Generic placeholder image

CNS & Neurological Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5273
ISSN (Online): 1996-3181

Mini-Review Article

Metabolic Disorder Therapeutics and their Effects on Memory

Author(s): Punita Aggarwal, Faiz Khan and Sugato Banerjee*

Volume 23, Issue 9, 2024

Published on: 25 October, 2023

Page: [1061 - 1074] Pages: 14

DOI: 10.2174/0118715273269329231013074613

Price: $65

conference banner
Abstract

Diabetes is one of the major metabolic disorders of this era. It not only impacts a person's lifestyle but also has a long-term impact on the brain. It has a detrimental effect on a person's health when combined with hypertension and hyperlipidaemia. Several studies have suggested that the incidence of dementia is higher in people with metabolic syndrome. Investigations are underway to determine whether antidiabetic, hypolipidemic, hypercholesteraemic, anti-hypertensive, and other combination medicines can minimize the incidence of cognitive impairment. Some studies have suggested that anti-diabetic drugs like metformin, liraglutide, and dapagliflozin might enhance memory in long-term users. At the same time, other studies indicate that long-term insulin use may cause memory decline. Similarly, drugs like ACEIs, CCBs, fibrates, statins, and various nutraceuticals have been shown to improve cognition via multiple mechanisms. Literature suggests that drugs that can treat metabolic syndrome can also partially reduce the accumulation of beta-amyloid, whereas some studies contradict these findings. We review the past thirty years' of research work and summarize the effects of most commonly used drugs and nutraceuticals for treating metabolic syndrome on memory. Here, we review the effects of antidiabetic, hypolipidemic, anti-hypertensive, and hypercholesteremic, and their combination in learning and memory.

Keywords: Antidiabetic, hypolipidemic agent, hypercholesteremic agents, anti-hypertensive memory, cognition, learning.

Graphical Abstract
[1]
Peila R, Rodriguez BL, Launer LJ. Honolulu-Asia Aging Study. Type 2 diabetes, APOE gene, and the risk for dementia and related pathologies: The Honolulu-Asia Aging Study. Diabetes 2002; 51(4): 1256-62.
[http://dx.doi.org/10.2337/diabetes.51.4.1256] [PMID: 11916953]
[2]
Xourgia E, Papazafiropoulou A, Melidonis A. Antidiabetic treatment on memory and spatial learning: From the pancreas to the neuron. World J Diabetes 2019; 10(3): 169-80.
[http://dx.doi.org/10.4239/wjd.v10.i3.169] [PMID: 30891152]
[3]
Ott A, Stolk RP, van Harskamp F, Pols HAP, Hofman A, Breteler MMB. Diabetes mellitus and the risk of dementia: The Rotterdam Study. Neurology 1999; 53(9): 1937-42.
[http://dx.doi.org/10.1212/WNL.53.9.1937] [PMID: 10599761]
[4]
Agunloye OM, Oboh G, Ademiluyi AO, et al. Cardio-protective and antioxidant properties of caffeic acid and chlorogenic acid: Mechanistic role of angiotensin converting enzyme, cholinesterase and arginase activities in cyclosporine induced hypertensive rats. Biomed Pharmacother 2019; 109: 450-8.
[http://dx.doi.org/10.1016/j.biopha.2018.10.044] [PMID: 30399581]
[5]
Bendlin BB. Antidiabetic therapies and Alzheimer disease. Dialogues Clin Neurosci 2019; 21(1): 83-91.
[http://dx.doi.org/10.31887/DCNS.2019.21.1/bbendlin] [PMID: 31607783]
[6]
Shah AD, Langenberg C, Rapsomaniki E, et al. Type 2 diabetes and incidence of cardiovascular diseases: a cohort study in 1·9 million people. Lancet Diabetes Endocrinol 2015; 3(2): 105-13.
[http://dx.doi.org/10.1016/S2213-8587(14)70219-0] [PMID: 25466521]
[7]
Nelson PT, Smith CD, Abner EA, et al. Human cerebral neuropathology of Type 2 diabetes mellitus. Biochim Biophys Acta Mol Basis Dis 2009; 1792(5): 454-69.
[http://dx.doi.org/10.1016/j.bbadis.2008.08.005] [PMID: 18789386]
[8]
Thambisetty M, Metter EJ, Yang A, et al. Glucose intolerance, insulin resistance, and pathological features of Alzheimer disease in the Baltimore Longitudinal Study of Aging. JAMA Neurol 2013; 70(9): 1167-72.
[http://dx.doi.org/10.1001/jamaneurol.2013.284] [PMID: 23897112]
[9]
Sims-Robinson C, Kim B, Rosko A, Feldman EL. How does diabetes accelerate Alzheimer disease pathology? Nat Rev Neurol 2010; 6(10): 551-9.
[http://dx.doi.org/10.1038/nrneurol.2010.130] [PMID: 20842183]
[10]
Kickstein E, Krauss S, Thornhill P, et al. Biguanide metformin acts on tau phosphorylation via mTOR/protein phosphatase 2A (PP2A) signaling. Proc Natl Acad Sci USA 2010; 107(50): 21830-5.
[http://dx.doi.org/10.1073/pnas.0912793107] [PMID: 21098287]
[11]
Mone P, Gambardella J, Pansini A, et al. Cognitive impairment in frail hypertensive elderly patients: Role of hyperglycemia. Cells 2021; 10(8): 2115.
[http://dx.doi.org/10.3390/cells10082115] [PMID: 34440883]
[12]
Duc Nguyen H, Hoang NMH, Jo WH, Ham JR, Lee MK, Kim MS. Associations among the TREM-1 pathway, tau hyperphosphorylation, prolactin expression, and metformin in diabetes mice. Neuroimmunomodulation 2022; 29(4): 359-68.
[http://dx.doi.org/10.1159/000521013] [PMID: 35130556]
[13]
Oliveira WH, Braga CF, Lós DB, et al. Metformin prevents p-tau and amyloid plaque deposition and memory impairment in diabetic mice. Exp Brain Res 2021; 239(9): 2821-39.
[http://dx.doi.org/10.1007/s00221-021-06176-8] [PMID: 34283253]
[14]
Pomilio C, Pérez NG, Calandri I, et al. ADNI Alzheimer’s Disease Neuroimaging Initiative. Diabetic patients treated with metformin during early stages of Alzheimer’s disease show a better integral performance: data from ADNI study. Geroscience 2022; 44(3): 1791-805.
[http://dx.doi.org/10.1007/s11357-022-00568-6] [PMID: 35445359]
[15]
Alharbi I, Alharbi H, Almogbel Y, Alalwan A, Alhowail A. Effect of Metformin on Doxorubicin-Induced Memory Dysfunction. Brain Sci 2020; 10(3): 152.
[http://dx.doi.org/10.3390/brainsci10030152] [PMID: 32156040]
[16]
Yoon JK, Byeon HE, Ko SA, et al. Cell cycle synchronisation using thiazolidinediones affects cellular glucose metabolism and enhances the therapeutic effect of 2-deoxyglucose in colon cancer. Sci Rep 2020; 10(1): 4713.
[http://dx.doi.org/10.1038/s41598-020-61661-4] [PMID: 32170185]
[17]
Hussein HA, Moghimi A, Roohbakhsh A. Anticonvulsant and ameliorative effects of pioglitazone on cognitive deficits, inflammation and apoptosis in the hippocampus of rat pups exposed to febrile seizure. Iran J Basic Med Sci 2019; 22(3): 267-76.
[http://dx.doi.org/10.22038/ijbms.2019.35056.8339] [PMID: 31156787]
[18]
Seaquist ER, Miller ME, Fonseca V, et al. Effect of thiazolidinediones and insulin on cognitive outcomes in ACCORD-MIND. J Diabetes Complications 2013; 27(5): 485-91.
[http://dx.doi.org/10.1016/j.jdiacomp.2013.03.005] [PMID: 23680059]
[19]
Cardoso S, Moreira PI. Antidiabetic drugs for Alzheimer’s and Parkinson’s diseases: Repurposing insulin, metformin, and thiazolidinediones. Int Rev Neurobiol 2020; 155: 37-64.
[http://dx.doi.org/10.1016/bs.irn.2020.02.010] [PMID: 32854858]
[20]
Zhao H, Zhuo L, Sun Y, Shen P, Lin H, Zhan S. Thiazolidinedione use is associated with reduced risk of dementia in patients with type 2 diabetes mellitus: A retrospective cohort study. J Diabetes 2023; 15(2): 97-109.
[http://dx.doi.org/10.1111/1753-0407.13352] [PMID: 36660897]
[21]
Yan WW, Chen GH, Wang F, Tong JJ, Tao F. Long-term acarbose administration alleviating the impairment of spatial learning and memory in the SAMP8 mice was associated with alleviated reduction of insulin system and acetylated H4K8. Brain Res 2015; 1603: 22-31.
[http://dx.doi.org/10.1016/j.brainres.2015.01.042] [PMID: 25645154]
[22]
Tong JJ, Chen GH, Wang F, et al. Chronic acarbose treatment alleviates age-related behavioral and biochemical changes in SAMP8 mice. Behav Brain Res 2015; 284: 138-52.
[http://dx.doi.org/10.1016/j.bbr.2015.01.052] [PMID: 25698601]
[23]
Chavda V, Patel S. Voglibose and saxagliptin ameliorate the post-surgical stress and cognitive dysfunction in chronic anaesthesia exposed diabetic MCAo induced ischemic rats. IBRO Neuroscience Reports 2022; 13: 426-35.
[http://dx.doi.org/10.1016/j.ibneur.2022.10.009] [PMID: 36386599]
[24]
Safar MM, Shahin NN, Mohamed AF, Abdelkader NF. Suppression of BACE1 and amyloidogenic/RAGE axis by sitagliptin ameliorates PTZ kindling-induced cognitive deficits in rats. Chem Biol Interact 2020; 328: 109144.
[http://dx.doi.org/10.1016/j.cbi.2020.109144] [PMID: 32653415]
[25]
Dong Q, Teng SW, Wang Y, et al. Sitagliptin protects the cognition function of the Alzheimer’s disease mice through activating glucagon-like peptide-1 and BDNF-TrkB signalings. Neurosci Lett 2019; 696: 184-90.
[http://dx.doi.org/10.1016/j.neulet.2018.12.041] [PMID: 30597232]
[26]
Borzì AM, Condorelli G, Biondi A, et al. Effects of vildagliptin, a DPP-4 inhibitor, in elderly diabetic patients with mild cognitive impairment. Arch Gerontol Geriatr 2019; 84: 103896.
[http://dx.doi.org/10.1016/j.archger.2019.06.001] [PMID: 31204117]
[27]
Rachmany L, Tweedie D, Li Y, et al. Exendin-4 induced glucagon-like peptide-1 receptor activation reverses behavioral impairments of mild traumatic brain injury in mice. Age (Omaha) 2013; 35(5): 1621-36.
[http://dx.doi.org/10.1007/s11357-012-9464-0] [PMID: 22892942]
[28]
Yu C, Song L, Zhai Z, et al. The role of GLP-1/GIP receptor agonists in Alzheimer’s disease. Adv Clin Exp Med 2020; 29(6): 661-8.
[http://dx.doi.org/10.17219/acem/121007] [PMID: 32614526]
[29]
Galimberti D, Scarpini E. Pioglitazone for the treatment of Alzheimer’s disease. Expert Opin Investig Drugs 2017; 26(1): 97-101.
[http://dx.doi.org/10.1080/13543784.2017.1265504] [PMID: 27885860]
[30]
Abbasi MA, Hassan M, ur-Rehman A. et al. 2-Furoic piperazide derivatives as promising drug candidates of type 2 diabetes and Alzheimer’s diseases: In vitro and in silico studies. Comput Biol Chem 2018; 77: 72-86.
[http://dx.doi.org/10.1016/j.compbiolchem.2018.09.007] [PMID: 30245349]
[31]
You G, Lee WS, Barros EJG, et al. Molecular characteristics of Na(+)-coupled glucose transporters in adult and embryonic rat kidney. J Biol Chem 1995; 270(49): 29365-71.
[http://dx.doi.org/10.1074/jbc.270.49.29365] [PMID: 7493971]
[32]
Wilkie F, Eisdorfer C. Intelligence and blood pressure in the aged. Science 1971; 172(3986): 959-62.
[http://dx.doi.org/10.1126/science.172.3986.959] [PMID: 5573571]
[33]
Canavan M, O’Donnell MJ. Hypertension and cognitive impairment: a review of mechanisms and key concepts. Front Neurol 2022; 13: 821135.
[http://dx.doi.org/10.3389/fneur.2022.821135] [PMID: 35185772]
[34]
Tzourio C. Hypertension, cognitive decline, and dementia: an epidemiological perspective. Dialogues Clin Neurosci 2007; 9(1): 61-70.
[http://dx.doi.org/10.31887/DCNS.2007.9.1/ctzourio] [PMID: 17506226]
[35]
Iadecola C, Park L, Capone C. Threats to the mind. Stroke 2009; 40(3) (Suppl.): S40-4.
[http://dx.doi.org/10.1161/STROKEAHA.108.533638] [PMID: 19064785]
[36]
Johnson ML, Parikh N, Kunik ME, et al. Antihypertensive drug use and the risk of dementia in patients with diabetes mellitus. Alzheimers Dement 2012; 8(5): 437-44.
[http://dx.doi.org/10.1016/j.jalz.2011.05.2414] [PMID: 22521970]
[37]
Ouk M, Wu CY, Rabin JS, et al. Alzheimer’s Disease Neuroimaging Initiative. Associations between brain amyloid accumulation and the use of angiotensin-converting enzyme inhibitors versus angiotensin receptor blockers. Neurobiol Aging 2021; 100: 22-31.
[http://dx.doi.org/10.1016/j.neurobiolaging.2020.12.011] [PMID: 33461049]
[38]
Marcum ZA, Li Y, Lee SJ, et al. Association of antihypertensives and cognitive impairment in long-term care residents. J Alzheimers Dis 2022; 86(3): 1149-58.
[http://dx.doi.org/10.3233/JAD-215393] [PMID: 35147539]
[39]
Kuber B, Fadnavis M, Chatterjee B. Role of angiotensin receptor blockers in the context of Alzheimer’s disease. Fundam Clin Pharmacol 2023; 37(3): 429-45.
[http://dx.doi.org/10.1111/fcp.12872] [PMID: 36654189]
[40]
García-Lluch G, Peña-Bautista C, Royo LM, et al. Angiotensin II receptor blockers reduce Tau/Aß42 ratio: A cerebrospinal fluid biomarkers’ case-control study. Pharmaceutics 2023; 15(3): 924.
[http://dx.doi.org/10.3390/pharmaceutics15030924] [PMID: 36986785]
[41]
Pierrot N, Ghisdal P, Caumont AS, Octave JN. Intraneuronal amyloid-β1-42 production triggered by sustained increase of cytosolic calcium concentration induces neuronal death. J Neurochem 2004; 88(5): 1140-50.
[http://dx.doi.org/10.1046/j.1471-4159.2003.02227.x] [PMID: 15009669]
[42]
Querfurth HW, Selkoe DJ. Calcium ionophore increases amyloid beta peptide production by cultured cells. Biochemistry 1994; 33(15): 4550-61.
[http://dx.doi.org/10.1021/bi00181a016] [PMID: 8161510]
[43]
Mattson MP. Antigenic changes similar to those seen in neurofibrillary tangles are elicited by glutamate and Ca2+ influx in cultured hippocampal neurons. Neuron 1990; 4(1): 105-17.
[http://dx.doi.org/10.1016/0896-6273(90)90447-N] [PMID: 1690014]
[44]
Sveinsdóttir HS, Christensen C, Þorsteinsson H, et al. Novel non-stimulants rescue hyperactive phenotype in an adgrl3.1 mutant zebrafish model of ADHD. Neuropsychopharmacology 2023; 48(8): 1155-63.
[http://dx.doi.org/10.1038/s41386-022-01505-z] [PMID: 36400921]
[45]
Michalak A, Pekala K, Budzynska B, Kruk-Slomka M, Biala G. The role of verapamil and SL-327 in morphine- and ethanol-induced state-dependent and cross state-dependent memory. Eur J Pharmacol 2018; 834: 318-26.
[http://dx.doi.org/10.1016/j.ejphar.2018.07.048] [PMID: 30059684]
[46]
Mohapatra D, Kanungo S, Pradhan SP, Jena S, Prusty SK, Sahu PK. Captopril is more effective than Perindopril against aluminium chloride induced amyloidogenesis and AD like pathology. Heliyon 2022; 8(2): e08935.
[http://dx.doi.org/10.1016/j.heliyon.2022.e08935] [PMID: 35243060]
[47]
Thomas J, Smith H, Smith CA, et al. The angiotensin-converting enzyme inhibitor lisinopril mitigates memory and motor deficits in a Drosophila model of alzheimer’s disease. Pathophysiology 2021; 28(2): 307-19.
[http://dx.doi.org/10.3390/pathophysiology28020020] [PMID: 35366264]
[48]
Barhwal K, Hota SK, Baitharu I, Prasad D, Singh SB, Ilavazhagan G. Isradipine antagonizes hypobaric hypoxia induced CA1 damage and memory impairment: Complementary roles of L-type calcium channel and NMDA receptors. Neurobiol Dis 2009; 34(2): 230-44.
[http://dx.doi.org/10.1016/j.nbd.2009.01.008] [PMID: 19385055]
[49]
Masse I, Bordet R, Deplanque D, et al. Lipid lowering agents are associated with a slower cognitive decline in Alzheimer’s disease. J Neurol Neurosurg Psychiatry 2005; 76(12): 1624-9.
[http://dx.doi.org/10.1136/jnnp.2005.063388] [PMID: 16291883]
[50]
Cramer C, Haan MN, Galea S, Langa KM, Kalbfleisch JD. Use of statins and incidence of dementia and cognitive impairment without dementia in a cohort study. Neurology 2008; 71(5): 344-50.
[http://dx.doi.org/10.1212/01.wnl.0000319647.15752.7b] [PMID: 18663180]
[51]
Shakour N, Bianconi V, Pirro M, Barreto GE, Hadizadeh F, Sahebkar A. In silico evidence of direct interaction between statins and β‐amyloid. J Cell Biochem 2019; 120(3): 4710-5.
[http://dx.doi.org/10.1002/jcb.27761] [PMID: 30260016]
[52]
Son SM, Kang S, Choi H, Mook-Jung I. Statins induce insulin-degrading enzyme secretion from astrocytes via an autophagy-based unconventional secretory pathway. Mol Neurodegener 2015; 10(1): 56.
[http://dx.doi.org/10.1186/s13024-015-0054-3] [PMID: 26520569]
[53]
Araki M, Maeda M, Motojima K. Hydrophobic statins induce autophagy and cell death in human rhabdomyosarcoma cells by depleting geranylgeranyl diphosphate. Eur J Pharmacol 2012; 674(2-3): 95-103.
[http://dx.doi.org/10.1016/j.ejphar.2011.10.044] [PMID: 22094060]
[54]
Vizcaychipi MP, Watts HR, O’Dea KP, et al. The therapeutic potential of atorvastatin in a mouse model of postoperative cognitive decline. Ann Surg 2014; 259(6): 1235-44.
[http://dx.doi.org/10.1097/SLA.0000000000000257] [PMID: 24263322]
[55]
Stuart SA, Robertson JD, Marrion NV, Robinson ESJ. Chronic pravastatin but not atorvastatin treatment impairs cognitive function in two rodent models of learning and memory. PLoS One 2013; 8(9): e75467.
[http://dx.doi.org/10.1371/journal.pone.0075467] [PMID: 24040413]
[56]
Kliewer SA, Xu HE, Lambert MH, Willson TM. Peroxisome proliferator-activated receptors: from genes to physiology. Recent Prog Horm Res 2001; 56(1): 239-65.
[http://dx.doi.org/10.1210/rp.56.1.239] [PMID: 11237216]
[57]
Salehi I, Taheraslani Z, Moradkhani S. Hydro-alcoholic extract of commiphora mukul gum resin may improve cognitive impairments in diabetic rats. Avicenna Journal of Medical Biochemistry 2015; 2(2)
[http://dx.doi.org/10.17795/ajmb-24906]
[58]
Rao RV, Descamps O, John V, Bredesen DE. Ayurvedic medicinal plants for Alzheimer’s disease: a review. Alzheimers Res Ther 2012; 4(3): 22.
[http://dx.doi.org/10.1186/alzrt125] [PMID: 22747839]
[59]
Moutinho M, Puntambekar SS, Tsai AP, et al. The niacin receptor HCAR2 modulates microglial response and limits disease progression in a mouse model of Alzheimer’s disease. Sci Transl Med 2022; 14(637): eabl7634.
[http://dx.doi.org/10.1126/scitranslmed.abl7634] [PMID: 35320002]
[60]
Qian L, Zhu K, Lin Y, et al. Insulin secretion impairment induced by rosuvastatin partly though autophagy in INS‐1E cells. Cell Biol Int 2020; 44(1): 127-36.
[http://dx.doi.org/10.1002/cbin.11208] [PMID: 31342626]
[61]
Rockwood K, Kirkland S, Hogan DB, et al. Use of lipid-lowering agents, indication bias, and the risk of dementia in community-dwelling elderly people. Arch Neurol 2002; 59(2): 223-7.
[http://dx.doi.org/10.1001/archneur.59.2.223] [PMID: 11843693]
[62]
Yasnetsov VV, Kaurova DE, Skachilova SY, Bersenev EY. Antiamnestic effect of new nicotinic acid derivatives. Research Results in Pharmacology 2021; 7(3): 15-22.
[http://dx.doi.org/10.3897/rrpharmacology.7.68001]
[63]
Souza JPF, Povala G, Brum WS, et al. Hypercholesterolemia accelerates Aβ deposition in regions associated with early amyloidosis. Alzheimers Dement 2020; 16(S4): e044114.
[http://dx.doi.org/10.1002/alz.044114]
[64]
Lai J, Shi YC, Lin S, Chen XR. Metabolic disorders on cognitive dysfunction after traumatic brain injury. Trends Endocrinol Metab 2022; 33(7): 451-62.
[http://dx.doi.org/10.1016/j.tem.2022.04.003] [PMID: 35534336]
[65]
Sarris J, Murphy J, Mischoulon D, et al. Adjunctive nutraceuticals for depression: A systematic review and meta-analyses. Am J Psychiatry 2016; 173(6): 575-87.
[http://dx.doi.org/10.1176/appi.ajp.2016.15091228] [PMID: 27113121]
[66]
Santini A, Novellino E. Nutraceuticals - shedding light on the grey area between pharmaceuticals and food. Expert Rev Clin Pharmacol 2018; 11(6): 545-7.
[http://dx.doi.org/10.1080/17512433.2018.1464911] [PMID: 29667442]
[67]
Kalra EK. Nutraceutical-definition and introduction. AAPS PharmSci 2003; 5(3): 27-8.
[http://dx.doi.org/10.1208/ps050325] [PMID: 14621960]
[68]
Wildman REC. Handbook of nutraceuticals and functional foods. In: CRC series in modern nutrition. Boca Raton, FL: CRC Press 2001.
[69]
Hayden T. Getting to Know Nutraceuticals. Sci Am 2007; 17(4): 38-43.
[http://dx.doi.org/10.1038/scientificamerican1207-38sp]
[70]
Agunloye OM, Oboh G. Fermented seeds of Pentaclethra macrophylla mitigate against memory deficit and restored altered enzymatic activity in the brain of streptozotocin-diabetic rats. Metab Brain Dis 2023; 38(3): 973-81.
[http://dx.doi.org/10.1007/s11011-022-01141-y] [PMID: 36585563]
[71]
Agunloye OM, Oboh G. Effect of diet supplemented with P. ostreatus and L. subnudus on memory index and key enzymes linked with Alzheimer’s disease in streptozotocin‐induced diabetes rats. J Food Biochem 2021; 45(3): e13355.
[http://dx.doi.org/10.1111/jfbc.13355] [PMID: 32628296]
[72]
Polumackanycz M, Konieczynski P, Orhan IE, Abaci N, Viapiana A. Chemical composition, antioxidant and anti-enzymatic activity of golden root (Rhodiola rosea L.) commercial samples. Antioxidants 2022; 11(5): 919.
[http://dx.doi.org/10.3390/antiox11050919] [PMID: 35624783]
[73]
Lin WS, Lo JH, Yang JH, et al. Ludwigia octovalvis extract improves glycemic control and memory performance in diabetic mice. J Ethnopharmacol 2017; 207: 211-9.
[http://dx.doi.org/10.1016/j.jep.2017.06.044] [PMID: 28666833]
[74]
Ramírez G, Zavala M, Pérez J, Zamilpa A. In vitro screening of medicinal plants used in Mexico as antidiabetics with glucosidase and lipase inhibitory activities. Evid Based Complement Alternat Med 2012; 2012: 1-6.
[http://dx.doi.org/10.1155/2012/701261] [PMID: 23082084]
[75]
Hasanein P, Shahidi S. Preventive effect of Teucrium polium on learning and memory deficits in diabetic rats. Med Sci Monit 2012; 18(1): BR41-6.
[http://dx.doi.org/10.12659/MSM.882201] [PMID: 22207108]
[76]
Mousavi SM, Niazmand S, Hosseini M, et al. Beneficial effects of Teucrium polium and metformin on diabetes-induced memory impairments and brain tissue oxidative damage in rats. Int J Alzheimers Dis 2015; 2015: 1-8.
[http://dx.doi.org/10.1155/2015/493729] [PMID: 25810947]
[77]
Storozhuk MV, Ivanova SY, Pivneva TA, et al. Post-tetanic depression of GABAergic synaptic transmission in rat hippocampal cell cultures. Neurosci Lett 2002; 323(1): 5-8.
[http://dx.doi.org/10.1016/S0304-3940(01)02541-1] [PMID: 11911977]
[78]
Bafadam S, Beheshti F, Khodabakhshi T, et al. Trigonella foenum-graceum seed (Fenugreek) hydroalcoholic extract improved the oxidative stress status in a rat model of diabetes-induced memory impairment. Horm Mol Biol Clin Investig 2019; 39(2)
[http://dx.doi.org/10.1515/hmbci-2018-0074]
[79]
Pirmoghani A, Salehi I, Moradkhani S, Karimi SA, Salehi S. Effect of Crataegus extract supplementation on diabetes induced memory deficits and serum biochemical parameters in male rats. IBRO Rep 2019; 7: 90-6.
[http://dx.doi.org/10.1016/j.ibror.2019.10.004] [PMID: 31720488]
[80]
Meshkat S, Mahmoodi Baram S, Rajaei S, et al. Boswellia serrata extract shows cognitive benefits in a double-blind, randomized, placebo-controlled pilot clinical trial in individuals who suffered traumatic brain injury. Brain Inj 2022; 36(4): 553-9.
[http://dx.doi.org/10.1080/02699052.2022.2059816] [PMID: 35385330]
[81]
Arsalan M, Masoud SD, Ali HS, Mohammad R. Effects of Boswellia serrata, Zingiber officinale and Ginkgo biloba extracts in combination on memory impairment in mice. J Med Plants Res 2021; 15(7): 297-308.
[http://dx.doi.org/10.5897/JMPR2021.7127]
[82]
Taghizadeh M, Maghaminejad F, Aghajani M, Rahmani M. mahboubi M. The effect of tablet containing Boswellia serrata and Melisa officinalis extract on older adults’ memory: A randomized controlled trial. Arch Gerontol Geriatr 2018; 75: 146-50.
[http://dx.doi.org/10.1016/j.archger.2017.12.008] [PMID: 29306113]
[83]
Gomaa AA, Makboul RM, Al-Mokhtar MA, Nicola MA. Polyphenol-rich Boswellia serrata gum prevents cognitive impairment and insulin resistance of diabetic rats through inhibition of GSK3β activity, oxidative stress and pro-inflammatory cytokines. Biomed Pharmacother 2019; 109: 281-92.
[http://dx.doi.org/10.1016/j.biopha.2018.10.056] [PMID: 30396086]
[84]
Mohammadali S, Heshami N, Komaki A, et al. Dill tablet and Ocimum basilicum aqueous extract: Promising therapeutic agents for improving cognitive deficit in hypercholesterolemic rats. J Food Biochem 2020; 44(12): e13485.
[http://dx.doi.org/10.1111/jfbc.13485] [PMID: 33015851]
[85]
Simonyan KV, Galstyan HM, Chavushyan VA. Post-tetanic potentiation and depression in hippocampal neurons in a rat model of alzheimer’s disease: Effects of teucrium polium extract. Neurophysiology 2019; 51(5): 332-43.
[http://dx.doi.org/10.1007/s11062-020-09827-8]
[86]
Schandry R, Duschek S. The effect of Camphor-Crataegus berry extract combination on blood pressure and mental functions in chronic hypotension - A randomized placebo controlled double blind design. Phytomedicine 2008; 15(11): 914-22.
[http://dx.doi.org/10.1016/j.phymed.2008.09.002] [PMID: 18929475]
[87]
Best T, Howe P, Bryan J, Buckley J, Scholey A. Acute effects of a dietary non-starch polysaccharide supplement on cognitive performance in healthy middle-aged adults. Nutr Neurosci 2015; 18(2): 76-86.
[http://dx.doi.org/10.1179/1476830513Y.0000000101] [PMID: 24621069]
[88]
Ueno Y, Saito A, Nakata J, et al. Possible neuroprotective effects of l-carnitine on white-matter microstructural damage and cognitive decline in hemodialysis patients. Nutrients 2021; 13(4): 1292.
[http://dx.doi.org/10.3390/nu13041292] [PMID: 33919810]
[89]
Wang CY, Xie JW, Xu Y, et al. Trientine reduces BACE1 activity and mitigates amyloidosis via the AGE/RAGE/NF-κB pathway in a transgenic mouse model of Alzheimer’s disease. Antioxid Redox Signal 2013; 19(17): 2024-39.
[http://dx.doi.org/10.1089/ars.2012.5158] [PMID: 23541064]
[90]
Arthur JR, Wilson MW, Larsen SD, Rockwell HE, Shayman JA, Seyfried TN. Ethylenedioxy-PIP2 oxalate reduces ganglioside storage in juvenile Sandhoff disease mice. Neurochem Res 2013; 38(4): 866-75.
[http://dx.doi.org/10.1007/s11064-013-0992-5] [PMID: 23417430]
[91]
Asejeje FO, Ajayi BO, Abiola MA, et al. Sodium benzoate induces neurobehavioral deficits and brain oxido‐inflammatory stress in male Wistar rats: Ameliorative role of ascorbic acid. J Biochem Mol Toxicol 2022; 36(5): e23010.
[http://dx.doi.org/10.1002/jbt.23010] [PMID: 35187746]
[92]
Ryu YK, Park HY, Go J, et al. Sodium phenylbutyrate reduces repetitive self-grooming behavior and rescues social and cognitive deficits in mouse models of autism. Psychopharmacology (Berl) 2021; 238(7): 1833-45.
[http://dx.doi.org/10.1007/s00213-021-05812-z] [PMID: 33723660]
[93]
Ocalan B, Cakir A, Koc C, Suyen GG, Kahveci N. Uridine treatment prevents REM sleep deprivation-induced learning and memory impairment. Neurosci Res 2019; 148: 42-8.
[http://dx.doi.org/10.1016/j.neures.2019.01.003] [PMID: 30685492]
[94]
Crider A, Davis T, Ahmed AO, Mei L, Pillai A. Transglutaminase 2 induces deficits in social behavior in mice. Neural Plast 2018; 2018: 1-9.
[http://dx.doi.org/10.1155/2018/2019091] [PMID: 30647729]
[95]
Fanet H, Capuron L, Castanon N, Calon F, Vancassel S. Tetrahydrobioterin (BH4) Pathway: From Metabolism to Neuropsychiatry. Curr Neuropharmacol 2021; 19(5): 591-609.
[http://dx.doi.org/10.2174/18756190MTA4aNjIex] [PMID: 32744952]
[96]
Vasquez-Vivar J, Shi Z, Luo K, Thirugnanam K, Tan S. Tetrahydrobiopterin in antenatal brain hypoxia-ischemia-induced motor impairments and cerebral palsy. Redox Biol 2017; 13: 594-9.
[http://dx.doi.org/10.1016/j.redox.2017.08.002] [PMID: 28803128]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy