Generic placeholder image

Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1573-4064
ISSN (Online): 1875-6638

Review Article

Pyrazolo - Pyrimidines as Targeted Anticancer Scaffolds - A Comprehensive Review

Author(s): Kesavamoorthy Kandhasamy*, Remya Ramachandran Surajambika and Pradeep Kumar Velayudham

Volume 20, Issue 3, 2024

Published on: 25 October, 2023

Page: [293 - 310] Pages: 18

DOI: 10.2174/0115734064251256231018104623

Price: $65

Open Access Journals Promotions 2
Abstract

Background: Globally, cancer is the leading cause of death, which causes 10 million deaths yearly. Clinically, several drugs are used in treatment but due to drug resistance and multidrug resistance, there occurs a failure in the cancer treatment.

Objectives: The present review article is a comprehensive review of pyrazole and pyrimidine hybrids as potential anticancer agents.

Methods: The review comprises more than 60 research works done in this field. The efficiency of the reported pyrazolopyrimidine fused heterocyclic with their biological data and the influence of the structural aspects of the molecule have been discussed.

Results: This review highlighted pyrazolo-pyrimidines as targeted anticancer agents with effect on multiple targets.

Conclusion: The review will be helpful for the researchers involved in targeted drugs for cancer therapy for designing new scaffolds with pyrazolo-pyrimidine moieties.

Keywords: Cancer, multi-drug resistant, heterocycle, pyrazolopyrimidine, anti-cancer agents, pyrimidine hybrids.

Graphical Abstract
[1]
Jemal, A.; Bray, F.; Center, M.M.; Ferlay, J.; Ward, E.; Forman, D. Global cancer statistics. CA Cancer J. Clin., 2011, 61(2), 69-90.
[http://dx.doi.org/10.3322/caac.20107] [PMID: 21296855]
[2]
Remya, R.S. Design, synthesis and pharmacological evaluation of novel benzimidazole derivatives as anticancer agents. Curr. Bioact. Compd., 2022, 18, 6.
[http://dx.doi.org/10.2174/1573407217666210813144009]
[3]
Gharat, S. A.; Momin, M. M.; Bhavsar, C. Oral squamous cell carcinoma: Current treatment strategies and nanotechnology-based approaches for prevention and therapy. Crit. Rev. Ther. Drug Carrier. Syst., 2016, 33(4), 363-400.
[http://dx.doi.org/10.1615/CritRevTherDrugCarrierSyst.2016016272]
[4]
Doll, R.; Peto, R. The causes of cancer: Quantitative estimates of avoidable risks of cancer in the United States today. J. Natl. Cancer Inst., 1981, 66(6), 1192-1308.
[http://dx.doi.org/10.1093/jnci/66.6.1192] [PMID: 7017215]
[5]
WHO. Cancer 1981. Available from: https://www.who.int/health-topics/cancer#tab=tab_1
[6]
Pavithra, P.; Remya, R. Chalcones and flavones as multifunctional anticancer agents- A comprehensive review. Curr. Bio. Comp., 1981, 18(10), 84-107.
[7]
Anand, P.; Kunnumakara, A.B.; Sundaram, C.; Harikumar, K.B.; Tharakan, S.T.; Lai, O.S.; Sung, B.; Aggarwal, B.B. Cancer is a preventable disease that requires major lifestyle changes. Pharm. Res., 2008, 25(9), 2097-2116.
[http://dx.doi.org/10.1007/s11095-008-9661-9] [PMID: 18626751]
[8]
Chen, X.; Yan, C.C.; Zhang, X.; Zhang, X.; Dai, F.; Yin, J.; Zhang, Y. Drug–target interaction prediction: Databases, web servers and computational models. Brief. Bioinform., 2016, 17(4), 696-712.
[http://dx.doi.org/10.1093/bib/bbv066] [PMID: 26283676]
[9]
Siegel, R.; DeSantis, C.; Virgo, K.; Stein, K.; Mariotto, A.; Smith, T.; Cooper, D.; Gansler, T.; Lerro, C.; Fedewa, S.; Lin, C.; Leach, C.; Cannady, R.S.; Cho, H.; Scoppa, S.; Hachey, M.; Kirch, R.; Jemal, A.; Ward, E. Cancer treatment and survivorship statistics, 2012. CA Cancer J. Clin., 2012, 62(4), 220-241.
[http://dx.doi.org/10.3322/caac.21149] [PMID: 22700443]
[10]
Lazo, J.S.; Sharlow, E.R. Drugging undruggable molecular cancer targets. Annu. Rev. Pharmacol. Toxicol., 2016, 56(1), 23-40.
[http://dx.doi.org/10.1146/annurev-pharmtox-010715-103440] [PMID: 26527069]
[11]
Martins, P.; Jesus, J.; Santos, S.; Raposo, L.; Roma-Rodrigues, C.; Baptista, P.; Fernandes, A. Heterocyclic anticancer compounds: Recent advances and the paradigm shift towards the use of nanomedicine’s tool box. Molecules, 2015, 20(9), 16852-16891.
[http://dx.doi.org/10.3390/molecules200916852] [PMID: 26389876]
[12]
Heravi, M.M.; Zadsirjan, V. Prescribed drugs containing nitrogen heterocycles: An overview. RSC Advances, 2020, 10(72), 44247-44311.
[http://dx.doi.org/10.1039/D0RA09198G] [PMID: 35557843]
[13]
Işıkdag, I.; Incesu, Z. Synthesis of 2-substituted-N-[4-(1-methyl-4, 5-diphenyl-1H-imidazole-2-yl) phenyl] acetamide derivatives and evaluation of their anticancer activity. Eur. J. Med. Chem., 2010, 45(8), 3320-3328.
[http://dx.doi.org/10.1016/j.ejmech.2010.04.015]
[14]
Oukoloff, K.; Lucero, B.; Francisco, K.R.; Brunden, K.R.; Ballatore, C. 1,2,4-Triazolo[1,5-a]pyrimidines in drug design. Eur. J. Med. Chem., 2019, 165, 332-346.
[http://dx.doi.org/10.1016/j.ejmech.2019.01.027] [PMID: 30703745]
[15]
Ou, S.H.I. Crizotinib: A novel and first-in-class multitargeted tyrosine kinase inhibitor for the treatment of anaplastic lymphoma kinase rearranged nonsmall cell lung cancer and beyond. Drug Des. Devel. Ther., 2011, 5, 471-485.
[http://dx.doi.org/10.2147/DDDT.S19045] [PMID: 22162641]
[16]
Cherukupalli, S.; Hampannavar, G.A.; Chinnam, S.; Chandrasekaran, B.; Sayyad, N.; Kayamba, F.; Reddy Aleti, R.; Karpoormath, R. An appraisal on synthetic and pharmaceutical perspectives of pyrazolo[4,3-d]pyrimidine scaffold. Bioorg. Med. Chem., 2018, 26(2), 309-339.
[http://dx.doi.org/10.1016/j.bmc.2017.10.012] [PMID: 29273417]
[17]
Salem, I.; Salem, I.; Salem, I.; El Sabbagh, O.; Salama, I.; Ibrahim, T. A review on synthesis and biological evaluations of pyrazolo[3,4-d]pyrimidine schaffold. Records Pharmaceut. Biomed. Sci., 2022, 6(1), 28-50.
[http://dx.doi.org/10.21608/rpbs.2022.126019.1129]
[18]
Almansa, C.; de Arriba, A.F.; Cavalcanti, F.L.; Gómez, L.A.; Miralles, A.; Merlos, M.; García-Rafanell, J.; Forn, J. Synthesis and SAR of a new series of COX-2-selective inhibitors: Pyrazolo[1,5-a]pyrimidines. J. Med. Chem., 2001, 44(3), 350-361.
[http://dx.doi.org/10.1021/jm0009383] [PMID: 11462976]
[19]
Kpoviessi, S.; Bero, J.; Agbani, P.; Gbaguidi, F.; Kpadonou-Kpoviessi, B.; Sinsin, B.; Accrombessi, G.; Frédérich, M.; Moudachirou, M.; Quetin-Leclercq, J. Chemical composition, cytotoxicity and in vitro antitrypanosomal and antiplasmodial activity of the essential oils of four Cymbopogon species from Benin. J. Ethnopharmacol., 2014, 151(1), 652-659.
[http://dx.doi.org/10.1016/j.jep.2013.11.027] [PMID: 24269775]
[20]
Benhamú, B.; Martín-Fontecha, M.; Vázquez-Villa, H.; Pardo, L.; López-Rodríguez, M.L. Serotonin 5-HT6 receptor antagonists for the treatment of cognitive deficiency in Alzheimer’s disease. J. Med. Chem., 2014, 57(17), 7160-7181.
[http://dx.doi.org/10.1021/jm5003952] [PMID: 24850589]
[21]
Behan, D.P.; Grigoriadis, D.E.; Lovenberg, T.; Chalmers, D.; Heinrichs, S.; Liaw, C.; De Souza, E.B. Neurobiology of corticotropin releasing factor (CRF) receptors and CRF-binding protein: Implications for the treatment of CNS disorders. Mol. Psychiatry, 1996, 1(4), 265-277.
[PMID: 9118350]
[22]
Rando, D.G.; Sato, D.N.; Siqueira, L.; Malvezzi, A.; Leite, C.Q.; Ferreira, E.I.; Tavares, L.C. Potential tuberculostatic agents, Topliss application on benzoic acid [(5-nitro-thiophen-2-yl)-methylene]-hydrazide series. Bioorg. Med. Chem., 2002, 10, 557-560.
[http://dx.doi.org/10.1016/S0968-0896(01)00313-3]
[23]
Chiotellis, A.; Muller, A.; Mu, L.; Keller, C.; Schibli, R. Synthesis and biological evaluation of 18F-labeled fluoroethoxy tryptophan analogues as potential PET tumor imaging agents. Mol. Pharm., 2014, 11(11), 3839-3851.
[http://dx.doi.org/10.1021/mp500312t]
[24]
Drev, M.; Grošelj, U.; Mevec, Š.; Pušavec, E.; Štrekelj, J.; Golobič, A.; Dahmann, G.; Stanovnik, B.; Svete, J. Regioselective synthesis of 1- and 4-substituted 7-oxopyrazolo[1,5-a]pyrimidine-3-carboxa-mides. Tetrahedron, 2014, 70(44), 8267-8279.
[http://dx.doi.org/10.1016/j.tet.2014.09.020]
[25]
Baraldi, P.G.; Simoni, D.; Periotto, V.; Manfredini, S.; Guarneri, M.; Manservigi, R.; Cassai, E. Cassai, Pyrazolo[4, 3-d]pyrimidine nucleosides. Synthesis and antiviral activity of 1-. beta.-Dribofuranosyl-3-methyl-6-substituted-7H-pyrazolo[4, 3-d]pyrimidin-7-ones. J. Med. Chem., 1984, 27, 986-990.
[http://dx.doi.org/10.1021/jm00374a009]
[26]
Bondock, S.; Rabie, R.; Etman, H.A.; Fadda, A.A. Synthesis and antimicrobial activity of some new heterocycles incorporating antipyrine moiety. Eur. J. Med. Chem., 2008, 43(10), 2122-2129.
[http://dx.doi.org/10.1016/j.ejmech.2007.12.009] [PMID: 18255196]
[27]
Gilbert, A.M.; Caltabiano, S.; Koehn, F.E.; Chen, Z.J.; Francisco, G.D.; Ellingboe, J.W.; Kharode, Y.; Mangine, A.; Francis, R. Pyrazolopy-rimidine-2, 4-dione sulfonamides: Novel and selective calcitonin inducers. J. Med. Chem., 2002, 45, 2342-2345.
[http://dx.doi.org/10.1021/jm010554s]
[28]
Ivachtchenko, A.V.; Golovina, E.S.; Kadieva, M.G.; Kysil, V.M.; Mitkin, O.D.; Tkachenko, S.E.; Okun, I. Synthesis and SAR of 3-arylsulfonyl-pyrazolo[1, 5-a]pyrimidines as potent serotonin 5-HT6 receptor antagonists. Bioorg. Med. Chem., 2011, 19, 1482-1491.
[http://dx.doi.org/10.1016/j.bmc.2010.12.055]
[29]
Persidis, A. Cancer multidrug resistance. Nat. Biotechnol., 1999, 17(1), 94-95.
[http://dx.doi.org/10.1038/80051] [PMID: 11221708]
[30]
Ismail, N.S.M.; Ali, G.M.E.; Ibrahim, D.A.; Elmetwali, A.M. Medicinal attributes of pyrazolo[1,5-a]pyrimidine based scaffold derivatives targeting kinases as anticancer agents. Future J. Pharmaceut. Sci., 2016, 2(2), 60-70.
[http://dx.doi.org/10.1016/j.fjps.2016.08.004]
[31]
Kumar, M. S. An insight and designing and screening of fusedpyrimidines as anticancer agents. Int. J. Adv. Res. Med. Pharmaceut. Sci., 2019, 4, 1-7.
[32]
Wilding, B.; Klempier, N. Newest developments in the preparation of thieno[2,3- d]pyrimidines. Org. Prep. Proced. Int., 2017, 49(3), 183-215.
[http://dx.doi.org/10.1080/00304948.2017.1320513]
[33]
Nagini, S. Carcinoma of the stomach: A review of epidemiology, pathogenesis, molecular genetics and chemoprevention. World J. Gastrointest. Oncol., 2012, 4(7), 156-169.
[http://dx.doi.org/10.4251/wjgo.v4.i7.156] [PMID: 22844547]
[34]
Ogawa, M. Anticancer drugs and pharmacologic actions. Nihon Rinsho., 1997, 55(5), 1017-1023.
[35]
Doudach, Y. Overview of recent developments of pyrazole derivatives as an anticancer agent in different cell line. Bioorg. Chem., 2020, 97, 103470.
[36]
Zhu, S.L.; Wu, Y.; Liu, C.J.; Wei, C.Y.; Tao, J.C.; Liu, H.M. Design and stereoselective synthesis of novel isosteviol-fused pyrazolines and pyrazoles as potential anticancer agents. Eur. J. Med. Chem., 2013, 65, 70-82.
[http://dx.doi.org/10.1016/j.ejmech.2013.04.044] [PMID: 23693151]
[37]
Sankappa Rai, U.; Isloor, A.M.; Shetty, P.; Pai, K.S.R.; Fun, H.K. Synthesis and in vitro biological evaluation of new pyrazole chalcones and heterocyclic diamides as potential anticancer agents. Arab. J. Chem., 2015, 8(3), 317-321.
[http://dx.doi.org/10.1016/j.arabjc.2014.01.018]
[38]
Amin, K.M.; Eissa, A.A.M.; Abou-Seri, S.M.; Awadallah, F.M.; Hassan, G.S. Synthesis and biological evaluation of novel coumarin-pyrazoline hybrids endowed with phenylsulfonyl moiety as antitumor agents. Eur. J. Med. Chem., 2013, 60, 187-198.
[http://dx.doi.org/10.1016/j.ejmech.2012.12.004] [PMID: 23291120]
[39]
Ma, L.Y.; Wang, B.; Pang, L.P.; Zhang, M.; Wang, S.Q.; Zheng, Y.C.; Shao, K.P.; Xue, D.Q.; Liu, H.M. Design and synthesis of novel 1,2,3-triazole-pyrimidine-urea hybrids as potential anticancer agents. Bioorg. Med. Chem. Lett., 2015, 25(5), 1124-1128.
[http://dx.doi.org/10.1016/j.bmcl.2014.12.087] [PMID: 25655718]
[40]
Ballesteros-Casallas, A.; Paulino, M.; Vidossich, P.; Melo, C.; Jiménez, E.; Castillo, J-C.; Portilla, J.; Miscione, G.P. Synthesis of 2,7-diarylpyrazolo[1,5-a]pyrimidine derivatives with antitumor activity. Theoretical identification of targets. Euro. J. Med. Chem. Reports, 2022, 4, 100028.
[http://dx.doi.org/10.1016/j.ejmcr.2021.100028]
[41]
Singla, Prinka; Luxami, Vijay; Singh, Raja; Tandon, Vibha; Paul, Kamaldeep Novel pyrazolo[3,4-d]pyrimidine with 4-(1H-benzimidazol-2-yl)-phenylamine as broad spectrum anticancer agents: Synthesis, cell based assay, topoisomerase inhibition, DNA intercalation and bovine serum albumin studies. Eur. J. Med. Chem., 2016, 126, 24-35.
[http://dx.doi.org/10.1016/j.ejmech.2016.09.093]
[42]
Khaled, R. A. Synthesis and anticancer activity of some new pyrazolo[3,4-d]pyrimidin-4-one derivatives. Molecules, 2014, 19(3), 3297-3309.
[http://dx.doi.org/10.3390/molecules19033297]
[43]
Taghrid, S. Synthesis, structural elucidation, and in vitro antitumor activities of some pyrazolopyrimidines and schiff bases derived from 5-amino-3-(arylamino)- 1 af-pyrazole-4-carboxamides. Sci. Pharm., 2013, 81(2), 339-357.
[http://dx.doi.org/10.3797/scipharm.1211-07]
[44]
Ajeesh Kumar, A.K.; Yadav, D. Design, synthesis and anti-cancer evaluation of a novel series of pyrazolo[1, 5-a]pyrimidine substituted diamide derivatives. Med. Chem. Res., 2017, 26, 714-744.
[http://dx.doi.org/10.1007/s00044-016-1770-0]
[45]
El-Naggar, M.; Hassan, A.; Awad, H.; Mady, M. Design, synthesis and antitumor evaluation of novel pyrazolopyrimidines and pyrazolo-quinazolines. Molecules, 2018, 23(6), 1249.
[http://dx.doi.org/10.3390/molecules23061249] [PMID: 29882908]
[46]
Ibrahim, F. Design, synthesis and anticancer evaluation of novel pyrazole, pyrazolo[3,4-d]pyrimidine and their glycoside derivatives. Nucleosides. Nucleotides. Nucleic. Acids., 2017, 36(4), 275-291.
[http://dx.doi.org/10.1080/15257770.2016.1276290]
[47]
Shamroukh, A.H.; Rashad, A.E.; Abdel-Megeid, R.E.; Ali, H.S.; Ali, M.M. Some pyrazole and pyrazolo[3,4- d]pyrimidine derivatives: Synthesis and anticancer evaluation. Arch. Pharm., 2014, 347(8), 559-565.
[http://dx.doi.org/10.1002/ardp.201400064]
[48]
Ali, W. Synthesis and biological evaluation of novel pyrazolo[3,4-d]pyrimidine derivatives of expected anticancer activity. Az. J. Pharm. Sci., 2021, 64
[49]
Maher, M.; Kassab, A.E.; Zaher, A.F.; Mahmoud, Z. Novel pyrazolo[3,4- d]pyrimidines: Design, synthesis, anticancer activity, dual EGFR/ErbB2 receptor tyrosine kinases inhibitory activity, effects on cell cycle profile and caspase-3-mediated apoptosis. J. Enzyme Inhib. Med. Chem., 2019, 34(1), 532-546.
[http://dx.doi.org/10.1080/14756366.2018.1564046] [PMID: 30688116]
[50]
Schenone, S.; Bruno, O.; Bondavalli, F.; Ranise, A.; Mosti, L.; Menozzi, G.; Fossa, P.; Donnini, S.; Santoro, A.; Ziche, M.; Manetti, F.; Botta, M. Synthesis, biological evaluation and docking studies of 4-amino substituted 1H-pyrazolo[3,4-d]pyrimidines. Euro. J. Med. Chem., 2008, 43, 2665-2676.
[http://dx.doi.org/10.1016/j.ejmech.2008.01.034]
[51]
Rashad, A.E.; Mahmoud, A.E.; Ali, M.M. Synthesis and anticancer effects of some novel pyrazolo[3,4-d]pyrimidine derivatives by generating reactive oxygen species in human breast adenocarcinoma cells. Eur. J. Med. Chem., 2011, 46(4), 1019-1026.
[http://dx.doi.org/10.1016/j.ejmech.2011.01.013] [PMID: 21315495]
[52]
Ghorab, M.M.; Ragab, F.A.; Alqasoumi, S.I.; Alafeefy, A.M.; Aboulmagd, S.A. Synthesis of some new pyrazolo[3,4-d]pyrimidine derivatives of expected anticancer and radioprotective activity. Eur. J. Med. Chem., 2010, 45(1), 171-178.
[http://dx.doi.org/10.1016/j.ejmech.2009.09.039] [PMID: 19853327]
[53]
Massaro, M.; Barone, G.; Barra, V.; Cancemi, P.; Di Leonardo, A.; Grossi, G.; Lo Celso, F.; Schenone, S.; Viseras Iborra, C.; Riela, S. Pyrazole[3,4-d]pyrimidine derivatives loaded into halloysite as potential CDK inhibitors. Int. J. Pharm., 2021, 599(15), 120281.
[http://dx.doi.org/10.1016/j.ijpharm.2021.120281]
[54]
Gaber, A.A.; El-Morsy, A.M.; Sherbiny, F.F.; Bayoumi, A.H.; El-Gamal, K.M.; El-Adl, K.; Al-Karmalawy, A.A.; Ezz Eldin, R.R.; Saleh, M.A.; Abulkhair, H.S. Pharmacophore linked pyrazolo[3,4d]pyrimidines as EGFR TK inhibitors: Synthesis, anticancer evaluation, pharmacokinetics, and in silico mechanistic studies. Arch. Pharm., 2021, 2100258, e2100258.
[http://dx.doi.org/10.1002/ardp.202100258]
[55]
Islam, F.; Quadery, T.M.; Bai, R.; Luckett-Chastain, L.R.; Hamel, E.; Ihnat, M.A.; Gangjee, A. Novel pyrazolo[4,3-d]pyrimidine microtubule targeting agents (MTAs): Synthesis, structure–activity relationship, in vitro and in vivo evaluation as antitumor agents. Bioorg. Med. Chem. Lett., 2021, 41(1), 127923.
[http://dx.doi.org/10.1016/j.bmcl.2021.127923]
[56]
Abd El Hamid, M.K.; Mihovilovic, M.D.; El-Nassan, H.B. Synthesis of novel pyrazolo[3,4-d]pyrimidine derivatives as potential anti-breast cancer agents. Eur. J. Med. Chem., 2012, 57, 323-328.
[http://dx.doi.org/10.1016/j.ejmech.2012.09.031]
[57]
Cozz, M.; Giorgi, F. Antitumor activity of new pyrazolo[3,4-d]pyrimidine SRC kinase inhibitors in Burkitt lymphoma cell lines and its enhancement by WEE1 inhibition. Cell Cycle, 2012, 11(5), 1029-1039.
[http://dx.doi.org/10.4161/cc.11.5.19519]
[58]
Rice, K.D.; Kim, M.H.; Bussenius, J.; Anand, N.K.; Blazey, C.M.; Bowles, O.J.; Canne-Bannen, L.; Chan, D.S.M.; Chen, B.; Co, E.W.; Costanzo, S.; DeFina, S.C.; Dubenko, L.; Engst, S.; Franzini, M.; Huang, P.; Jammalamadaka, V.; Khoury, R.G.; Klein, R.R.; Laird, A.D.; Le, D.T.; Mac, M.B.; Matthews, D.J.; Markby, D.; Miller, N.; Nuss, J.M.; Parks, J.J.; Tsang, T.H.; Tsuhako, A.L.; Wang, Y.; Xu, W. Pyrazolopyrimidines as dual Akt/p70S6K inhibitors. Bioorg. Med. Chem. Lett., 2012, 22(8), 2693-2697.
[http://dx.doi.org/10.1016/j.bmcl.2012.03.011] [PMID: 22450127]
[59]
Le Brazidec, J.Y.; Pasis, A.; Tam, B.; Boykin, C.; Black, C.; Wang, D.; Claassen, G.; Chong, J.H.; Chao, J.; Fan, J.; Nguyen, K.; Silvian, L.; Ling, L.; Zhang, L.; Choi, M.; Teng, M.; Pathan, N.; Zhao, S.; Li, T.; Taveras, A. Synthesis, SAR and biological evaluation of 1,6-disubstituted-1H-pyrazolo[3,4-d]pyrimidines as dual inhibitors of Aurora kinases and CDK1. Bioorg. Med. Chem. Lett., 2012, 22(5), 2070-2074.
[http://dx.doi.org/10.1016/j.bmcl.2012.01.019] [PMID: 22326168]
[60]
Rashad, A.E.; Hegab, M.I.; Abdel-Megeid, R.E.; Fathalla, N.; Abdel-Megeid, F.M.E. Synthesis and anti-HSV-1 evaluation of some pyrazoles and fused pyrazolopyrimidines. Eur. J. Med. Chem., 2009, 44(8), 3285-3292.
[http://dx.doi.org/10.1016/j.ejmech.2009.02.012]
[61]
Muthuraja, P.; Veeramani, V.; Prakash, S.; Himesh, M.; Venkatasubramanian, U.; Manisankar, P. Structure-activity relationship of pyrazolo pyrimidine derivatives as inhibitors of mitotic kinesin Eg5 and anticancer agents. Bioorg. Chem., 2019, 84, 493-504.
[http://dx.doi.org/10.1016/j.bioorg.2018.12.014] [PMID: 30594885]
[62]
Dina, A. Synthesis of some novel 2- {pyrano[2,3-c]pyrazoles-4-ylidene}malononitrile fused with pyrazole, pyridine, pyrimidine, diazepine, chromone, pyrano[2,3-c]pyrazole and pyrano. Pyrimidine Syst. Anticancer Agents., 2020, 20, 2136-2150.
[http://dx.doi.org/10.1080/10406638.2020.1827445]
[63]
Salwa, A. Synthesis and anticancer evaluation of some new pyrazolo[3,4- d][1,2,3]triazin-4-ones, pyrazolo[1,5-a]pyrimidines and imidazo[1,2- b]pyrazoles clubbed with carbazole. J. Hetero. Chem., 2021, 581, 56-73.
[http://dx.doi.org/10.1002/jhet.4148]
[64]
Esraa, Z. Synthesis, in vitro anticancer activity and in silico studies of certain pyrazolebased derivatives as potential inhibitors of cyclin dependent kinases (CDKs). Bioorg. Chem., 2021, 116, 105347.
[http://dx.doi.org/10.1016/j.bioorg.2021.105347]
[65]
Thomas, R.; Mary, Y.S.; Resmi, K.S.; Narayana, B.; Sarojini, B.K.; Vijayakumar, G.; Van Alsenoy, C. Two neoteric pyrazole compounds as potential anti-cancer agents: Synthesis, electronic structure, physico-chemical properties and docking analysis. J. Mol. Struct., 2019, 1181(5), 455-466.
[http://dx.doi.org/10.1016/j.molstruc.2019.01.003]
[66]
Ashraf, S. Design, synthesis, anticancer evaluation, enzymatic assays, and a molecular modelingstudy of novel pyrazole-indole hybrids. ACS Omega, 2021, 6(18), 12361-12374.
[http://dx.doi.org/10.1021/acsomega.1c01604] [PMID: 34056388]
[67]
Ismail, M.M.; El-Sehrawi, H.; Elzahabi, HS.; Shawer, T.; Ammar, Y.A. Synthesis and antitumor activity of novel hybrids of pyrimi-dine/benzimidazole scaffolds. Polycycl. Aromat. Compd., 2022, 42(5), 2363-2377.
[http://dx.doi.org/10.1080/10406638.2020.1833050]
[68]
Othman, I.M.M.; Alamshany, Z.M.; Tashkandi, N.Y.; Gad-Elkareem, M.A.M.; Anwar, M.M.; Nossier, E.S. New pyrimidine and pyrazole-based compounds as potential EGFR inhibitors: Synthesis, anticancer, antimicrobial evaluation and computational studies. Bioorg. Chem., 2021, 114, 105078.
[http://dx.doi.org/10.1016/j.bioorg.2021.105078]
[69]
Revathi, N.; Sankarganesh, M.; Raja, J.D.; Vinoth, K.G.G.; Arumugam, S.; Rajasekaran, R. Bio-active mixed ligand Cu(II) and Zn(II) complexes of pyrimidine derivative Schiff base: DFT calculation, antimicrobial, antioxidant, DNA binding, anticancer and molecular docking studies. J. Biomol. Struct. Dyn., 2021, 39(8), 3012-3024.
[http://dx.doi.org/10.1080/07391102.2020.1759454] [PMID: 32329409]
[70]
Tylińska, B.; Wiatrak, B.; Czyżnikowska, Ż .; Cieśla-Niechwiadowicz, A.; Gębarowska, E.; Janicka-Kłos, A. Novel pyrimidine derivatives as potential anticancer agents: Synthesis, biological evaluation and molecular docking study. Int. J. Mol. Sci., 2021, 22(8), 3825.
[http://dx.doi.org/10.3390/ijms22083825]
[71]
Adwin Jose, P.; Sankarganesh, M.; Dhaveethu Raja, J.; Senthilkumar, G.S.; Nandini Asha, R.; Raja, S.J.; Sheela, C.D. Bio-inspired nickel nanoparticles of pyrimidine-Schiff base: in vitro anticancer, BSA and DNA interactions, molecular docking and antioxidant studies. J. Biomol. Struct. Dyn., 2022, 40(21), 10715-10729.
[http://dx.doi.org/10.1080/07391102.2021.1947382]
[72]
Kesari, C.; Rama, K.R.; Sedighi, K.; Stenvang, J.; Bjorkling, F.; Kankala, S.; Thota, N. Synthesis of thiazole linked chalcones and their pyrimidine analogues as anticancer agents. Syn. Commun., 2021, 51(9), 1406-1416.
[http://dx.doi.org/10.1080/00397911.2021.1884262]
[73]
Madia, V.N.; Nicolai, A.; Messore, A.; De Leo, A.; Ialongo, D.; Tudino, V.; Saccoliti, F.; De Vita, D.; Scipione, L.; Artico, M.; Taurone, S.; Taglieri, L.; Di Santo, R.; Scarpa, S.; Costi, R. Design, synthesis and biological evaluation of new pyrimidine derivatives as anticancer agents. Molecules, 2021, 26(3), 771.
[http://dx.doi.org/10.3390/molecules26030771] [PMID: 33540875]
[74]
Sankarganesh, M.; Paul, R.A.J.; Raja, J.D.; Solomon, R.V.; Sheela, C.D.; Gurusamy, S. Bioactive platinum complex of ligand bearing pyrimidine skeleton: DNA/BSA binding, molecular docking, anticancer, antioxidant and antimicrobial activities. J. Biomol. Struct. Dyn., 2022, 40(15), 6683-6696.
[http://dx.doi.org/10.1080/07391102.2021.1889667] [PMID: 33634734]
[75]
Kantankar, A.; Jayaprakash Rao, Y.; Mallikarjun, G.; Hemasri, Y.; Kethiri, R.R. Rational design, synthesis, biological evaluation and molecular docking studies of chromone-pyrimidine derivatives as potent anti-cancer agents. J. Mol. Struct., 2021, 1239(5), 130502.
[http://dx.doi.org/10.1016/j.molstruc.2021.130502]
[76]
Shao, H.; Foley, D.W.; Huang, S.; Abbas, A.Y.; Lam, F.; Gershkovich, P.; Bradshaw, T.D.; Pepper, C.; Fischer, P.M.; Wang, S. Structure-based design of highly selective 2,4,5-trisubstituted pyrimidine CDK9 inhibitors as anti-cancer agents. Eur. J. Med. Chem., 2021, 214, 113244.
[http://dx.doi.org/10.1016/j.ejmech.2021.113244]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy