Generic placeholder image

Current Cancer Therapy Reviews

Editor-in-Chief

ISSN (Print): 1573-3947
ISSN (Online): 1875-6301

Review Article

A Comprehensive Review of Systemic Targeted Therapies in Cancer Treatment

Author(s): Amit Sharma, Hemant R. Jadhav*, Anubhav Rai, Naga Rajiv Lakkaniga, Harish C. Chandramoorthy, Hossam Mohammed Kamli, Mohammad Y. Alshahrani and Prasanna Rajagopalan

Volume 20, Issue 5, 2024

Published on: 25 October, 2023

Page: [461 - 480] Pages: 20

DOI: 10.2174/0115733947261058231017170056

Price: $65

Open Access Journals Promotions 2
Abstract

Cancer is one of the significant healthcare challenges in today’s world, even after advancements in modern science, including oncology. The complex nature of the disease, which involves multiple proteins and pathways, poses a substantial challenge in drug discovery. Several therapeutic options have emerged in the last decade. Systemic cancer therapies began with the advent of chemotherapy and were revolutionized with the development of targeted therapies. The present review is a definite overview of the advances in various therapeutic options for cancer, with a particular emphasis on targeted therapy using small molecules and biologicals.

Keywords: Anti-cancer therapeutics, targeted therapy, kinase inhibitors, monoclonal antibodies, oncology, cancer treatment.

Graphical Abstract
[1]
Golla, V.; Kaye, D.R. The impact of health delivery integration on cancer outcomes. Surg. Oncol. Clin. N. Am., 2022, 31(1), 91-108.
[http://dx.doi.org/10.1016/j.soc.2021.08.003] [PMID: 34776068]
[2]
Siegel, R.L.; Miller, K.D.; Wagle, N.S.; Jemal, A. Cancer statistics, 2023. CA Cancer J. Clin., 2023, 73(1), 17-48.
[http://dx.doi.org/10.3322/caac.21763] [PMID: 36633525]
[3]
Chhikara, B.S.; Parang, K. Global Cancer Statistics 2022: The trends projection analysis. Chem Biol Lett, 2023, 10(1), 451.
[4]
Mazzocca, A.; Fais, S. New hypotheses for cancer generation and progression. Med. Hypotheses, 2021, 152, 110614.
[http://dx.doi.org/10.1016/j.mehy.2021.110614] [PMID: 34087614]
[5]
Rumgay, H.; Ferlay, J.; de Martel, C. Global, regional and national burden of primary liver cancer by subtype. Eur. J. Cancer, 2022, 161, 108-118.
[http://dx.doi.org/10.1016/j.ejca.2021.11.023] [PMID: 34942552]
[6]
Abrams, H.L.; Spiro, R.; Goldstein, N. Metastases in carcinoma.Analysis of 1000 autopsied cases. Cancer, 1950, 3(1), 74-85.
[http://dx.doi.org/10.1002/1097-0142(1950)3:1<74:AID-CNCR2820030111>3.0.CO;2-7] [PMID: 15405683]
[7]
Vasto, S.; Carruba, G.; Lio, D. Inflammation, ageing and cancer. Mech. Ageing Dev., 2009, 130(1-2), 40-45.
[http://dx.doi.org/10.1016/j.mad.2008.06.003] [PMID: 18671998]
[8]
Parsa, N. Environmental factors inducing human cancers. Iran. J. Public Health, 2012, 41(11), 1-9.
[PMID: 23304670]
[9]
Hirsch, I.; Caux, C.; Hasan, U.; Bendriss-Vermare, N.; Olive, D. Impaired Toll-like receptor 7 and 9 signaling: From chronic viral infections to cancer. Trends Immunol., 2010, 31(10), 391-397.
[http://dx.doi.org/10.1016/j.it.2010.07.004] [PMID: 20832362]
[10]
Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: The next generation. Cell, 2011, 144(5), 646-674.
[http://dx.doi.org/10.1016/j.cell.2011.02.013]
[11]
Matthews, H.K.; Bertoli, C.; de Bruin, R.A.M. Cell cycle control in cancer. Nat. Rev. Mol. Cell Biol., 2022, 23(1), 74-88.
[http://dx.doi.org/10.1038/s41580-021-00404-3] [PMID: 34508254]
[12]
Kaur, D.; Deshmukh, R. Physiology of cellular demise: Apoptosis, necrosis, and autophagy Clinical Perspectives and Targeted Therapies in Apoptosis; Academic Press, 2021, pp. 23-78.
[13]
Ganesh, K.; Massagué, J. Targeting metastatic cancer. Nat. Med., 2021, 27(1), 34-44.
[http://dx.doi.org/10.1038/s41591-020-01195-4] [PMID: 33442008]
[14]
Majidpoor, J.; Mortezaee, K. Angiogenesis as a hallmark of solid tumors - clinical perspectives. Cell. Oncol., 2021, 44(4), 715-737.
[http://dx.doi.org/10.1007/s13402-021-00602-3] [PMID: 33835425]
[15]
Van Hinsbergh, V.W. Angiogenesis: Basics of vascular biology.In: Vascularization for Tissue Engineering and Regenerative Medicine; Springer: Cham, 2021, pp. 3-1.
[16]
Esposito, M.; Ganesan, S.; Kang, Y. Emerging strategies for treating metastasis. Nat. Can., 2021, 2(3), 258-270.
[http://dx.doi.org/10.1038/s43018-021-00181-0] [PMID: 33899000]
[17]
Ruiz-Espigares, J.; Nieto, D.; Moroni, L.; Jiménez, G.; Marchal, J.A. Evolution of metastasis study models toward metastasis‐on‐a‐chip: The ultimate model? Small, 2021, 17(14), 2006009.
[http://dx.doi.org/10.1002/smll.202006009] [PMID: 33705602]
[18]
Wong, B.S.; Wong, C.W.; Wong, F.C. Human cancer: Epidemiology, hallmarks, and defense strategies.In: Locoregional Radionuclide Cancer Therapy; Springer: Cham, 2021, pp. 1-15.
[19]
Saha, T.; Solomon, J.; Samson, A.O.; Gil-Henn, H. Invasion and metastasis as a central hallmark of breast cancer. J. Clin. Med., 2021, 10(16), 3498.
[http://dx.doi.org/10.3390/jcm10163498] [PMID: 34441794]
[20]
Fouad, Y.A.; Aanei, C. Revisiting the hallmarks of cancer. Am. J. Cancer Res., 2017, 7(5), 1016-1036.
[PMID: 28560055]
[21]
Biller, L.H.; Schrag, D. Diagnosis and treatment of metastatic colorectal cancer: A review. JAMA, 2021, 325(7), 669-685.
[http://dx.doi.org/10.1001/jama.2021.0106] [PMID: 33591350]
[22]
Damyanov, C.A.; Maslev, I.K.; Pavlov, V.S. Conventional treatment of cancer realities and problems. Annal Complemen Altern Med, 2018, 1, 1-9.
[23]
Najafi, M.; Majidpoor, J.; Toolee, H.; Mortezaee, K. The current knowledge concerning solid cancer and therapy. J. Biochem. Mol. Toxicol., 2021, 35(11), e22900.
[http://dx.doi.org/10.1002/jbt.22900] [PMID: 34462987]
[24]
Mohammadi, C.; Mahdavinezhad, A.; Saidijam, M. DCLK1 inhibition sensitizes colorectal cancer cells to radiation treatment. Int. J. Mol. Cell. Med., 2021, 10(1), 23-33.
[PMID: 34268251]
[25]
Chen, C.; Liu, Y.; Cui, B. Effect of radiotherapy on T cell and PD-1/PD-L1 blocking therapy in tumor microenvironment. Hum. Vaccin. Immunother., 2021, 17(6), 1555-1567.
[http://dx.doi.org/10.1080/21645515.2020.1840254] [PMID: 33428533]
[26]
Pugh, R.; Lloyd, K.; Collins, M.; Duxbury, A. The use of 3D printing within radiation therapy to improve bolus conformity: A literature review. J. Radiother. Pract., 2017, 16(3), 319-325.
[http://dx.doi.org/10.1017/S1460396917000115]
[27]
Skowronek, J. Current status of brachytherapy in cancer treatment – short overview. J. Contemp. Brachytherapy, 2017, 9(6), 581-589.
[http://dx.doi.org/10.5114/jcb.2017.72607] [PMID: 29441104]
[28]
Sgouros, G.; Bodei, L.; McDevitt, M.R.; Nedrow, J.R. Radiopharmaceutical therapy in cancer: Clinical advances and challenges. Nat. Rev. Drug Discov., 2020, 19(9), 589-608.
[http://dx.doi.org/10.1038/s41573-020-0073-9] [PMID: 32728208]
[29]
Mohan, G. T P AH, A J J, K M SD, Narayanasamy A, Vellingiri B. Recent advances in radiotherapy and its associated side effects in cancer—a review. J. Basic Appl. Zool., 2019, 80(1), 14-19.
[http://dx.doi.org/10.1186/s41936-019-0083-5]
[30]
Maiti, R. Metronomic chemotherapy. J. Pharmacol. Pharmacother., 2014, 5(3), 186-192.
[http://dx.doi.org/10.4103/0976-500X.136098] [PMID: 25210398]
[31]
Herst, J. An american-made miracle: the politicization of penicillin during world war II. Constellations, 2018, 10(1)
[http://dx.doi.org/10.29173/cons29360]
[32]
DeVita, V.T., Jr; Chu, E. A history of cancer chemotherapy. Cancer Res., 2008, 68(21), 8643-8653.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-6611] [PMID: 18974103]
[33]
Dickens, E.; Ahmed, S. Principles of cancer treatment by chemotherapy. Surgery, 2018, 36(3), 134-138.
[http://dx.doi.org/10.1016/j.mpsur.2017.12.002]
[34]
Chabner, B.A.; Roberts, T.G., Jr Chemotherapy and the war on cancer. Nat. Rev. Cancer, 2005, 5(1), 65-72.
[http://dx.doi.org/10.1038/nrc1529] [PMID: 15630416]
[35]
Hannun, Y.A. Apoptosis and the dilemma of cancer chemotherapy. Blood, 1997, 89(6), 1845-1853.
[http://dx.doi.org/10.1182/blood.V89.6.1845] [PMID: 9058703]
[36]
Deininger, M.W.N.; Druker, B.J. Specific targeted therapy of chronic myelogenous leukemia with imatinib. Pharmacol. Rev., 2003, 55(3), 401-423.
[http://dx.doi.org/10.1124/pr.55.3.4] [PMID: 12869662]
[37]
Duensing, S.; Duensing, A. Targeted therapies of gastrointestinal stromal tumors (GIST)—The next frontiers. Biochem. Pharmacol., 2010, 80(5), 575-583.
[http://dx.doi.org/10.1016/j.bcp.2010.04.006] [PMID: 20385106]
[38]
Jhawat, V.; Gulia, M.; Gupta, S.; Maddiboyina, B.; Dutt, R. Integration of pharmacogenomics and theranostics with nanotechnology as quality by design (QbD) approach for formulation development of novel dosage forms for effective drug therapy. J. Control. Release, 2020, 327, 500-511.
[http://dx.doi.org/10.1016/j.jconrel.2020.08.039] [PMID: 32858073]
[39]
Malone, E.R.; Oliva, M.; Sabatini, P.J.B.; Stockley, T.L.; Siu, L.L. Molecular profiling for precision cancer therapies. Genome Med., 2020, 12(1), 8.
[http://dx.doi.org/10.1186/s13073-019-0703-1] [PMID: 31937368]
[40]
Espina, V.; Geho, D.; Mehta, A.I.; Petricoin, E.F., III; Liotta, L.A.; Rosenblatt, K.P. Pathology of the future: Molecular profiling for targeted therapy. Cancer Invest., 2005, 23(1), 36-46.
[http://dx.doi.org/10.1081/CNV-46434] [PMID: 15779867]
[41]
Ross, J.S.; Schenkein, D.P.; Pietrusko, R. Targeted therapies for cancer 2004. Am. J. Clin. Pathol., 2004, 122(4), 598-609.
[http://dx.doi.org/10.1309/5CWPU41AFR1VYM3F] [PMID: 15487459]
[42]
Romond, E.H.; Perez, E.A.; Bryant, J. Trastuzumab plus adjuvant chemotherapy for operable HER2-positive breast cancer. N. Engl. J. Med., 2005, 353(16), 1673-1684.
[http://dx.doi.org/10.1056/NEJMoa052122] [PMID: 16236738]
[43]
Marty, M.; Cognetti, F.; Maraninchi, D. Randomized phase II trial of the efficacy and safety of trastuzumab combined with docetaxel in patients with human epidermal growth factor receptor 2-positive metastatic breast cancer administered as first-line treatment: The M77001 study group. J. Clin. Oncol., 2005, 23(19), 4265-4274.
[http://dx.doi.org/10.1200/JCO.2005.04.173] [PMID: 15911866]
[44]
Smith, J.K.; Mamoon, N.M.; Duhé, R.J. Emerging roles of targeted small molecule protein-tyrosine kinase inhibitors in cancer therapy. Oncol. Res., 2004, 14(4-5), 175-225.
[PMID: 14977353]
[45]
Shah, N.P.; Tran, C.; Lee, F.Y.; Chen, P.; Norris, D.; Sawyers, C.L. Overriding imatinib resistance with a novel ABL kinase inhibitor. Science, 2004, 305(5682), 399-401.
[http://dx.doi.org/10.1126/science.1099480] [PMID: 15256671]
[46]
Glenney, J.R., Jr Tyrosine-phosphorylated proteins: Mediators of signal transduction from the tyrosine kinases. Biochim. Biophys. Acta Mol. Cell Res., 1992, 1134(2), 113-127.
[http://dx.doi.org/10.1016/0167-4889(92)90034-9] [PMID: 1554748]
[47]
Imai, K.; Takaoka, A. Comparing antibody and small-molecule therapies for cancer. Nat. Rev. Cancer, 2006, 6(9), 714-727.
[http://dx.doi.org/10.1038/nrc1913] [PMID: 16929325]
[48]
Arruebo, M.; Vilaboa, N.; Sáez-Gutierrez, B. Assessment of the evolution of cancer treatment therapies. Cancers, 2011, 3(3), 3279-3330.
[http://dx.doi.org/10.3390/cancers3033279] [PMID: 24212956]
[49]
Schlenk, R.F.; Kayser, S. Midostaurin: A multiple tyrosine kinases inhibitor in acute myeloid leukemia and systemic mastocytosis.In: Small Molecules in Hematology; Springer: Cham, 2018, pp. 199-214.
[50]
Buchdunger, E.; Zimmermann, J.; Mett, H. Inhibition of the Abl protein-tyrosine kinase in vitro and in vivo by a 2-phenylaminopyrimidine derivative. Cancer Res., 1996, 56(1), 100-104.
[PMID: 8548747]
[51]
Carroll, M.; Ohno-Jones, S.; Tamura, S. CGP 57148, a tyrosine kinase inhibitor, inhibits the growth of cells expressing BCR-ABL, TEL-ABL, and TEL-PDGFR fusion proteins. Blood, 1997, 90(12), 4947-4952.
[http://dx.doi.org/10.1182/blood.V90.12.4947] [PMID: 9389713]
[52]
Lee, S.J.; Wang, J.Y.J. Exploiting the promiscuity of imatinib. J. Biol., 2009, 8(3), 30.
[http://dx.doi.org/10.1186/jbiol134] [PMID: 19435483]
[53]
Druker, B.J. Translation of the Philadelphia chromosome into therapy for CML. Blood, 2008, 112(13), 4808-4817.
[http://dx.doi.org/10.1182/blood-2008-07-077958] [PMID: 19064740]
[54]
Rossari, F.; Minutolo, F.; Orciuolo, E. Past, present, and future of Bcr-Abl inhibitors: From chemical development to clinical efficacy. J. Hematol. Oncol., 2018, 11(1), 84.
[http://dx.doi.org/10.1186/s13045-018-0624-2] [PMID: 29925402]
[55]
Hantschel, O.; Grebien, F.; Superti-Furga, G. The growing arsenal of ATP-competitive and allosteric inhibitors of BCR-ABL. Cancer Res., 2012, 72(19), 4890-4895.
[http://dx.doi.org/10.1158/0008-5472.CAN-12-1276] [PMID: 23002203]
[56]
Nicholson, R.I.; Gee, J.M.W.; Harper, M.E. EGFR and cancer prognosis. Eur. J. Cancer, 2001, 37(Suppl. 4), 9-15.
[http://dx.doi.org/10.1016/S0959-8049(01)00231-3] [PMID: 11597399]
[57]
Kris, M.G. Efficacy of gefitinib, an inhibitor of tyrosine kinase, in symptomatic patients with non-small cell lung cancer. JAMA, 2003, 290, 2149-2158.
[http://dx.doi.org/10.1001/jama.290.16.2149] [PMID: 14570950]
[58]
Barker, A.J.; Gibson, K.H.; Grundy, W. Studies leading to the identification of ZD1839 (iressa™): An orally active, selective epidermal growth factor receptor tyrosine kinase inhibitor targeted to the treatment of cancer. Bioorg. Med. Chem. Lett., 2001, 11(14), 1911-1914.
[http://dx.doi.org/10.1016/S0960-894X(01)00344-4] [PMID: 11459659]
[59]
Yarden, Y. The EGFR family and its ligands in human cancer. Eur. J. Cancer, 2001, 37(Suppl. 4), 3-8.
[http://dx.doi.org/10.1016/S0959-8049(01)00230-1] [PMID: 11597398]
[60]
Steins, M.; Thomas, M.; Geißler, M. Erlotinib. Recent Results Cancer Res., 2018, 211, 1-17.
[http://dx.doi.org/10.1007/978-3-319-91442-8_1] [PMID: 30069756]
[61]
Slamon, D.J.; Leyland-Jones, B.; Shak, S. Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N. Engl. J. Med., 2001, 344(11), 783-792.
[http://dx.doi.org/10.1056/NEJM200103153441101] [PMID: 11248153]
[62]
Geyer, C.E.; Forster, J.; Lindquist, D. Lapatinib plus capecitabine for HER2-positive advanced breast cancer. N. Engl. J. Med., 2006, 355(26), 2733-2743.
[http://dx.doi.org/10.1056/NEJMoa064320] [PMID: 17192538]
[63]
Voigtlaender, M.; Schneider-Merck, T.; Trepel, M. Lapatinib.In: Small molecules in oncology; Springer, 2018.
[64]
Ivy, S.P.; Wick, J.Y.; Kaufman, B.M. An overview of small-molecule inhibitors of VEGFR signaling. Nat. Rev. Clin. Oncol., 2009, 6(10), 569-579.
[http://dx.doi.org/10.1038/nrclinonc.2009.130] [PMID: 19736552]
[65]
Imbulgoda, A.; Heng, D.Y.C.; Kollmannsberger, C. Sunitinib in the treatment of advanced solid tumors. Recent Results Cancer Res., 2014, 201, 165-184.
[http://dx.doi.org/10.1007/978-3-642-54490-3_9] [PMID: 24756791]
[66]
Adams, V.R.; Leggas, M. Sunitinib malate for the treatment of metastatic renal cell carcinoma and gastrointestinal stromal tumors. Clin. Ther., 2007, 29(7), 1338-1353.
[http://dx.doi.org/10.1016/j.clinthera.2007.07.022] [PMID: 17825686]
[67]
Wilhelm, S.M.; Carter, C.; Tang, L. BAY 43-9006 exhibits broad spectrum oral antitumor activity and targets the RAF/MEK/ERK pathway and receptor tyrosine kinases involved in tumor progression and angiogenesis. Cancer Res., 2004, 64(19), 7099-7109.
[http://dx.doi.org/10.1158/0008-5472.CAN-04-1443] [PMID: 15466206]
[68]
Lytvynchuk, L.; Sergienko, A.; Lavrenchuk, G.; Petrovski, G. Antiproliferative, apoptotic, and autophagic activity of ranibizumab, bevacizumab, pegaptanib, and aflibercept on fibroblasts: implication for choroidal neovascularization. J. Ophthalmol., 2015, 2015, 1-10.
[http://dx.doi.org/10.1155/2015/934963] [PMID: 26491557]
[69]
Fasolo, A.; Sessa, C. Targeting mTOR pathways in human malignancies. Curr. Pharm. Des., 2012, 18(19), 2766-2777.
[http://dx.doi.org/10.2174/138161212800626210] [PMID: 22475451]
[70]
Yu, K.; Toral-Barza, L.; Discafani, C. mTOR, a novel target in breast cancer: The effect of CCI-779, an mTOR inhibitor, in preclinical models of breast cancer. Endocr. Relat. Cancer, 2001, 8(3), 249-258.
[http://dx.doi.org/10.1677/erc.0.0080249] [PMID: 11566616]
[71]
Hudes, G. TemSirolimus, interferon alfa, or both for advanced renal-cell carcinoma. J. Urol., 2008, 179, 497-498.
[72]
Ansell, S.M.; Inwards, D.J.; Rowland, K.M., Jr Low-dose, single-agent temsirolimus for relapsed mantle cell lymphoma. Cancer, 2008, 113(3), 508-514.
[http://dx.doi.org/10.1002/cncr.23580] [PMID: 18543327]
[73]
Robert, C.; Karaszewska, B.; Schachter, J. Improved overall survival in melanoma with combined dabrafenib and trametinib. N. Engl. J. Med., 2015, 372(1), 30-39.
[http://dx.doi.org/10.1056/NEJMoa1412690] [PMID: 25399551]
[74]
Leonardi, G.C.; Falzone, L.; Salemi, R. Cutaneous melanoma: From pathogenesis to therapy. (Review). Int. J. Oncol., 2018, 52(4), 1071-1080.
[http://dx.doi.org/10.3892/ijo.2018.4287] [PMID: 29532857]
[75]
Salemi, R.; Falzone, L.; Madonna, G. MMP-9 as a candidate marker of response to BRAF inhibitors in melanoma patients with BRAFV600E mutation detected in circulating-free DNA. Front. Pharmacol., 2018, 9, 856.
[http://dx.doi.org/10.3389/fphar.2018.00856] [PMID: 30154717]
[76]
Ascierto, P.A.; McArthur, G.A.; Dréno, B. Cobimetinib combined with vemurafenib in advanced BRAFV600-mutant melanoma (coBRIM): Updated efficacy results from a randomised, double-blind, phase 3 trial. Lancet Oncol., 2016, 17(9), 1248-1260.
[http://dx.doi.org/10.1016/S1470-2045(16)30122-X] [PMID: 27480103]
[77]
Chester, K.; Pedley, B.; Tolner, B. Engineering antibodies for clinical applications in cancer. Tumour Biol., 2004, 25(1-2), 91-98.
[http://dx.doi.org/10.1159/000077727] [PMID: 15192316]
[78]
Lakkaniga, N.R.; Zhang, L.; Belachew, B.; Gunaganti, N.; Frett, B.; Li, H. Discovery of SP-96, the first non-ATP-competitive Aurora Kinase B inhibitor, for reduced myelosuppression. Eur. J. Med. Chem., 2020, 203, 112589.
[http://dx.doi.org/10.1016/j.ejmech.2020.112589] [PMID: 32717530]
[79]
Saha, D.; Ryan, K.R.; Lakkaniga, N.R. Targeting rearranged during transfection in cancer: A perspective on small-molecule inhibitors and their clinical development. J. Med. Chem., 2021, 64(16), 11747-11773.
[http://dx.doi.org/10.1021/acs.jmedchem.0c02167] [PMID: 34402300]
[80]
Zhang, L.; Lakkaniga, N.R.; Bharate, J.B. Discovery of imidazo[1,2-a]pyridine-thiophene derivatives as FLT3 and FLT3 mutants inhibitors for acute myeloid leukemia through structure-based optimization of an NEK2 inhibitor. Eur. J. Med. Chem., 2021, 225, 113776.
[http://dx.doi.org/10.1016/j.ejmech.2021.113776] [PMID: 34479037]
[81]
Acharya, B.; Saha, D.; Armstrong, D.; Lakkaniga, N.R.; Frett, B. FLT3 inhibitors for acute myeloid leukemia: Successes, defeats, and emerging paradigms. In: RSC. Med. Chem., 2022, 13, 7798-7816.
[82]
Batra, S.K.; Jain, M.; Wittel, U.A.; Chauhan, S.C.; Colcher, D. Pharmacokinetics and biodistribution of genetically engineered antibodies. Curr. Opin. Biotechnol., 2002, 13(6), 603-608.
[http://dx.doi.org/10.1016/S0958-1669(02)00352-X] [PMID: 12482521]
[83]
Zhang, Q.; Chen, G.; Liu, X.; Qian, Q. Monoclonal antibodies as therapeutic agents in oncology and antibody gene therapy. Cell Res., 2007, 17(2), 89-99.
[http://dx.doi.org/10.1038/sj.cr.7310143] [PMID: 17242688]
[84]
Stern, M.; Herrmann, R. Overview of monoclonal antibodies in cancer therapy: Present and promise. Crit. Rev. Oncol. Hematol., 2005, 54(1), 11-29.
[http://dx.doi.org/10.1016/j.critrevonc.2004.10.011] [PMID: 15780905]
[85]
Carter, P.; Presta, L.; Gorman, C.M. Humanization of an anti-p185HER2 antibody for human cancer therapy. Proc. Natl. Acad. Sci. USA, 1992, 89(10), 4285-4289.
[http://dx.doi.org/10.1073/pnas.89.10.4285] [PMID: 1350088]
[86]
Jordan, V.C. Progress in the prevention of breast cancer: Concept to reality. J. Steroid Biochem. Mol. Biol., 2000, 74(5), 269-277.
[http://dx.doi.org/10.1016/S0960-0760(00)00103-5] [PMID: 11162935]
[87]
Pento, J.T. Monoclonal antibodies for the treatment of cancer. Anticancer Res., 2017, 37(11), 5935-5939.
[PMID: 29061772]
[88]
Schneeweiss, A.; Chia, S.; Hickish, T. Pertuzumab plus trastuzumab in combination with standard neoadjuvant anthracycline-containing and anthracycline-free chemotherapy regimens in patients with HER2-positive early breast cancer: A randomized phase II cardiac safety study (TRYPHAENA). Ann. Oncol., 2013, 24(9), 2278-2284.
[http://dx.doi.org/10.1093/annonc/mdt182] [PMID: 23704196]
[89]
Übersichtsarbeit, R.A.; Harbeck, N.; Beckmann, W.; Rody, A. Breast Care, 2013, 49-55.
[90]
Huang, S.; Armstrong, E.A.; Benavente, S.; Chinnaiyan, P.; Harari, P.M. Dual-agent molecular targeting of the epidermal growth factor receptor (EGFR): Combining anti-EGFR antibody with tyrosine kinase inhibitor. Cancer Res., 2004, 64(15), 5355-5362.
[http://dx.doi.org/10.1158/0008-5472.CAN-04-0562] [PMID: 15289342]
[91]
Vincenzi, B.; Zoccoli, A.; Pantano, F.; Venditti, O.; Galluzzo, S. Cetuximab: From bench to bedside. Curr. Cancer Drug Targets, 2010, 10(1), 80-95.
[http://dx.doi.org/10.2174/156800910790980241] [PMID: 20088790]
[92]
Poulin-Costello, M.; Azoulay, L.; Van Cutsem, E.; Peeters, M.; Siena, S.; Wolf, M. An analysis of the treatment effect of panitumumab on overall survival from a phase 3, randomized, controlled, multicenter trial (20020408) in patients with chemotherapy refractory metastatic colorectal cancer. Target. Oncol., 2013, 8(2), 127-136.
[http://dx.doi.org/10.1007/s11523-013-0271-z] [PMID: 23625191]
[93]
Ferrara, N.; Hillan, K.J.; Novotny, W. Bevacizumab (Avastin), a humanized anti-VEGF monoclonal antibody for cancer therapy. Biochem. Biophys. Res. Commun., 2005, 333(2), 328-335.
[http://dx.doi.org/10.1016/j.bbrc.2005.05.132] [PMID: 15961063]
[94]
Haanen, J.B.A.G.; Robert, C. Immune checkpoint inhibitors. Prog. Tumor Res., 2015, 42, 55-66.
[http://dx.doi.org/10.1159/000437178] [PMID: 26382943]
[95]
Seidel, J.A.; Otsuka, A.; Kabashima, K. Anti-PD-1 and anti-CTLA-4 therapies in cancer: Mechanisms of action, efficacy, and limitations. Front. Oncol., 2018, 8, 86.
[http://dx.doi.org/10.3389/fonc.2018.00086] [PMID: 29644214]
[96]
Zitvogel, L.; Galluzzi, L.; Smyth, M.J.; Kroemer, G. Mechanism of action of conventional and targeted anticancer therapies: Reinstating immunosurveillance. Immunity, 2013, 39(1), 74-88.
[http://dx.doi.org/10.1016/j.immuni.2013.06.014] [PMID: 23890065]
[97]
Amdahl, J.; Chen, L.; Delea, T.E. Network meta-analysis of progression-free survival and overall survival in first-line treatment of braf mutation-positive metastatic melanoma. Oncol. Ther., 2016, 4(2), 239-256.
[http://dx.doi.org/10.1007/s40487-016-0030-2] [PMID: 28261653]
[98]
Sakamuri, D.; Glitza, I.C.; Betancourt Cuellar, S.L. Phase I dose-escalation study of Anti–CTLA-4 antibody ipilimumab and lenalidomide in patients with advanced cancers. Mol. Cancer Ther., 2018, 17(3), 671-676.
[http://dx.doi.org/10.1158/1535-7163.MCT-17-0673] [PMID: 29237802]
[99]
Brahmer, J.R.; Rodríguez-Abreu, D.; Robinson, A.G. Health-related quality-of-life results for pembrolizumab versus chemotherapy in advanced, PD-L1-positive NSCLC (KEYNOTE-024): A multicentre, international, randomised, open-label phase 3 trial. Lancet Oncol., 2017, 18(12), 1600-1609.
[http://dx.doi.org/10.1016/S1470-2045(17)30690-3] [PMID: 29129441]
[100]
Fessas, P.; Lee, H.; Ikemizu, S.; Janowitz, T. A molecular and preclinical comparison of the PD-1–targeted T-cell checkpoint inhibitors nivolumab and pembrolizumab. Semin. Oncol., 2017, 44(2), 136-140.
[http://dx.doi.org/10.1053/j.seminoncol.2017.06.002] [PMID: 28923212]
[101]
Frenel, J.S.; Le Tourneau, C.; O’Neil, B. Safety and efficacy of Pembrolizumab in advanced, programmed death ligand 1-positive cervical cancer: Results from the phase IB KEYNOTE-028 trial. J. Clin. Oncol., 2017, 35(36), 4035-4041.
[http://dx.doi.org/10.1200/JCO.2017.74.5471] [PMID: 29095678]
[102]
Raj, S.; Khurana, S.; Choudhari, R. Specific targeting cancer cells with nanoparticles and drug delivery in cancer therapy.In: Seminars in cancer biology; Academic Press, 2021, pp. 166-177.
[103]
Bukowski, K.; Kciuk, M.; Kontek, R. Mechanisms of multidrug resistance in cancer chemotherapy. Int. J. Mol. Sci., 2020, 21(9), 3233.
[http://dx.doi.org/10.3390/ijms21093233] [PMID: 32370233]
[104]
Goodman, M.; Saunders, W.B. Managing the side effects of chemotherapy.In: Seminars in oncology nursing; Elsevier, 1989.
[105]
Gao, S.; Yang, X.; Xu, J.; Qiu, N.; Zhai, G. Nanotechnology for boosting cancer immunotherapy and remodeling tumor microenvironment: The horizons in cancer treatment. ACS Nano, 2021, 15(8), 12567-12603.
[http://dx.doi.org/10.1021/acsnano.1c02103] [PMID: 34339170]
[106]
Lim, Z.F.; Ma, P.C. Emerging insights of tumor heterogeneity and drug resistance mechanisms in lung cancer targeted therapy. J. Hematol. Oncol., 2019, 12(1), 134.
[http://dx.doi.org/10.1186/s13045-019-0818-2] [PMID: 31815659]
[107]
Marques, A.C.; Costa, P.J.; Velho, S.; Amaral, M.H. Functionalizing nanoparticles with cancer-targeting antibodies: A comparison of strategies. J. Control. Release, 2020, 320, 180-200.
[http://dx.doi.org/10.1016/j.jconrel.2020.01.035] [PMID: 31978444]
[108]
Misrab, A. Ligands and receptors for targeted delivery of nanoparticles: Recent updates and challenges.In: Drug Delivery with Targeted Nanoparticles: In vitro and in vivo Evaluation Methods; Taylor & Francis Group, 2021.
[109]
Zeng, S.; Zhang, H.; Shen, Z.; Huang, W. Photopharmacology of proteolysis-targeting chimeras: A new frontier for drug discovery. Front Chem., 2021, 9, 639176.
[http://dx.doi.org/10.3389/fchem.2021.639176] [PMID: 33777902]
[110]
Madamsetty, V.S.; Tavakol, S.; Moghassemi, S. Chitosan: A versatile bio-platform for breast cancer theranostics. J. Control. Release, 2022, 341, 733-752.
[PMID: 34906606]
[111]
Navya, P.N.; Kaphle, A.; Srinivas, S.P.; Bhargava, S.K.; Rotello, V.M.; Daima, H.K. Current trends and challenges in cancer management and therapy using designer nanomaterials. Nano Converg., 2019, 6(1), 23.
[http://dx.doi.org/10.1186/s40580-019-0193-2] [PMID: 31304563]
[112]
Lan, H.; Zhang, W.; Jin, K.; Liu, Y.; Wang, Z. Modulating barriers of tumor microenvironment through nanocarrier systems for improved cancer immunotherapy: A review of current status and future perspective. Drug Deliv., 2020, 27(1), 1248-1262.
[http://dx.doi.org/10.1080/10717544.2020.1809559] [PMID: 32865029]
[113]
Jain, V.; Kumar, H.; Anod, H.V. A review of nanotechnology-based approaches for breast cancer and triple-negative breast cancer. J. Control. Release, 2020, 326, 628-647.
[http://dx.doi.org/10.1016/j.jconrel.2020.07.003] [PMID: 32653502]
[114]
Mei, S.; Perumal, M.; Battino, M. Mangiferin: A review of dietary sources, absorption, metabolism, bioavailability, and safety. Crit. Rev. Food Sci. Nutr., 2021, 1-9.
[PMID: 34606395]
[115]
Gavas, S.; Quazi, S.; Karpiński, T.M. Nanoparticles for cancer therapy: Current progress and challenges. Nanoscale Res. Lett., 2021, 16(1), 173.
[http://dx.doi.org/10.1186/s11671-021-03628-6] [PMID: 34866166]
[116]
Goli, N.; Bolla, P.K.; Talla, V. Antibody-drug conjugates (ADCs): Potent biopharmaceuticals to target solid and hematological cancers- an overview. J. Drug Deliv. Sci. Technol., 2018, 48, 106-117.
[http://dx.doi.org/10.1016/j.jddst.2018.08.022]
[117]
Khongorzul, P.; Ling, C.J.; Khan, F.U.; Ihsan, A.U.; Zhang, J. Antibody–drug conjugates: A comprehensive review. Mol. Cancer Res., 2020, 18(1), 3-19.
[http://dx.doi.org/10.1158/1541-7786.MCR-19-0582] [PMID: 31659006]
[118]
Corti, C; Giugliano, F; Nicolò, E; Ascione, L; Curigliano, G Antibody–drug conjugates for the treatment of breast cancer. cancers, 2021, 13(12), 2898.
[http://dx.doi.org/10.3390/cancers13122898] [PMID: 34207890]
[119]
Nasiri, H.; Valedkarimi, Z.; Aghebati-Maleki, L.; Majidi, J. Antibody‐drug conjugates: Promising and efficient tools for targeted cancer therapy. J. Cell. Physiol., 2018, 233(9), 6441-6457.
[http://dx.doi.org/10.1002/jcp.26435] [PMID: 29319167]
[120]
Ceci, C.; Lacal, P.M.; Graziani, G. Antibody-drug conjugates: Resurgent anticancer agents with multi-targeted therapeutic potential. Pharmacol. Ther., 2022, 236, 108106.
[http://dx.doi.org/10.1016/j.pharmthera.2021.108106] [PMID: 34990642]
[121]
Wang, Z.; Huang, W.; Zhou, K.; Ren, X.; Ding, K. Targeting the non-catalytic functions: A new paradigm for kinase drug discovery? J. Med. Chem., 2022, 65(3), 1735-1748.
[http://dx.doi.org/10.1021/acs.jmedchem.1c01978] [PMID: 35000385]
[122]
Békés, M.; Langley, D.R.; Crews, C.M. PROTAC targeted protein degraders: The past is prologue. Nat. Rev. Drug Discov., 2022, 21(3), 181-200.
[http://dx.doi.org/10.1038/s41573-021-00371-6] [PMID: 35042991]
[123]
Pettersson, M.; Crews, C.M. PROteolysis TArgeting Chimeras (PROTACs)-past, present and future. Drug Discov. Today. Technol., 2019, 31, 15-27.
[http://dx.doi.org/10.1016/j.ddtec.2019.01.002] [PMID: 31200855]
[124]
Bai, N.; Miller, S.A.; Andrianov, G.V.; Yates, M.; Kirubakaran, P.; Karanicolas, J. Rationalizing PROTAC-mediated ternary complex formation using Rosetta. J. Chem. Inf. Model., 2021, 61(3), 1368-1382.
[http://dx.doi.org/10.1021/acs.jcim.0c01451] [PMID: 33625214]
[125]
Hu, Z.; Crews, C.M. Recent developments in PROTAC‐mediated protein degradation: From bench to clinic. ChemBioChem, 2021, 1-54.
[PMID: 34494353]
[126]
Wang, Y.; Jiang, X.; Feng, F.; Liu, W.; Sun, H. Degradation of proteins by PROTACs and other strategies. Acta Pharm. Sin. B, 2020, 10(2), 207-238.
[http://dx.doi.org/10.1016/j.apsb.2019.08.001] [PMID: 32082969]
[127]
Lv, D.; Pal, P.; Liu, X. Development of a BCL-xL and BCL-2 dual degrader with improved anti-leukemic activity. Nat. Commun., 2021, 12(1), 6896.
[http://dx.doi.org/10.1038/s41467-021-27210-x] [PMID: 34824248]
[128]
Feins, S.; Kong, W.; Williams, E.F.; Milone, M.C.; Fraietta, J.A. An introduction to chimeric antigen receptor (CAR) T‐cell immunotherapy for human cancer. Am. J. Hematol., 2019, 94(S1), S3-S9.
[http://dx.doi.org/10.1002/ajh.25418] [PMID: 30680780]
[129]
Bain, B.J. Structure and function of red and white blood cells. Medicine , 2017, 45(4), 187-193.
[http://dx.doi.org/10.1016/j.mpmed.2017.01.011]
[130]
Labanieh, L.; Majzner, R.G.; Mackall, C.L. Programming CAR-T cells to kill cancer. Nat. Biomed. Eng., 2018, 2(6), 377-391.
[http://dx.doi.org/10.1038/s41551-018-0235-9] [PMID: 31011197]
[131]
Gross, G.; Eshhar, Z. Therapeutic potential of T cell chimeric antigen receptors (CARs) in cancer treatment: Counteracting off-tumor toxicities for safe CAR T cell therapy. Annu. Rev. Pharmacol. Toxicol., 2016, 56(1), 59-83.
[http://dx.doi.org/10.1146/annurev-pharmtox-010814-124844] [PMID: 26738472]
[132]
Moon, E.K.; Wang, L.C.; Dolfi, D.V. Multifactorial T-cell hypofunction that is reversible can limit the efficacy of chimeric antigen receptor-transduced human T cells in solid tumors. Clin. Cancer Res., 2014, 20(16), 4262-4273.
[http://dx.doi.org/10.1158/1078-0432.CCR-13-2627] [PMID: 24919573]
[133]
Melenhorst, J.J.; Chen, G.M.; Wang, M. Decade-long leukaemia remissions with persistence of CD4+ CAR T cells. Nature, 2022, 602(7897), 503-509.
[http://dx.doi.org/10.1038/s41586-021-04390-6] [PMID: 35110735]
[134]
Yip, A.; Webster, R.M. The market for chimeric antigen receptor T cell therapies. Nat. Rev. Drug Discov., 2018, 17(3), 161-162.
[http://dx.doi.org/10.1038/nrd.2017.266] [PMID: 29375140]
[135]
Schubert, M.L.; Schmitt, M.; Wang, L. Side-effect management of chimeric antigen receptor (CAR) T-cell therapy. Ann. Oncol., 2021, 32(1), 34-48.
[http://dx.doi.org/10.1016/j.annonc.2020.10.478] [PMID: 33098993]
[136]
Chu, D.T.; Nguyen, T.T.; Tien, N.L.B. Recent progress of stem cell therapy in cancer treatment: Molecular mechanisms and potential applications. Cells, 2020, 9(3), 563.
[http://dx.doi.org/10.3390/cells9030563] [PMID: 32121074]
[137]
Shao, L.; Wang, Y.; Chang, J.; Luo, Y.; Meng, A.; Zhou, D. Hematopoietic stem cell senescence and cancer therapy-induced long-term bone marrow injury. Transl. Cancer Res., 2013, 2(5), 397-411.
[PMID: 24605290]
[138]
Mohty, M.; Hübel, K.; Kröger, N. Autologous haematopoietic stem cell mobilisation in multiple myeloma and lymphoma patients: A position statement from the European Group for Blood and Marrow Transplantation. Bone Marrow Transplant., 2014, 49(7), 865-872.
[http://dx.doi.org/10.1038/bmt.2014.39] [PMID: 24686988]
[139]
Dana, H.; Chalbatani, G.M.; Mahmoodzadeh, H. Molecular mechanisms and biological functions of siRNA. Int. J. Biomed. Sci., 2017, 13(2), 48-57.
[http://dx.doi.org/10.59566/IJBS.2017.13048] [PMID: 28824341]
[140]
Pratt, A.J.; MacRae, I.J. The RNA-induced silencing complex: A versatile gene-silencing machine. J. Biol. Chem., 2009, 284(27), 17897-17901.
[http://dx.doi.org/10.1074/jbc.R900012200] [PMID: 19342379]
[141]
Tian, Z.; Liang, G.; Cui, K. Insight into the prospects for RNAi therapy of cancer. Front. Pharmacol., 2021, 12, 644718.
[http://dx.doi.org/10.3389/fphar.2021.644718] [PMID: 33796026]
[142]
Yansong, L. Internal radiation therapy: A neglected aspect of nuclear medicine in the molecular era. J. Biomed. Res., 2015, 29(5), 345-355.
[http://dx.doi.org/10.7555/JBR.29.20140069] [PMID: 26445567]
[143]
Li, M.; Younis, M.H.; Zhang, Y.; Cai, W.; Lan, X. Clinical summary of fibroblast activation protein inhibitor-based radiopharmaceuticals: Cancer and beyond. Eur. J. Nucl. Med. Mol. Imaging, 2022, 49(8), 2844-2868.
[http://dx.doi.org/10.1007/s00259-022-05706-y]
[144]
Kiess, A.P.; Hobbs, R.F.; Bednarz, B.; Knox, S.J.; Meredith, R.; Escorcia, F.E. ASTRO’s framework for radiopharmaceutical therapy curriculum development for trainees. Int. J. Radiat. Oncol. Biol. Phys., 2022, 113(4), 719-726.
[http://dx.doi.org/10.1016/j.ijrobp.2022.03.018] [PMID: 35367328]
[145]
Viswanath, D.I.; Liu, H.C.; Huston, D.P.; Chua, C.Y.X.; Grattoni, A. Emerging biomaterial-based strategies for personalized therapeutic in situ cancer vaccines. Biomaterials, 2022, 280, 121297.
[http://dx.doi.org/10.1016/j.biomaterials.2021.121297] [PMID: 34902729]
[146]
Roesler, A.S.; Anderson, K.S. Beyond Sequencing: Prioritizing and Delivering Neoantigens for Cancer Vaccines; Vaccine Design, 2022, pp. 649-670.
[147]
Melief, C.J.; Wiekmeijer, A.S.; van der Gracht, E.T. Therapeutic cancer vaccines targeting viral antigens. In: Cancer Vaccines as Immunotherapy of Cancer; Academic Press, 2022, pp. 97-107.
[148]
Calabrese, E.J.; Agathokleous, E.; Kapoor, R.; Dhawan, G.; Calabrese, V. Stem cells and hormesis. Curr. Opin. Toxicol., 2022, 30, 100340.
[http://dx.doi.org/10.1016/j.cotox.2022.03.001]
[149]
Gemmell, R.; Halley, A.; Stevens, A.M. Palliative care for patients around the time of haematopoietic stem cell transplant: A qualitative study of patients’ perceptions and experiences of unmet need and attitudes towards palliative care involvement. Support. Care Cancer, 2022, 30(3), 2253-2261.
[http://dx.doi.org/10.1007/s00520-021-06556-4] [PMID: 34716484]
[150]
Li, Y.; Hao, J.; Hu, Z. Current status of clinical trials assessing mesenchymal stem cell therapy for graft versus host disease: A systematic review. Stem Cell Res. Ther., 2022, 13(1), 93.
[http://dx.doi.org/10.1186/s13287-022-02751-0] [PMID: 35246235]
[151]
Sharma, P.; Lew, T.T. Principles of nanoparticle design for genome editing in plants. In: Front Genome Ed; , 2022; 4, p. 846624.
[152]
Shaw, T.K.; Paul, P. Recent approaches and success of liposome-based nano drug carriers for the treatment of brain tumor. Curr. Drug Deliv., 2022, 19(8), 815-829.
[http://dx.doi.org/10.2174/1567201818666211213102308] [PMID: 34961462]
[153]
Zhang, P.; Li, Y.; Tang, W.; Zhao, J.; Jing, L.; McHugh, K.J. Theranostic nanoparticles with disease-specific administration strategies. Nano Today, 2022, 42, 101335.
[http://dx.doi.org/10.1016/j.nantod.2021.101335]
[154]
Karges, J. Clinical development of metal complexes as photosensitizers for photodynamic therapy of cancer. Angew. Chem. Int. Ed., 2022, 61(5), e202112236.
[http://dx.doi.org/10.1002/anie.202112236] [PMID: 34748690]
[155]
Binnal, A.; Tadakamadla, J.; Rajesh, G.; Tadakamadla, S.K. Photodynamic therapy for oral potentially malignant disorders: A systematic review and meta-analysis. Photodiagn. Photodyn. Ther., 2022, 37, 102713.
[http://dx.doi.org/10.1016/j.pdpdt.2022.102713] [PMID: 34999271]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy