Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Review Article

Recent Advances in the Synthesis of Dialkyl (Aryl) α-(Aryl/Heterocyclic/Heteroaryl- α-(Aryl/Heteroarylamino)Phosphonates

Author(s): Tarik E. Ali*, Mohammed A. Assiri, Mohamed Hussien and Ibrahim El-Tantawy El Sayed

Volume 27, Issue 17, 2023

Published on: 25 October, 2023

Page: [1484 - 1503] Pages: 20

DOI: 10.2174/0113852728257284231012065956

Price: $65

Abstract

This review describes recent advances that are commonly applied in the synthesis of dialkyl (aryl) α-aminophosphonates containing heterocyclic compounds. The target structures are divided into three categories, which include α-aminophosphonic acids and their diesters bearing a heterocyclic or heteroaryl system at the α-carbon, nitrogen atom, or both. The synthetic protocols based on the Kabachnik-Fields and Pudovik reactions as the main pathways for the construction of these features, besides other miscellaneous methods. This review may be a useful resource for researchers and it will help them to work in this emerging research area.

Keywords: α-aminophosphonate, heterocycles, kabachnik-fields, pudovik, dialkyl, heterocyclic compounds.

Graphical Abstract
[1]
Saito, B.; Egami, H.; Katsuki, T. Synthesis of an optically active Al(salalen) complex and its application to catalytic hydrophosphonylation of aldehydes and aldimines. J. Am. Chem. Soc., 2007, 129(7), 1978-1986.
[http://dx.doi.org/10.1021/ja0651005] [PMID: 17260986]
[2]
Kukhar, V.P.; Hudson, R.H. Aminophosphonic and Aminophosphinic Acids: Chemistry and Biological Activity; Wiley: Chichester, 2000.
[3]
Troev, K.D. Chemistry and application of H-phosphonates; Elsevier, 2006.
[4]
Kafarski, P.; Lejczak, B. Biological activity of aminophosphonic acids. Phosphorus Sulfur Silicon Relat. Elem., 1991, 63(1-2), 193-215.
[http://dx.doi.org/10.1080/10426509108029443]
[5]
kerkour, R.; Chafai, N.; Moumeni, O.; Chafaa, S. Novel α-aminophosphonate derivates synthesis, theoretical calculation, molecular docking, and in silico prediction of potential inhibition of SARS-CoV-2. J. Mol. Struct., 2023, 1272, 134196.
[http://dx.doi.org/10.1016/j.molstruc.2022.134196] [PMID: 36193287]
[6]
Atherton, F.R.; Hassall, C.H.; Lambert, R.W. Synthesis and structure-activity relationships of antibacterial phosphonopeptides incorporating (1-aminoethyl)phosphonic acid and (aminomethyl)phosphonic acid. J. Med. Chem., 1986, 29(1), 29-40.
[http://dx.doi.org/10.1021/jm00151a005] [PMID: 3510298]
[7]
Lombaert, S.D.; Blanchard, L.; Tan, J.; Sakane, Y.; Berry, C.; Ghai, R.D. Non-peptidic inhibitors of neutral endopeptidase 24.11 1. Discovery and optimization of potency. Bioorg. Med. Chem. Lett., 1995, 5(2), 145-150.
[http://dx.doi.org/10.1016/0960-894X(94)00474-T]
[8]
Kafarski, P.; Lejczak, B. Aminophosphonic acids of potential medical importance. Curr. Med. Chem. Anticancer Agents, 2001, 1(3), 301-312.
[http://dx.doi.org/10.2174/1568011013354543] [PMID: 12678760]
[9]
Mali, H.; Shah, C.; Raghunandan, B.H.; Prajapati, A.S.; Patel, D.H.; Trivedi, U.; Subramanian, R.B. Organophosphate pesticides an emerging environmental contaminant: Pollution, toxicity, bioremediation progress, and remaining challenges. J. Environ. Sci., 2023, 127, 234-250.
[http://dx.doi.org/10.1016/j.jes.2022.04.023] [PMID: 36522056]
[10]
Boduszek, B. Synthesis and biological activity of heterocyclic aminophosphonates. Phosphorus Sulfur Silicon Relat. Elem., 1999, 144(1), 433-436.
[http://dx.doi.org/10.1080/10426509908546274]
[11]
Wu, W.; Sang, X.; Liu, Y.; Fang, G.; Wang, H.; Hao, W. Manganese(II)/cobalt(II) co-catalyzed phosphorylation of 8-aminoquinoline amides to construct Csp2-P bond. Tetrahedron Lett., 2023, 115, 154316.
[http://dx.doi.org/10.1016/j.tetlet.2022.154316]
[12]
De Risi, C.; Perrone, D.; Dondoni, A.; Pollini, G.P.; Bertolasi, V. A new and expedient diastereoselective synthesis of α-(hydroxyamino)phosphonates and α-aminophosphonates by silyl triflate promoted diethyl phosphite addition to chiral N-Benzyl nitrones. Eur. J. Org. Chem., 2003, 2003(10), 1904-1914.
[http://dx.doi.org/10.1002/ejoc.200200698]
[13]
Ali, T.E.; Abdel-Kariem, S.M. Methods for the synthesis of α-heterocyclic/heteroaryl-α-aminophosphonic acids and their esters. ARKIVOC, 2015, 2015(6), 246-287.
[http://dx.doi.org/10.3998/ark.5550190.p009.112]
[14]
Abdel-Rahman, R.M.; Ali, T.E.; Abdel-Kariem, S.M. Methods for synthesis of N-heterocyclyl/heteroaryl-α-aminophosphonates and α-(azahetero-cyclyl)phosphonates. ARKIVOC, 2016, 2016(1), 183-211.
[http://dx.doi.org/10.3998/ark.5550190.p009.519]
[15]
Yokomatsu, T.; Yoshida, Y.; Shibuya, S. Stereoselective synthesis of.β.-oxygenated. α.-hydroxyphosphonates by lewis acid-mediated stereoselective hydrophosphonylation of. α.-benzyloxy aldehydes. An application to the synthesis of phosphonic acid analogs of oxyamino acids. J. Org. Chem., 1994, 59(25), 7930-7933.
[http://dx.doi.org/10.1021/jo00104a064]
[16]
Ordóñez, M.; Rojas-Cabrera, H.; Cativiela, C. An overview of stereoselective synthesis of α-aminophosphonic acids and derivatives. Tetrahedron, 2009, 65(1), 17-49.
[http://dx.doi.org/10.1016/j.tet.2008.09.083] [PMID: 20871799]
[17]
Kudzin, Z.H.; Kudzin, M.; Drabowicz, J.V.; Stevens, C. Aminophosphonic acids-phosphorus analogues of natural amino acids. Part 1: Syntheses of α-aminophosphonic acids. Curr. Org. Chem., 2011, 15, 2015-2071.
[http://dx.doi.org/10.2174/138527211795703612]
[18]
Ordóñez, M.; Sayago, F.J.; Cativiela, C. Synthesis of quaternary α-aminophosphonic acids. Tetrahedron, 2012, 68(32), 6369-6412.
[http://dx.doi.org/10.1016/j.tet.2012.05.008]
[19]
Chandrasekhar, S.; Narsihmulu, C.; Sultana, S.S.; Saritha, B.; Prakash, S.J. Solvent and catalyst free three-component coupling of carbonyl compounds, amines and triethylphosphite; A new synthesis of α-amino-phosphonates. Synlett, 2003, (4), 0505-0506.
[http://dx.doi.org/10.1055/s-2003-37508]
[20]
Agawane, S.M.; Nagarkar, J.M. Nano ceria catalyzed synthesis of α-aminophosphonates under ultrasonication. Tetrahedron Lett., 2011, 52(27), 3499-3504.
[http://dx.doi.org/10.1016/j.tetlet.2011.04.112]
[21]
Ranu, B.C.; Hajra, A. A simple and green procedure for the synthesis of α-aminophosphonate by a one-pot three-component condensation of carbonyl compound, amine and diethyl phosphite without solvent and catalyst. Green Chem., 2002, 4(6), 551-554.
[http://dx.doi.org/10.1039/B205747F]
[22]
Dake, S.A.; Raut, D.S.; Kharat, K.R.; Mhaske, R.S.; Deshmukh, S.U.; Pawar, R.P. Ionic liquid promoted synthesis, antibacterial and in vitro antiproliferative activity of novel α-aminophosphonate derivatives. Bioorg. Med. Chem. Lett., 2011, 21(8), 2527-2532.
[http://dx.doi.org/10.1016/j.bmcl.2011.02.039] [PMID: 21398120]
[23]
Bálint, E.; Takács, J.; Drahos, L. Juranovič A.; Kočevar, M.; Keglevich, G. α-Aminophosphonates and α-aminophosphine oxides by the microwave-assisted kabachnik-fields reactions of 3-amino-6-methyl-2H-pyran-2-ones. Heteroatom Chem., 2013, 24(3), 221-225.
[http://dx.doi.org/10.1002/hc.21086]
[24]
Vangala, V.B.; Pati, H. Efficient synthesis of β-lactam-containing α-amino-phosphonates using fumaric acid as mild catalyst. Chem. Methodol., 2018, 2, 333-340.
[25]
Shaibuna, M.; Sreekumar, K. Experimental investigation on the correlation between the physicochemical properties and catalytic activity of six dess in the kabachnik‐fields reaction. ChemistrySelect, 2020, 5(43), 13454-13460.
[http://dx.doi.org/10.1002/slct.202003848]
[26]
Li, X.C.; Gong, S.S.; Zeng, D.Y.; You, Y.H.; Sun, Q. Highly efficient synthesis of α-aminophosphonates catalyzed by hafnium(IV) chloride. Tetrahedron Lett., 2016, 57(16), 1782-1785.
[http://dx.doi.org/10.1016/j.tetlet.2016.03.033]
[27]
Piri, T.; Peymanfar, R.; Javanshir, S.; Amirnejat, S. Magnetic BaFe12O19/Al2O3: An efficient heterogeneous Lewis acid catalyst for the synthesis of α-aminophosphonates (Kabachnik–Fields reaction). Catal. Lett., 2019, 149(12), 3384-3394.
[http://dx.doi.org/10.1007/s10562-019-02910-8]
[28]
Bahari, S.; Sajadi, S.M. Natrolite zeolite: A natural and reusable catalyst for one-pot synthesis of α-aminophosphonates under solvent-free conditions. Arab. J. Chem., 2017, 10, S700-S704.
[http://dx.doi.org/10.1016/j.arabjc.2012.11.011]
[29]
Cabrita, I.R.; Sousa, S.C.A.; Florindo, P.R.; Fernandes, A.C. Direct aminophosphonylation of aldehydes catalyzed by cyclopentadienyl ruthenium(II) complexes. Tetrahedron, 2018, 74(15), 1817-1825.
[http://dx.doi.org/10.1016/j.tet.2018.02.047]
[30]
Boughaba, S.; Aouf, Z.; Bechiri, O.; Mathe-Allainmat, M.; Lebreton, J.; Aouf, N.E. H6P2W18O62•4H2O as an efficient catalyst for the green synthesis of α-aminophosphonates from α-amino acids. Phosphorus Sulfur Silicon Relat. Elem., 2021, 196(1), 28-35.
[http://dx.doi.org/10.1080/10426507.2020.1799370]
[31]
Baddi, L.; Ouzebla, D.; El Mansouri, A.E.; Smietana, M.; Vasseur, J.J.; Lazrek, H.B. Efficient one-pot, three-component procedure to prepare new α-aminophosphonate and phosphonic acid acyclic nucleosides. Nucleosides Nucleotides Nucleic Acids, 2021, 40(1), 43-67.
[http://dx.doi.org/10.1080/15257770.2020.1826516] [PMID: 33030107]
[32]
Trofimov, B.A.; Arbuzova, S.N.; Gusarova, N.K.; Kazantseva, T.I.; Verkhoturova, S.I.; Zinchenko, S.V.; Kolyvanov, N.A. Catalyst-and solvent-free synthesis of α-amino polyfluoroalkylphosphonates from bis(fluoroalkyl) phosphonates and aldimines. Synthesis, 2020, 52(10), 1531-1540.
[http://dx.doi.org/10.1055/s-0039-1691599]
[33]
Ezzatzadeh, E. Green synthesis of α-aminophosphonates using ZnO nanoparticles as an efficient catalyst. Z. Naturforsch. B. J. Chem. Sci., 2018, 73(3-4), 179-184.
[http://dx.doi.org/10.1515/znb-2017-0177]
[34]
Khatri, C.K.; Satalkar, V.B.; Chaturbhuj, G.U. Sulfated polyborate catalyzed Kabachnik-Fields reaction: An efficient and eco-friendly protocol for synthesis of α-amino phosphonates. Tetrahedron Lett., 2017, 58(7), 694-698.
[http://dx.doi.org/10.1016/j.tetlet.2017.01.022]
[35]
da Silva, C.D.G.; Oliveira, A.R.; Rocha, M.P.D.; Katla, R.; Botero, E.R.; da Silva, É.C.; Domingues, N.L.C. A new, efficient and recyclable [Ce(L-Pro)]2(Oxa) heterogeneous catalyst used in the Kabachnik–Fields reaction. RSC Advances, 2016, 6(32), 27213-27219.
[http://dx.doi.org/10.1039/C5RA27064B]
[36]
Ghafuri, H.; Rashidizadeh, A.; Esmaili Zand, H.R. Highly efficient solvent free synthesis of α-aminophosphonates catalyzed by recyclable nano-magnetic sulfated zirconia (Fe3O4@ZrO2/SO42−). RSC Advances, 2016, 6(19), 16046-16054.
[http://dx.doi.org/10.1039/C5RA13173A]
[37]
Sivala, M.R.; Devineni, S.R.; Golla, M.; Medarametla, V.; Pothuru, G.K.; Chamarthi, N.R. A heterogeneous catalyst, SiO2-ZnBr2: An efficient neat access for α-aminophosphonates and antimicrobial activity evaluation. J. Chem. Sci., 2016, 128(8), 1303-1313.
[http://dx.doi.org/10.1007/s12039-016-1113-1]
[38]
An, T.N.M.; Cuong, N.V.; Quang, N.M.; Thanh, T.V.; Alam, M. Green synthesis using PEG‐400 catalyst, antimicrobial activities, cytotoxicity and in silico molecular docking of new carbazole based on α‐aminophosphonate. ChemistrySelect, 2020, 5(21), 6339-6349.
[http://dx.doi.org/10.1002/slct.202000855]
[39]
Sharma, R.P.; Verma, U.K.; Kapoor, K.K. TAPSO: A highly efficient and ecofriendly catalyst for the synthesis of α‐aminophosphonates and tetrahydropyridines 3‐[N‐Tris(hydroxymethyl)methylamino]‐2‐hydroxypropanesul-fonic acid. ChemistrySelect, 2020, 5(20), 6016-6022.
[http://dx.doi.org/10.1002/slct.202000486]
[40]
Reddy, N.B.; Sundar, C.S.; Rani, C.R.; Rao, K.U.M.; Nayak, S.K.; Reddy, C.S. Triton X-100 catalyzed synthesis of α-aminophosphonates. Arab. J. Chem., 2016, 9, S685-S690.
[http://dx.doi.org/10.1016/j.arabjc.2011.07.025]
[41]
Poola, S.; Nagaripati, S.; Tellamekala, S.; Chintha, V.; Kotha, P.; Yagani, J.R.; Golla, N.; Cirandur, S.R. Green synthesis, antibacterial, antiviral and molecular docking studies of α-aminophosphonates. Synth. Commun., 2020, 50(17), 2655-2672.
[http://dx.doi.org/10.1080/00397911.2020.1753079]
[42]
Gundluru, M.; Badavath, V.N.; Shaik, H.Y.; Sudileti, M.; Nemallapudi, B.R.; Gundala, S.; Zyryanov, G.V.; Cirandur, S.R. Design, synthesis, cytotoxic evaluation and molecular docking studies of novel thiazolyl α-aminophosphonates. Res. Chem. Intermed., 2021, 47(3), 1139-1160.
[http://dx.doi.org/10.1007/s11164-020-04321-6]
[43]
Kunde, S.P.; Kanade, K.G.; Karale, B.K.; Akolkar, H.N.; Arbuj, S.S.; Randhavane, P.V.; Shinde, S.T.; Shaikh, M.H.; Kulkarni, A.K. Nanostructured N doped TiO2 efficient stable catalyst for Kabachnik–Fields reaction under microwave irradiation. RSC Advances, 2020, 10(45), 26997-27005.
[http://dx.doi.org/10.1039/D0RA04533K] [PMID: 35515785]
[44]
Loredo-Calderón, E.L.; Velázquez-Martínez, C.A.; Ramírez-Cabrera, M.A.; Hernández-Fernández, E.; Rivas-Galindo, V.M.; Arredondo Espinoza, E.; López-Cortina, S.T. Synthesis of novel α-aminophosphonates under microwave irradiation, biological evaluation as antiproliferative agents and apoptosis inducers. Med. Chem. Res., 2019, 28(11), 2067-2078.
[http://dx.doi.org/10.1007/s00044-019-02436-z]
[45]
Wang, B.L.; Zhu, H.W.; Li, Z.M.; Zhang, X.; Yu, S.J.; Ma, Y.; Song, H.B. One‐pot synthesis, structure and structure–activity relationship of novel bioactive diphenyl/diethyl (3‐bromo‐1‐(3‐chloropyridin‐2‐yl)‐1H‐pyrazol‐5‐yl)(arylamino)methylphosphonates. Pest Manag. Sci., 2019, 75(12), 3273-3281.
[http://dx.doi.org/10.1002/ps.5449] [PMID: 31006964]
[46]
Ren, Z.L.; Zhang, J.; Li, H.; Chu, M.J.; Zhang, L.S.; Yao, X.K.; Xia, Y.; Lv, X.H.; Cao, H.Q. Design, synthesis and biological evaluation of α-aminophosphonate derivatives containing a pyrazole moiety. Chem. Pharm. Bull., 2016, 64(12), 1755-1762.
[http://dx.doi.org/10.1248/cpb.c16-00622] [PMID: 27725363]
[47]
Rani, V.; Ravindranath, L. Synthesis and antimicrobial activity of novel pyrazole-5-one containing 1,3,4-oxadiazole sulfonyl phosphonates. Am. J. Org. Chem., 2016, 6, 1-7.
[48]
Sravya, G.; Suresh, G.; Zyryanov, G.V.; Balakrishna, A.; Reddy, N.B.K. 2CO3/Al2O3: An efficient and recyclable catalyst for one-pot, three components synthesis of α-amino-phosphonates and bioactivity evaluation. Asian J. Chem., 2019, 31(10), 2383-2388.
[http://dx.doi.org/10.14233/ajchem.2019.22194]
[49]
Bahrami, F.; Panahi, F.; Daneshgar, F.; Yousefi, R.; Shahsavani, M.B.; Khalafi-Nezhad, A. Synthesis of new α-aminophosphonate derivatives incorporating benzimidazole, theophylline and adenine nucleobases using L-cysteine functionalized magnetic nanoparticles (LCMNP) as magnetic reusable catalyst: Evaluation of their anticancer properties. RSC Advances, 2016, 6(7), 5915-5924.
[http://dx.doi.org/10.1039/C5RA21419J]
[50]
Kaur, T.; Saha, D.; Singh, N.; Singh, U.P.; Sharma, A. A rapid one-pot five component sequential access to novel imidazo[2,1-b]thiazinyl-α-aminophosphonates. ChemistrySelect, 2016, 1(3), 434-439.
[http://dx.doi.org/10.1002/slct.201600070]
[51]
Alotaibi, S.H.; Amer, H.H. Synthesis, spectroscopic and molecular docking studies on new schiff bases, nucleosides and α-aminophosphonate derivatives as antibacterial agents. Saudi J. Biol. Sci., 2020, 27(12), 3481-3488.
[http://dx.doi.org/10.1016/j.sjbs.2020.09.061] [PMID: 33304159]
[52]
Amer, H.H.; Alotaibi, S.H.; Trawneh, A.H.; Metwaly, A.M.; Eissa, I.H. Anticancer activity, spectroscopic and molecular docking of some new synthesized sugar hydrazones, Arylidene and α-Aminophosphonate derivatives. Arab. J. Chem., 2021, 14(10), 103348.
[http://dx.doi.org/10.1016/j.arabjc.2021.103348]
[53]
Danne, A.B.; Akolkar, S.V.; Deshmukh, T.R.; Siddiqui, M.M.; Shingate, B.B. One-pot facile synthesis of novel 1,2,3-triazole-appended α-aminophosphonates. J. Indian Chem. Soc., 2019, 16(5), 953-961.
[http://dx.doi.org/10.1007/s13738-018-1571-0]
[54]
Shaikh, S.; Dhavan, P.; Ramana, M.M.V.; Jadhav, B.L. Design, synthesis and evaluation of new chromone-derived aminophosphonates as potential acetylcholinesterase inhibitor. Mol. Divers., 2021, 25(2), 811-825.
[http://dx.doi.org/10.1007/s11030-020-10060-y] [PMID: 32124162]
[55]
Bapat, S.; Viswanadh, N.; Mujahid, M.; Shirazi, A.N.; Tiwari, R.; Parang, K.; Karthikeyan, M.; Muthukrishnan, M.; Vyas, R. Synthesis, biological evaluation and molecular modeling studies of novel chromone/aza-chromone fused α-amino-phosphonates as Src kinase inhibitors. J. Sci. Ind. Res., 2019, 78, 111-118.
[56]
Szabó, K.E.; Akaili, R.; Tajti, Á.; Popovics-Tóth, N.; Bálint, E. Microwave-assisted synthesis of α-aminophosphonate-chromone hybrids using Kabachnik-Fields reaction. Arkivoc, 2022, 2022(3), 256-271.
[http://dx.doi.org/10.24820/ark.5550190.p011.887]
[57]
He, D.; Zeng, L.; Zhang, G.; Li, Q.; Guan, W.; Cao, Z.; Wu, S. Mechanism of nickel extraction from sulfuric acid medium by synthesized α‐aminophosphonate derivative. Appl. Organomet. Chem., 2019, 33, e5082.
[http://dx.doi.org/10.1002/aoc.5082]
[58]
Taran, J.; Ramazani, A.; Atrak, K. Silica nanoparticles as highly efficient catalyst for the one-pot synthesis of α-aminophosphonate derivatives from primary amines, quinoline-4-carbaldehyde and phosphite under solvent-free conditions. Eurasian Chem. Commun., 2020, 2(2), 257-264.
[http://dx.doi.org/10.33945/SAMI/ECC.2020.2.11]
[59]
Taran, J.; Ramazani, A.; Aghahosseini, H.; Gouranlou, F.; Tarasi, R.; Khoobi, M.; Joo, S.W. One-pot three-component syntheses of α-aminophosphonates from a primary amine, quinoline-4-carbaldehyde and a phosphite in the presence of MCM-41@PEI as an efficient nanocatalyst. Phosphorus Sulfur Silicon Relat. Elem., 2017, 192(6), 776-781.
[http://dx.doi.org/10.1080/10426507.2017.1290631]
[60]
Fang, Y.L.; Wu, Z.L.; Xiao, M.W.; Tang, Y.T.; Li, K.M.; Ye, J.; Xiang, J.N.; Hu, A.X. One-pot three-component synthesis of novel diethyl((2-oxo-1,2-dihydroquinolin-3-yl)(arylamino)methyl)phosphonate as potential anticancer agents. Int. J. Mol. Sci., 2016, 17(5), 653.
[http://dx.doi.org/10.3390/ijms17050653] [PMID: 27136538]
[61]
Yu, Y.C.; Kuang, W.B.; Huang, R.Z.; Fang, Y.L.; Zhang, Y.; Chen, Z.F.; Ma, X.L. Design, synthesis and pharmacological evaluation of new 2-oxo-quinoline derivatives containing α-aminophosphonates as potential antitumor agents. MedChemComm, 2017, 8(6), 1158-1172.
[http://dx.doi.org/10.1039/C7MD00098G] [PMID: 30108826]
[62]
Zhu, X.F.; Zhang, J.; Sun, S.; Guo, Y.C.; Cao, S.X.; Zhao, Y.F. Synthesis and structure-activity relationships study of α-aminophosphonate derivatives containing a quinoline moiety. Chin. Chem. Lett., 2017, 28(7), 1514-1518.
[http://dx.doi.org/10.1016/j.cclet.2017.02.012]
[63]
Bazine, I.; Cheraiet, Z.; Bensegueni, R.; Bensouici, C.; Boukhari, A. Synthesis, antioxidant and anticholinesterase activities of novel quinoline‐aminophosphonate derivatives. J. Heterocycl. Chem., 2020, 57(5), 2139-2149.
[http://dx.doi.org/10.1002/jhet.3933]
[64]
Rajkoomar, N.; Murugesan, A.; Prabu, S.; Gengan, R.M. Synthesis of methyl piperazinyl-quinolinyl α-aminophosphonates derivatives under microwave irradiation with Pd–SrTiO3 catalyst and their antibacterial and antioxidant activities. Phosphorus Sulfur Silicon Relat. Elem., 2020, 195(12), 1031-1038.
[http://dx.doi.org/10.1080/10426507.2020.1799366]
[65]
Sravya, G.; Grigory V, Z.; Balakrishna, A.; Reddy, K.M.K.; Reddy, C.S.; Reddy, G.M.; Camilo, A., Jr; Garcia, J.R.; Reddy, N.B. Nano-TiO2/SiO2 catalyzed synthesis, theoretical calculations and bioactivity studies of new α-aminophosphonates. Phosphorus Sulfur Silicon Relat. Elem., 2018, 193(9), 562-567.
[http://dx.doi.org/10.1080/10426507.2018.1455201]
[66]
Manda, B.R.; Potuganti, G.R.; Alla, M. Synthesis of Tröger’s base bis(α-aminophosphonate) derivatives. ARKIVOC, 2016, 2016(4), 246-260.
[http://dx.doi.org/10.3998/ark.5550190.p009.563]
[67]
Uparkar, J.J.; Dhavan, P.P.; Jadhav, B.L.; Pawar, S.D. Design, synthesis and biological evaluation of furan based α-aminophosphonate derivatives as anti-Alzheimer agent. J. Indian Chem. Soc., 2022, 19(7), 3103-3116.
[http://dx.doi.org/10.1007/s13738-022-02515-w]
[68]
Tiwari, S.; Sharif, N.; Gajare, R.; Vazquez, J.; Sangshetti, J.; Damale, M.; Nikalje, A. New 2-oxoindolin phosphonates as novel agents to treat cancer: A green synthesis and molecular modeling. Molecules, 2018, 23(8), 1981.
[http://dx.doi.org/10.3390/molecules23081981] [PMID: 30096835]
[69]
Shaikh, S.; Dhavan, P.; Singh, P.; Uparkar, J.; Vaidya, S.P.; Jadhav, B.L.; Ramana, M.V. Synthesis of carbazole based α-aminophosphonate derivatives: Design, molecular docking and in vitro cholinesterase activity. J. Biomol. Struct. Dyn., 2022, 40(11), 4801-4814.
[http://dx.doi.org/10.1080/07391102.2020.1861981] [PMID: 33345710]
[70]
Shady, A.A.; Abu Bakr, S.M.; Khidre, M.D. Synthesis of various schiff bases containing isoxazole ring and their applications with thioglycollic acid and diverse phosphorus reagents. J. Heterocycl. Chem., 2017, 54(1), 71-79.
[http://dx.doi.org/10.1002/jhet.2541]
[71]
Zeng, Z.G.; Liu, N.; Lin, F.; Jiang, X.Y.; Xu, H.H. Synthesis and antiphytoviral activity of α-aminophosphonates containing 3, 5-diphenyl-2-isoxazoline as potential papaya ringspot virus inhibitors. Mol. Divers., 2019, 23(2), 393-401.
[http://dx.doi.org/10.1007/s11030-018-9877-5] [PMID: 30306393]
[72]
Basha, M.H.; Subramanyam, C.; Rao, K.P. Ultrasound-promoted solvent-free synthesis of some new α-aminophosphonates as potential antioxidants. Main Group Met. Chem., 2020, 43(1), 147-153.
[http://dx.doi.org/10.1515/mgmc-2020-0018]
[73]
Sudileti, M.; Chintha, V.; Nagaripati, S.; Gundluru, M.; Yasmin, S.H.; Wudayagiri, R.; Cirandur, S.R. Green synthesis, molecular docking, anti-oxidant and anti-inflammatory activities of α-aminophosphonates. Med. Chem. Res., 2019, 28(10), 1740-1754.
[http://dx.doi.org/10.1007/s00044-019-02411-8]
[74]
Boughaba, S.; Bouacida, S.; Aouf, Z.; Bechiri, O.; Aouff, N.E. 6P2W18O62.14H2O Catalyzed synthesis, spectral characterization and X-ray study of α-aminophosphonates containing aminothiazole moiety. Curr. Org. Chem., 2018, 22(13), 1335-1341.
[http://dx.doi.org/10.2174/1385272822666180404145804]
[75]
Ravikumar, D.; Mohan, S.; Subramanyam, C.; Rao, K.P. Solvent-free sonochemical kabachnic-fields reaction to synthesize some new α-aminophosphonates catalyzed by nano-BF3•SiO2. Phosphorus Sulfur Silicon Relat. Elem., 2018, 193(6), 400-407.
[http://dx.doi.org/10.1080/10426507.2018.1424163]
[76]
Litim, B.; Cheraiet, Z.; Meliani, S.; Djahoudi, A.; Boukhari, A. Synthesis and potent antimicrobial activity of novel coumarylthiazole α-aminophosphonates derivatives. Mol. Divers., 2022, 26(2), 1161-1174.
[http://dx.doi.org/10.1007/s11030-021-10242-2] [PMID: 34117993]
[77]
Mirzaei, M.; Eshghi, H.; Hasanpour, M.; Sabbaghzadeh, R. Synthesis, characterization, and application of [1-methylpyrrolidin-2-one-SO3H]Cl as an efficient catalyst for the preparation of α-aminophosphonate and docking simulation of ligand bond complexes of cyclin-dependent kinase 2. Phosphorus Sulfur Silicon Relat. Elem., 2016, 191(10), 1351-1357.
[http://dx.doi.org/10.1080/10426507.2016.1206101]
[78]
Zhang, G.; Hao, G.; Pan, J.; Zhang, J.; Hu, D.; Song, B. Asymmetric synthesis and bioselective activities of α-amino-phosphonates based on the dufulin motif. J. Agric. Food Chem., 2016, 64(21), 4207-4213.
[http://dx.doi.org/10.1021/acs.jafc.6b01256] [PMID: 27166879]
[79]
Thaslim Basha, S.; Sudhamani, H.; Rasheed, S.; Venkateswarlu, N.; Vijaya, T.; Naga Raju, C. Microwave-assisted neat synthesis of α-aminophosphonate/phosphinate derivatives of 2-(2-aminophenyl) benzothiazole as potent antimicrobial and antioxidant agents. Phosphorus Sulfur Silicon Relat. Elem., 2016, 191(10), 1339-1343.
[http://dx.doi.org/10.1080/10426507.2016.1192629]
[80]
Mohan, G.; Kuma, S.; Sudileti, M.; Sridevi, C.; Venkatesu, P.; Reddy, C.S. Excellency of pyrimidinyl moieties containing α-aminophosphonates over benzthiazolyl moieties for thermal and structural stability of stem bromelain. Int. J. Biol. Macromol, 2020, 165(Pt B), 2010-2021.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.10.065] [PMID: 33075335]
[81]
Elsherbiny, D.A.; Abdelgawad, A.M.; El-Naggar, M.E.; El-Sherbiny, R.A.; El-Rafie, M.H.; El-Sayed, I.E.T. Synthesis, antimicrobial activity, and sustainable release of novel α-aminophosphonate derivatives loaded carrageenan cryogel. Int. J. Biol. Macromol., 2020, 163, 96-107.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.06.251] [PMID: 32615220]
[82]
Shaikh, S.; Yellapurkar, I.; Ramana, M.M.V. Ultrasound assisted one-pot synthesis of novel antipyrine based α-aminophosphonates using TiO2/carbon nanotubes nanocomposite as a heterogeneous catalyst. React. Kinet. Mech. Catal., 2021, 134(2), 917-936.
[http://dx.doi.org/10.1007/s11144-021-02110-9]
[83]
Subramanyam, C.; Thaslim Basha, S.; Madhava, G.; Nayab Rasool, S.; Adam, S.; Durga Srinivasa Murthy, S.; Naga Raju, C. Synthesis, spectral characterization and bioactivity evaluation of novel α-aminophosphonates. Phosphorus Sulfur Silicon Relat. Elem., 2017, 192(3), 267-270.
[http://dx.doi.org/10.1080/10426507.2016.1225056]
[84]
Hkiri, S.; Gourlaouen, C.; Touil, S.; Samarat, A.; Sémeril, D. 1,3,4-Oxadiazole-functionalized α-amino-phosphonates as ligands for the ruthenium-catalyzed reduction of ketones. New J. Chem., 2021, 45(25), 11327-11335.
[http://dx.doi.org/10.1039/D1NJ01861B]
[85]
Ewies, E.F.; El-Hussieny, M.; El-Sayed, N.F.; Fouad, M.A. Design, synthesis and biological evaluation of novel α-aminophosphonate oxadiazoles via optimized iron triflate catalyzed reaction as apoptotic inducers. Eur. J. Med. Chem., 2019, 180, 310-320.
[http://dx.doi.org/10.1016/j.ejmech.2019.07.029] [PMID: 31323616]
[86]
Boshta, N.M.; Elgamal, E.A.; El-Sayed, I.E.T. Bioactive amide and α-aminophosphonate inhibitors for methicillin-resistant Staphylococcus aureus (MRSA). Monatsh. Chem., 2018, 149(12), 2349-2358.
[http://dx.doi.org/10.1007/s00706-018-2303-y]
[87]
Azaam, M.M.; Kenawy, E.R.; El-din, A.S.B.; Khamis, A.A.; El-Magd, M.A. Antioxidant and anticancer activities of α-aminophosphonates containing thiadiazole moiety. J. Saudi Chem. Soc., 2018, 22(1), 34-41.
[http://dx.doi.org/10.1016/j.jscs.2017.06.002]
[88]
Gundluru, M.; Sarva, S.; Kandula, M.K.R.; Netala, V.R.; Tartte, V.; Cirandur, S.R. Phosphosulfonic acid-catalyzed green synthesis and bioassay of α-aryl-α′-1,3,4-thiadiazolyl aminophosphonates. Heteroatom Chem., 2016, 27(5), 269-278.
[http://dx.doi.org/10.1002/hc.21325]
[89]
Sarva, S.; Dunnutala, R.; Tellamekala, S.; Gundluru, M.; Cirandur, S.R. Green synthesis and antimicrobial activity of substituted diethyl (((5-(ethylthio)-1,3,4-thiadiazol-2-yl)amino)(phenyl)methyl)phosphonates. Synth. Commun., 2022, 52(2), 268-279.
[http://dx.doi.org/10.1080/00397911.2021.2020844]
[90]
Sokolov, V.B.; Aksinenko, A.Y. N-Propargyl-α-aminophosphonates in 1,3-dipolar cycloaddition with azide-containing pharmacophores. Russ. J. Gen. Chem., 2018, 88(9), 1922-1926.
[http://dx.doi.org/10.1134/S107036321809027X]
[91]
Kolli, M.K.; Elamathi, P.; Chandrasekar, G.; Katta, V.R.; Balvantsinh Raolji, G. Highly efficient metal-free one-pot synthesis of α-aminophosphonates through reduction followed by Kabachnik–fields reaction using three-component system. Synth. Commun., 2018, 48(6), 638-649.
[http://dx.doi.org/10.1080/00397911.2017.1385083]
[92]
El Gokha, A.A.; Ghanim, I.M.; Megeed, A.E.S.A.; Shaban, E.; ElSayed, I.E.T. Synthesis and antibacterial activity of novel α-aminophosphonates bearing a quinoline moiety. Int. J. Pharm. Sci. Res., 2016, 7, 181-189.
[93]
Shaik, Y.H.; Chintha, V.; Gundluru, M.; Sarva, S.; Cirandur, S.R. An efficient nano-FGT catalyzed green synthesis of α-aminophosphonates and evaluation of their antioxidant, anti-inflammatory activity and molecular docking studies. Synth. Commun., 2022, 52(1), 129-144.
[http://dx.doi.org/10.1080/00397911.2021.2007402]
[94]
Reddy, K.M.K.; Santhisudha, S.; Mohan, G.; Peddanna, K.; Rao, C.A.; Suresh Reddy, C. Nano Gd2O3 catalyzed synthesis and anti-oxidant activity of new α-aminophosphonates. Phosphorus Sulfur Silicon Relat. Elem., 2016, 191(6), 933-938.
[http://dx.doi.org/10.1080/10426507.2015.1119139]
[95]
Chukka, G.; Muppuru, K.M.; Banothu, V.; Battu, R.S.; Addepally, U.; Gandavaram, S.P.; Chamarthi, N.R.; Mandava, R.V.B. Microwave-assisted one-pot synthesis of new α-aminophosphonates using ZnBr2-SiO2 as a catalyst under solvent-free conditions and their anticancer activity. ChemistrySelect, 2018, 3(34), 9778-9784.
[http://dx.doi.org/10.1002/slct.201801965]
[96]
Aita, S.; Badavath, V.N.; Gundluru, M.; Sudileti, M.; Nemallapudi, B.R.; Gundala, S.; Zyryanov, G.V.; Chamarti, N.R.; Cirandur, S.R. Novel α-Aminophosphonates of imatinib Intermediate: Synthesis, anticancer activity, human abl tyrosine kinase inhibition, ADME and toxicity prediction. Bioorg. Chem., 2021, 109, 104718.
[http://dx.doi.org/10.1016/j.bioorg.2021.104718] [PMID: 33618257]
[97]
Yuan, J.W.; Li, W.J. Mg(OCH3)2-mediated one-pot synthesis of α-amino-phosphonate derivatives of cytosine under mild conditions. Z. Naturforsch. B. J. Chem. Sci., 2017, 72(8), 563-571.
[http://dx.doi.org/10.1515/znb-2017-0044]
[98]
Nayab, R.S.; Maddila, S.; Krishna, M.P.; Titinchi, S.J.J.; Thaslim, B.S.; Chintha, V.; Wudayagiri, R.; Nagam, V.; Tartte, V.; Chinnam, S.; Chamarthi, N.R. In silico molecular docking and in vitro antioxidant activity studies of novel α-aminophosphonates bearing 6-amino-1,3-dimethyl uracil. J. Recept. Signal Transduct. Res., 2020, 40(2), 166-172.
[http://dx.doi.org/10.1080/10799893.2020.1722166] [PMID: 32019395]
[99]
Che, J.; Xu, X.; Tang, Z.; Gu, Y.; Shi, D. Synthesis and herbicidal activity evaluation of novel α-amino phosphonate derivatives containing a uracil moiety. Bioorg. Med. Chem. Lett., 2016, 26(4), 1310-1313.
[http://dx.doi.org/10.1016/j.bmcl.2016.01.010] [PMID: 26786699]
[100]
Awad, M.K.; Abdel-Aal, M.F.; Atlam, F.M.; Hekal, H.A. Molecular docking, molecular modeling, vibrational and biological studies of some new heterocyclic α-aminophosphonates. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2019, 206, 78-88.
[http://dx.doi.org/10.1016/j.saa.2018.07.083] [PMID: 30081271]
[101]
Awad, M.K.; Abdel-Aal, M.F.; Atlam, F.M.; Hekal, H.A. Design, synthesis, molecular modeling, and biological evaluation of novel α-aminophos-phonates based quinazolinone moiety as potential anticancer agents: DFT, NBO and vibrational studies. J. Mol. Struct., 2018, 1173, 128-141.
[http://dx.doi.org/10.1016/j.molstruc.2018.06.094]
[102]
Kandula, M.K.R.; Gundluru, M.; Nemallapudi, B.R.; Gundala, S.; Kotha, P.; Zyryanov, G.V.; Chadive, S.; Cirandur, S.R. Synthesis, antioxidant activity, and α‐glucosidase enzyme inhibition of α‐aminophosphonate derivatives bearing piperazine‐1,2,3‐triazole moiety. J. Heterocycl. Chem., 2021, 58(1), 172-181.
[http://dx.doi.org/10.1002/jhet.4157]
[103]
Makki, M.S.T.; Abdel-Rahman, R.M.; Alharbi, A.S. Synthetic approach for novel fluorine substituted α-aminophosphonic acids containing 1,2,4-triazin-5-one moiety as antioxidant agents. Int. J. Org. Chem., 2018, 8(1), 1-15.
[http://dx.doi.org/10.4236/ijoc.2018.81001]
[104]
Reddy, B.R.P.; Reddy, M.V.K.; Reddy, P.V.G.; Kumar, D.P.; Shankar, M.V. Protonated trititanate nanotubes: An efficient catalyst for one-pot three-component coupling of benzothiazole amines, heterocyclic aldehydes, and dialkyl/diaryl phosphites with a greener perspective. Tetrahedron Lett., 2016, 57(6), 696-702.
[http://dx.doi.org/10.1016/j.tetlet.2016.01.001]
[105]
Damiche, R.; Chafaa, S. Synthesis of new bioactive aminophosphonates and study of their antioxidant, anti-inflammatory and antibacterial activities as well the assessment of their toxicological activity. J. Mol. Struct., 2017, 1130, 1009-1017.
[http://dx.doi.org/10.1016/j.molstruc.2016.10.054]
[106]
Khidre, M.; Abdelaleem, F.; Abu Bakr, S.; Awad, H.; Sabry, E. Novel synthesis, docking studies and antitumor evaluation of pyrazolo-and pyrazolo aminophosphonate derivatives derived from N-heterocyclic amines. Egypt. J. Chem., 2022, 65(9), 657-672.
[http://dx.doi.org/10.21608/ejchem.2022.125116.5562]
[107]
Sampath, C.; Harika, P.; Revaprasadu, N. Design, green synthesis, anti-microbial, and anti-oxidant activities of novel α-aminophosphonates via Kabachnik-Fields reaction. Phosphorus Sulfur Silicon Relat. Elem., 2016, 191(8), 1081-1085.
[http://dx.doi.org/10.1080/10426507.2015.1035379]
[108]
Litim, B.; Djahoudi, A.; Meliani, S.; Boukhari, A. Synthesis and potential antimicrobial activity of novel α-aminophosphonates derivatives bearing substituted quinoline or quinolone and thiazole moieties. Med. Chem. Res., 2022, 31(1), 60-74.
[http://dx.doi.org/10.1007/s00044-021-02815-5] [PMID: 34744408]
[109]
Reddy, P.S.; Reddy, M.V.K.; Reddy, P.V.G. Camphor-derived thioureas: Synthesis and application in asymmetric Kabachnik-Fields reaction. Chin. Chem. Lett., 2016, 27(6), 943-947.
[http://dx.doi.org/10.1016/j.cclet.2016.01.046]
[110]
Abu-Bakr, S.M.; Khidre, M.D.; Omar, M.A.; Swelam, S.A.; Awad, H.M. Synthesis of furo[3,2‐g]chromones under microwave irradiation and their antitumor activity evaluation. J. Heterocycl. Chem., 2020, 57(2), 731-743.
[http://dx.doi.org/10.1002/jhet.3813]
[111]
Assiri, M.A.; Ali, T.E.; Ali, M.M.; Yahia, I.S. Synthesis and anticancer activity of some novel diethyl (chromonyl/pyrazolyl) [(4-oxo-2-phenyl-quinazolin-3(4 H)-yl)amino]methylphosphonates. Phosphorus Sulfur Silicon Relat. Elem., 2018, 193(10), 668-674.
[http://dx.doi.org/10.1080/10426507.2018.1487969]
[112]
Ahmed, A.A.S.; Awad, H.M.; El-Sayed, I.E.T.; El Gokha, A.A. Synthesis and antiproliferative activity of new hybrids bearing neocryptolepine, acridine and α-aminophosphonate scaffolds. J. Indian Chem. Soc., 2020, 17(5), 1211-1221.
[http://dx.doi.org/10.1007/s13738-019-01849-2]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy