.
[http://dx.doi.org/10.1186/s12933-021-01286-7] [PMID: 33962629]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy