Generic placeholder image

Protein & Peptide Letters

Editor-in-Chief

ISSN (Print): 0929-8665
ISSN (Online): 1875-5305

Research Article

Evaluation of Cytotoxicity and Antimicrobial Activity of Experimental Composites Containing Chitosan-Silver Oxide Particles Against Two Main Pathogenic Bacteria in Periodontal Disease

Author(s): Nahid Nasrabadi, Navid Ramezanian, Parisa Ghorbanian, Ali Forouzanfar and Hamideh Sadat Mohammadipour*

Volume 31, Issue 2, 2024

Published on: 25 October, 2023

Page: [97 - 106] Pages: 10

DOI: 10.2174/0109298665240242231016103321

Price: $65

Open Access Journals Promotions 2
Abstract

Introduction: Bacterial biofilm is known as the main cause of periodontal disease. Generally, the anaerobic Gram-negative, such as Porphyromonas gingivalis and Fusobacterium nucleatum, are considered the most identified bacteria.

Objective: This study aimed to investigate the antimicrobial effect and cytotoxicity of two experimental composites containing chitosan-silver oxide (CH-Ag2O) particles.

Materials and methods: Four experimental groups, including Ag2O and CH, along with two composites of CH-Ag2O 20 and CH-Ag2O 60 mg, were prepared. Antimicrobial activity was performed against Porphyromonas gingivalis (ATCC#33277) and Fusobacterium nucleatum (ATCC#25586) using the agar dilution method. Moreover, the cytotoxicity assay was performed on human gingival fibroblasts (HGF) by the use of the MTT method. The obtained data were analyzed with descriptive methods, one-way ANOVA, and Tukey’s LSD tests.

Results: The antibacterial activity of both composites was higher than both CH and Ag2O, and the greatest antibacterial properties were presented in CH-Ag2O 60. In all three measurements (24, 48, and 72 h), the greatest cytotoxicity was seen in Ag2O, followed by CH, CH-Ag2O 20, and CHAg2O 60 in descending order, respectively. The cytotoxicity of these components was related to the concentration and not to the time of exposure. The results showed that Ag2O in 3.7 and 7.5 μg/ml concentrations and CH-containing groups in 250 and 500 μg/ml were toxic to the cultured HGF.

Conclusion: The experimental composite containing CH-Ag2O 60 showed the greatest antibacterial properties against two periodontal pathogens evaluated. In order to clarify the clinical significance of composite cytotoxicity, further clinical studies are necessary.

Keywords: Antimicrobial activity, chitosan, cytotoxicity, periodontitis, silver oxide, periodontal disease.

Graphical Abstract
[1]
Candotto, V.; Lauritano, D.; Carinci, F.; Bignozzi, C.; Pazzi, D.; Cura, F.; Severino, M.; Scarano, A. Silver-based chemical device as an adjunct of domestic oral hygiene: A study on periodontal patients. Materials, 2018, 11(8), 1483.
[http://dx.doi.org/10.3390/ma11081483] [PMID: 30127307]
[2]
Mou, J.; Liu, Z.; Liu, J.; Lu, J.; Zhu, W.; Pei, D. Hydrogel containing minocycline and zinc oxide-loaded serum albumin nanopartical for periodontitis application: Preparation, characterization and evaluation. Drug Deliv., 2019, 26(1), 179-187.
[http://dx.doi.org/10.1080/10717544.2019.1571121] [PMID: 30822158]
[3]
Signat, B.; Roques, C.; Poulet, P.; Duffaut, D. Fusobacterium nucleatum in periodontal health and disease. Curr. Issues Mol. Biol., 2011, 13(2), 25-36.
[PMID: 21220789]
[4]
Mooduto, L.; Wahjuningrum, D.A. A, A.P.; Lunardhi, C.G.J. Antibacterial effect of chitosan from squid pens against Porphyromonas gingivalis bacteria. Iran. J. Microbiol., 2019, 11(2), 177-180.
[http://dx.doi.org/10.18502/ijm.v11i2.1084] [PMID: 31341573]
[5]
Bostanci, N.; Belibasakis, G.N. Porphyromonas gingivalis: An invasive and evasive opportunistic oral pathogen. FEMS Microbiol. Lett., 2012, 333(1), 1-9.
[http://dx.doi.org/10.1111/j.1574-6968.2012.02579.x] [PMID: 22530835]
[6]
Akıncıbay, H.; Şenel, S.; Yetkin Ay, Z. Application of chitosan gel in the treatment of chronic periodontitis. J. Biomed. Mater. Res. B Appl. Biomater., 2007, 80B(2), 290-296.
[http://dx.doi.org/10.1002/jbm.b.30596] [PMID: 16767723]
[7]
Wassel, M.O.; Khattab, M.A. Antibacterial activity against Streptococcus mutans and inhibition of bacterial induced enamel demineralization of propolis, miswak, and chitosan nanoparticles based dental varnishes. J. Adv. Res., 2017, 8(4), 387-392.
[http://dx.doi.org/10.1016/j.jare.2017.05.006] [PMID: 28560054]
[8]
Wei, D.; Sun, W.; Qian, W.; Ye, Y.; Ma, X. The synthesis of chitosan-based silver nanoparticles and their antibacterial activity. Carbohydr. Res., 2009, 344(17), 2375-2382.
[http://dx.doi.org/10.1016/j.carres.2009.09.001] [PMID: 19800053]
[9]
Norowski, P.A., Jr; Fujiwara, T.; Clem, W.C.; Adatrow, P.C.; Eckstein, E.C.; Haggard, W.O.; Bumgardner, J.D. Novel naturally crosslinked electrospun nanofibrous chitosan mats for guided bone regeneration membranes: Material characterization and cytocompatibility. J. Tissue Eng. Regen. Med., 2015, 9(5), 577-583.
[http://dx.doi.org/10.1002/term.1648] [PMID: 23166109]
[10]
Dash, M.; Chiellini, F.; Ottenbrite, R.M.; Chiellini, E. Chitosan—A versatile semi-synthetic polymer in biomedical applications. Prog. Polym. Sci., 2011, 36(8), 981-1014.
[http://dx.doi.org/10.1016/j.progpolymsci.2011.02.001]
[11]
İkinci, G.; Şenel, S.; Akıncıbay, H.; Kaş, S.; Erciş, S.; Wilson, C.G.; Hıncal, A.A. Effect of chitosan on a periodontal pathogen Porphyromonas gingivalis. Int. J. Pharm., 2002, 235(1-2), 121-127.
[http://dx.doi.org/10.1016/S0378-5173(01)00974-7] [PMID: 11879747]
[12]
Husain, S.; Al-Samadani, K.H.; Najeeb, S.; Zafar, M.S.; Khurshid, Z.; Zohaib, S.; Qasim, S.B. Chitosan biomaterials for current and potential dental applications. Materials, 2017, 10(6), 602.
[http://dx.doi.org/10.3390/ma10060602] [PMID: 28772963]
[13]
Miyazaki, S.; Nakayama, A.; Oda, M.; Takada, M.; Attwood, D. Chitosan and sodium alginate based bioadhesive tablets for intraoral drug delivery. Biol. Pharm. Bull., 1994, 17(5), 745-747.
[http://dx.doi.org/10.1248/bpb.17.745] [PMID: 7920448]
[14]
Xu, C.; Lei, C.; Meng, L.; Wang, C.; Song, Y. Chitosan as a barrier membrane material in periodontal tissue regeneration. J. Biomed. Mater. Res. B Appl. Biomater., 2012, 100B(5), 1435-1443.
[http://dx.doi.org/10.1002/jbm.b.32662] [PMID: 22287502]
[15]
Muzzarelli, R.; Biagini, G.; Pugnaloni, A.; Filippini, O.; Baldassarre, V.; Castaldini, C.; Rizzoli, C. Reconstruction of parodontal tissue with chitosan. Biomaterials, 1989, 10(9), 598-603.
[http://dx.doi.org/10.1016/0142-9612(89)90113-0] [PMID: 2611308]
[16]
Arjmand, N.; Boruziniat, A.; Zakeri, M.; Mohammadipour, H.S. Microtensile bond strength of resin cement primer containing nanoparticles of silver (NAg) and amorphous calcium phosphate (NACP) to human dentin. J. Adv. Prosthodont., 2018, 10(3), 177-183.
[http://dx.doi.org/10.4047/jap.2018.10.3.177] [PMID: 29930786]
[17]
Sharma, S.; Sanpui, P.; Chattopadhyay, A.; Ghosh, S.S. Fabrication of antibacterial silver nanoparticle—sodium alginate–chitosan composite films. RSC Adv, 2012, 2(13), 5837-5843.
[http://dx.doi.org/10.1039/c2ra00006g]
[18]
Thangam, R.; Sundarraj, S.; Vivek, R.; Suresh, V.; Sivasubramanian, S.; Paulpandi, M.; Karthick, S.V.; Ragavi, A.S.; Kannan, S. Theranostic potentials of multifunctional chitosan–silver–phycoerythrin nanocomposites against triple negative breast cancer cells. RSC Adv, 2015, 5(16), 12209-12223.
[http://dx.doi.org/10.1039/C4RA14043E]
[19]
Arjunan, N.; Kumari, H.L.J.; Singaravelu, C.M.; Kandasamy, R.; Kandasamy, J. Physicochemical investigations of biogenic chitosan-silver nanocomposite as antimicrobial and anticancer agent. Int. J. Biol. Macromol., 2016, 92, 77-87.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.07.003] [PMID: 27381584]
[20]
Suginta, W.; Khunkaewla, P.; Schulte, A. Electrochemical biosensor applications of polysaccharides chitin and chitosan. Chem. Rev., 2013, 113(7), 5458-5479.
[http://dx.doi.org/10.1021/cr300325r] [PMID: 23557137]
[21]
Li, G.; Jiang, Y.; Huang, K.; Ding, P.; Chen, J. Preparation and properties of magnetic Fe3O4-chitosan nanoparticles. J. Alloys Compd., 2008, 466(1-2), 451-456.
[http://dx.doi.org/10.1016/j.jallcom.2007.11.100]
[22]
David, W.H. Methods for Antimicrobial Susceptibility Testing of Anaerobic Bacteria, 7th ed; Clinical and Laboratory Standards Institute: Wayne, Pennsylvania, 2007.
[23]
Kumar, P.S.; Griffen, A.L.; Barton, J.A.; Paster, B.J.; Moeschberger, M.L.; Leys, E.J. New bacterial species associated with chronic periodontitis. J. Dent. Res., 2003, 82(5), 338-344.
[http://dx.doi.org/10.1177/154405910308200503] [PMID: 12709498]
[24]
Gomes, B.P.F.A.; Berber, V.B.; Kokaras, A.S.; Chen, T.; Paster, B.J. Microbiomes of endodontic-periodontal lesions before and after chemomechanical preparation. J. Endod., 2015, 41(12), 1975-1984.
[http://dx.doi.org/10.1016/j.joen.2015.08.022] [PMID: 26521147]
[25]
Oh, H.; Hedberg, M.; Wade, D.; Edlund, C. Activities of synthetic hybrid peptides against anaerobic bacteria: Aspects of methodology and stability. Antimicrob. Agents Chemother., 2000, 44(1), 68-72.
[http://dx.doi.org/10.1128/AAC.44.1.68-72.2000] [PMID: 10602725]
[26]
Ganss, C.; Lussi, A.; Grunau, O.; Klimek, J.; Schlueter, N. Conventional and anti-erosion fluoride toothpastes: Effect on enamel erosion and erosion-abrasion. Caries Res., 2011, 45(6), 581-589.
[http://dx.doi.org/10.1159/000334318] [PMID: 22156703]
[27]
Franca, J.R.; De Luca, M.P.; Ribeiro, T.G.; Castilho, R.O.; Moreira, A.N.; Santos, V.R.; Faraco, A.A.G. Propolis - based chitosan varnish: Drug delivery, controlled release and antimicrobial activity against oral pathogen bacteria. BMC Complement. Altern. Med., 2014, 14(1), 478.
[http://dx.doi.org/10.1186/1472-6882-14-478] [PMID: 25495921]
[28]
Leong, K.; Chua, C.; Sudarmadji, N.; Yeong, W. Engineering functionally graded tissue engineering scaffolds. J. Mech. Behav. Biomed. Mater., 2008, 1(2), 140-152.
[http://dx.doi.org/10.1016/j.jmbbm.2007.11.002] [PMID: 19627779]
[29]
Norowski, P.A.; Courtney, H.S.; Babu, J.; Haggard, W.O.; Bumgardner, J.D. Chitosan coatings deliver antimicrobials from titanium implants: A preliminary study. Implant Dent., 2011, 20(1), 56-67.
[http://dx.doi.org/10.1097/ID.0b013e3182087ac4] [PMID: 21278528]
[30]
Li, J.; Wu, Y.; Zhao, L. Antibacterial activity and mechanism of chitosan with ultra high molecular weight. Carbohydr. Polym., 2016, 148, 200-205.
[http://dx.doi.org/10.1016/j.carbpol.2016.04.025] [PMID: 27185132]
[31]
Kara, F.; Aksoy, E.A.; Yuksekdag, Z.; Hasirci, N.; Aksoy, S. Synthesis and surface modification of polyurethanes with chitosan for antibacterial properties. Carbohydr. Polym., 2014, 112, 39-47.
[http://dx.doi.org/10.1016/j.carbpol.2014.05.019] [PMID: 25129714]
[32]
Dananjaya, S.H.S.; Kumar, R.S.; Yang, M.; Nikapitiya, C.; Lee, J.; De Zoysa, M. Synthesis, characterization of ZnO-chitosan nanocomposites and evaluation of its antifungal activity against pathogenic Candida albicans. Int. J. Biol. Macromol., 2018, 108, 1281-1288.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.11.046] [PMID: 29129632]
[33]
Targino, A.G.R.; Flores, M.A.P.; dos Santos Junior, V.E.; de Godoy Bené Bezerra, F.; de Luna Freire, H.; Galembeck, A.; Rosenblatt, A. An innovative approach to treating dental decay in children. A new anti-caries agent. J. Mater. Sci. Mater. Med., 2014, 25(8), 2041-2047.
[http://dx.doi.org/10.1007/s10856-014-5221-5] [PMID: 24818873]
[34]
Freire, P.L.L.; Albuquerque, A.J.R.; Farias, I.A.P.; da Silva, T.G.; Aguiar, J.S.; Galembeck, A.; Flores, M.A.P.; Sampaio, F.C.; Stamford, T.C.M.; Rosenblatt, A. Antimicrobial and cytotoxicity evaluation of colloidal chitosan - silver nanoparticles - fluoride nanocomposites. Int. J. Biol. Macromol., 2016, 93(Pt A), 896-903.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.09.052] [PMID: 27642129]
[35]
Tripathi, S.; Mehrotra, G.K.; Dutta, P.K. Chitosan–silver oxide nanocomposite film: Preparation and antimicrobial activity. Bull. Mater. Sci., 2011, 34(1), 29-35.
[http://dx.doi.org/10.1007/s12034-011-0032-5]
[36]
Wahid, F.; Zhong, C.; Wang, H.S.; Hu, X.H.; Chu, L.Q. Recent advances in antimicrobial hydrogels containing metal ions and metals/metal oxide nanoparticles. Polymers, 2017, 9(12), 636.
[http://dx.doi.org/10.3390/polym9120636] [PMID: 30965938]
[37]
Balamurugan, A.; Balossier, G.; Laurent-Maquin, D.; Pina, S.; Rebelo, A.H.S.; Faure, J.; Ferreira, J.M.F. An in vitro biological and anti-bacterial study on a sol-gel derived silver-incorporated bioglass system. Dent. Mater., 2008, 24(10), 1343-1351.
[http://dx.doi.org/10.1016/j.dental.2008.02.015] [PMID: 18405962]
[38]
Banerjee, S.L.; Khamrai, M.; Sarkar, K.; Singha, N.K.; Kundu, P.P. Modified chitosan encapsulated core-shell Ag Nps for superior antimicrobial and anticancer activity. Int. J. Biol. Macromol., 2016, 85, 157-167.
[http://dx.doi.org/10.1016/j.ijbiomac.2015.12.068] [PMID: 26724687]
[39]
Mrlík, M.; Špírek, M.; Al-Khori, J.; Ahmad, A.A. Mosnaček, J.; AlMaadeed, M.A.; Kasák, P. Mussel-mimicking sulfobetaine-based copolymer with metal tunable gelation, self-healing and antibacterial capability. Arab. J. Chem., 2020, 13(1), 193-204.
[http://dx.doi.org/10.1016/j.arabjc.2017.03.009]
[40]
Baldrick, P. The safety of chitosan as a pharmaceutical excipient. Regul. Toxicol. Pharmacol., 2010, 56(3), 290-299.
[http://dx.doi.org/10.1016/j.yrtph.2009.09.015] [PMID: 19788905]
[41]
De, L. Propolis varnish: Antimicrobial properties against cariogenic bacteria, cytotoxicity, and sustained-release profile. BioMed Res. Int., 2014, 348647, 1-6.
[42]
Wilken, R.; Botha, S.J.; Grobler, A.; Germishuys, P.J. In vitro cytotoxicity of chlorhexidine gluconate, benzydamine-HCl and povidone iodine mouthrinses on human gingival fibroblasts. SADJ, 2001, 56(10), 455-460.
[PMID: 11763614]
[43]
Pucher, J.J.; Daniel, C. The effects of chlorhexidine digluconate on human fibroblasts in vitro. J. Periodontol., 1992, 63(6), 526-532.
[http://dx.doi.org/10.1902/jop.1992.63.6.526] [PMID: 1625152]
[44]
Vijayalakshmi, R. Flemingson; Emmadi, P.; Ambalavanan, N.; Ramakrishnan, T. Effect of three commercial mouth rinses on cultured human gingival fibroblast: An in vitro study. Indian J. Dent. Res., 2008, 19(1), 29-35.
[http://dx.doi.org/10.4103/0970-9290.38929]
[45]
Wahid, F.; Wang, H.S.; Zhong, C.; Chu, L.Q. Facile fabrication of moldable antibacterial carboxymethyl chitosan supramolecular hydrogels cross-linked by metal ions complexation. Carbohydr. Polym., 2017, 165, 455-461.
[http://dx.doi.org/10.1016/j.carbpol.2017.02.085] [PMID: 28363572]
[46]
Susanto, C.; Ervina, I.; Agusnar, H. in vitro evaluation of antimicrobial effectiveness chitosan based tertracycline gel on some pathogenic periodontal bacteria. Int. J. App. Den. Sci., 2017, 3, 71-76.
[47]
Newman, C.; Carranza, T. Supragingival and subgingival irrigation. Clin. Periodontol., 2003, 9, 615.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy