Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Review Article

Dimeric Calix[4]arenes, Synthesis and their Application: A Review

Author(s): Reza Zadmard*, Sara Khosravani and Mohammad Reza Jalali

Volume 27, Issue 18, 2023

Published on: 24 October, 2023

Page: [1629 - 1640] Pages: 12

DOI: 10.2174/0113852728270596231013052123

Price: $65

Open Access Journals Promotions 2
Abstract

Calix[n]arene is an attractive host for molecular recognition due to its accessibility through the hollow cavity and shallow bowl shape and has been used as a receptor over the last 30 years. Calix[n]arene has a small cavity, so designing a flexible molecule to recognize nano to large biomolecules is a challenging goal in host-guest chemistry. Dimeric calix[n]arene is formed by linking two calix[n]arene sub-units to each other. Their considerable structural features and relative diversity of modifying the upper or lower rim represent outstanding and greatly adaptive structures for designing bulky and complex building blocks adequate for self-assembly and molecular recognition. Their ability to form supramolecular structures for a wide range of applications, including the recognition of nanomolecules and large biological molecules, has been extensively studied. This review details the progress of the host-guest chemistry of dimeric calix[n]arenes, emphasizing the synthetic pathways employed for their production and their self-assembly properties. Dimerization of calix[n]arene occurs in two ways (1-through non-covalent bonding such as H-bonding or self-assembly, and 2-through covalent bond formation such as amide bond formation, multi-component reactions and Sonogashira cross-coupling reaction and metathesis reactions). In this work, we focused on dimerization through covalent bond formation, due to having more applications and diverse synthetic applications.

Keywords: Calix[n]arene, dimeric calix[n]arene, supramolecular chemistry, metal-organic framework (MOF), cavity, biomolecules.

Graphical Abstract
[1]
Steed, J.W.; Turner, D.R.; Wallace, K.J. Core concepts in supramolecular chemistry and nanochemistry; John Wiley & Sons, 2007.
[2]
Johnson, E.R.; Keinan, S.; Mori-Sánchez, P.; Contreras-García, J.; Cohen, A.J.; Yang, W. Revealing noncovalent interactions. J. Am. Chem. Soc., 2010, 132(18), 6498-6506.
[http://dx.doi.org/10.1021/ja100936w] [PMID: 20394428]
[3]
Huang, Feihe; Anslyn, Eric V. Introduction: Supramolecular chemistry. Chem. Rev., 2015, 115(15), 6999-7000.
[http://dx.doi.org/10.1021/acs.chemrev.5b00352]
[4]
Guo, D.S.; Liu, Y. Calixarene-based supramolecular polymerization in solution. Chem. Soc. Rev., 2012, 41(18), 5907-5921.
[http://dx.doi.org/10.1039/c2cs35075k] [PMID: 22617955]
[5]
Helttunen, K.; Shahgaldian, P. Self-assembly of amphiphilic calixarenes and resorcinarenes in water. New J. Chem., 2010, 34(12), 2704.
[http://dx.doi.org/10.1039/c0nj00123f]
[6]
Gutsche, C.D. Calixarenes. Acc. Chem. Res., 1983, 16(5), 161-170.
[http://dx.doi.org/10.1021/ar00089a003] [PMID: 22148794]
[7]
Dhawan, B.; Chen, S-I.; Gutsche, C.D. Studies of the formation of calixarenes via condensation of p-alkylphenols and formaldehyde. Makromol. Chem., 1987, 188(5), 921-950.
[http://dx.doi.org/10.1002/macp.1987.021880501]
[8]
Böhmer, V. Calixarenes, macrocycles with (Almost) unlimited possibilities. Angew. Chem. Int. Ed. Engl., 1995, 34(7), 713-745.
[http://dx.doi.org/10.1002/anie.199507131]
[9]
Guo, D.S.; Wang, K.; Wang, Y.X.; Liu, Y. Cholinesterase-responsive supramolecular vesicle. J. Am. Chem. Soc., 2012, 134(24), 10244-10250.
[http://dx.doi.org/10.1021/ja303280r] [PMID: 22686862]
[10]
Yang, P.; Jian, Y.; Zhou, X.; Li, G.; Deng, T.; Shen, H.; Yang, Z.; Tian, Z. Calix[3]carbazole: One-Step synthesis and host-guest binding. J. Org. Chem., 2016, 81(7), 2974-2980.
[http://dx.doi.org/10.1021/acs.joc.6b00252] [PMID: 26967021]
[11]
Giuliani, M.; Morbioli, I.; Sansone, F.; Casnati, A. Moulding calixarenes for biomacromolecule targeting. Chem. Commun, 2015, 51(75), 14140-14159.
[http://dx.doi.org/10.1039/C5CC05204A] [PMID: 26286064]
[12]
Ozcelik, E.; Mercan, E.S.; Erdemir, S.; Karaman, M.; Tabakci, M. Calixarene-tethered textile fabric for the efficient removal of hexavalent chromium from polluted water. Colloids Surf. A Physicochem. Eng. Asp., 2021, 626, 127045.
[http://dx.doi.org/10.1016/j.colsurfa.2021.127045]
[13]
Lehn, J.M. Supramolecular chemistry. Science, 1993, 260(5115), 1762-1763.
[http://dx.doi.org/10.1126/science.8511582] [PMID: 8511582]
[14]
Rebek, J., Jr Host-guest chemistry of calixarene capsules. Chem. Commun., 2000, 8(8), 637-643.
[http://dx.doi.org/10.1039/a910339m]
[15]
Gaeta, M.; Rodolico, E.; Fragalà, M.E.; Pappalardo, A.; Pisagatti, I.; Gattuso, G.; Notti, A.; Parisi, M.F.; Purrello, R.; D’Urso, A. Calixarene complexes: Synthesis, properties, and applications. Molecules, 2021, 26, 704.
[http://dx.doi.org/10.3390/molecules26030704] [PMID: 33572895]
[16]
Ikeda, A.; Shinkai, S. Novel cavity design using calix[n]arene skeletons: Toward molecular recognition and metal binding. Chem. Rev., 1997, 97(5), 1713-1734.
[http://dx.doi.org/10.1021/cr960385x] [PMID: 11851464]
[17]
Blanco-Gómez, A.; Cortón, P.; Barravecchia, L.; Neira, I.; Pazos, E.; Peinador, C.; García, M.D. Controlled binding of organic guests by stimuli-responsive macrocycles. Chem. Soc. Rev., 2020, 49(12), 3834-3862.
[http://dx.doi.org/10.1039/D0CS00109K] [PMID: 32395726]
[18]
Islam, M.M.; Georghiou, P.E.; Rahman, S.; Yamato, T. Calix[3]arene-analogous metacyclophanes: Synthesis, structures, and properties with infinite potential. Molecules, 2020, 25(18), 4202.
[http://dx.doi.org/10.3390/molecules25184202] [PMID: 32937796]
[19]
Mohindra Chawla, H. Convenient direct synthesis of bisformylated calix[4]arenes viaipso substitution. Org. Lett., 2006, 8, 2237.
[http://dx.doi.org/10.1021/ol0605124]
[20]
Kumar, S.; Varadarajan, R.; Chawla, H.M.; Hundal, G.; Hundal, M.S. Preparation of p-nitrocalix[n]arene methyl ethers via ipso-nitration and crystal structure of tetramethoxytetra-p-nitrocalix[4]arene. Tetrahedron, 2004, 60(4), 1001-1005.
[http://dx.doi.org/10.1016/j.tet.2003.11.057]
[21]
Gutsche, D.C. Calixarenes Revisited; Stoddart, J.F., Ed.; RSC, 1998, p. 6.
[http://dx.doi.org/10.1039/9781847550293]
[22]
D’Urso, A.; Nicotra, P.F.; Centonze, G.; Fragalà, M.E.; Gattuso, G.; Notti, A.; Pappalardo, A.; Pappalardo, S.; Parisi, M.F.; Purrello, R. Induction of chirality in porphyrin-(bis)calixarene assemblies: A mixed covalent-non-covalent vs a fully non-covalent approach. Chem. Commun., 2012, 48(34), 4046-4048.
[http://dx.doi.org/10.1039/c2cc30366c] [PMID: 22430063]
[23]
Lo, P.; Wong, M. Extended Calix[4]arene-based receptors for molecular recognition and sensing. Sensors, 2008, 8(9), 5313-5335.
[http://dx.doi.org/10.3390/s8095313] [PMID: 27873816]
[24]
Crowley, P.B. Protein-calixarene complexation: From recognition to assembly. Acc. Chem. Res., 2022, 55(15), 2019-2032.
[http://dx.doi.org/10.1021/acs.accounts.2c00206] [PMID: 35666543]
[25]
Holler, M.; Schmitt, M.; Nierengarten, J.F. Synthesis and conformational analysis of porphyrin derivatives substituted with calix[4]arene subunits. J.Porphyr. Phthalocyanines, 2011, 15(11n12), 1183-1188.
[http://dx.doi.org/10.1142/S1088424611004099]
[26]
Shinkai, S. Calixarenes - The third generation of supramolecules. Tetrahedron, 1993, 49(40), 8933-8968.
[http://dx.doi.org/10.1016/S0040-4020(01)91215-3]
[27]
Atwood, J.L.; Orr, G.W.; Robinson, K.D.; Hamada, F. Calixarenes as enzyme models. Supramol. Chem., 1993, 2(4), 309-317.
[http://dx.doi.org/10.1080/10610279308029824]
[28]
Jose, P.; Menon, S. Lower-rim substituted calixarenes and their applications. Bioinorg. Chem. Appl., 2007, 2007, 1-16.
[http://dx.doi.org/10.1155/2007/65815] [PMID: 17611612]
[29]
Naseer, M.M.; Ahmed, M.; Hameed, S. Functionalized calix[4]arenes as potential therapeutic agents. Chem. Biol. Drug Des., 2017, 89(2), 243-256.
[http://dx.doi.org/10.1111/cbdd.12818] [PMID: 28205403]
[30]
Bahojb Noruzi, E.; Shaabani, B.; Geremia, S.; Hickey, N.; Nitti, P.; Kafil, H.S. Synthesis, crystal structure, and biological activity of a multidentate calix[4]arene ligand doubly functionalized by 2-hydroxybenzeledene-thiosemicarbazone. Molecules, 2020, 25(2), 370.
[http://dx.doi.org/10.3390/molecules25020370] [PMID: 31963211]
[31]
Chung, T-S.; Lai, J.Y. The potential of calixarenes for membrane separation. Chem. Eng. Res. Des., 2022, 183, 538-545.
[http://dx.doi.org/10.1016/j.cherd.2022.05.031]
[32]
Decavoli, C.; Boldrini, C.L.; Faroldi, F.; Baldini, L.; Sansone, F.; Ranaudo, A.; Greco, C.; Cosentino, U.; Moro, G.; Manfredi, N.; Abbotto, A. Calix[4]arene-based sensitizers for host-guest supramolecular dyads for solar energy conversion in photoelectrochemical cells. Eur. J. Org. Chem., 2022, 2022(34), e202200649.
[http://dx.doi.org/10.1002/ejoc.202200649]
[33]
Yu, C-X.; Hu, F.L.; Song, J.G.; Zhang, J.L.; Liu, S.S.; Wang, B.X.; Meng, H.; Liu, L-L.; Ma, L.F. Ultrathin two-dimensional metal-organic framework nanosheets decorated with tetra-pyridyl calix[4]arene: Design, synthesis and application in pesticide detection. Sens. Actuators B Chem., 2020, 310, 127819.
[http://dx.doi.org/10.1016/j.snb.2020.127819]
[34]
Basilotta, R.; Mannino, D.; Filippone, A.; Casili, G.; Prestifilippo, A.; Colarossi, L.; Raciti, G.; Esposito, E.; Campolo, M. Role of calixarene in chemotherapy delivery strategies. Molecules, 2021, 26(13), 3963.
[http://dx.doi.org/10.3390/molecules26133963] [PMID: 34209495]
[35]
Struck, O.; Chrisstoffels, L.A.J.; Lugtenberg, R.J.W.; Verboom, W.; van Hummel, G.J.; Harkema, S.; Reinhoudt, D.N. Head-to-head linked double calix[4]arenes: Convenient synthesis and complexation properties. J. Org. Chem., 1997, 62(8), 2487-2493.
[http://dx.doi.org/10.1021/jo962138z] [PMID: 11671587]
[36]
Prata, J.V.; Costa, A.I.; Teixeira, C.M. A Solid-state fluorescence sensor for nitroaromatics and nitroanilines based on a conjugated calix[4]arene polymer. J. Fluoresc., 2020, 30(1), 41-50.
[http://dx.doi.org/10.1007/s10895-019-02466-1] [PMID: 31811545]
[37]
Schalley, C.A.; Castellano, R.K.; Brody, M.S.; Rudkevich, D.M.; Siuzdak, G.; Rebek, J. Jr Investigating Molecular recognition by mass spectrometry: Characterization of calixarene-based self-assembling capsule hosts with charged guests. J. Am. Chem. Soc., 1999, 121(19), 4568-4579.
[http://dx.doi.org/10.1021/ja990276a]
[38]
Zadmard, R.; Schrader, T. DNA recognition with large calixarene dimers. Angew. Chem. Int. Ed., 2006, 45(17), 2703-2706.
[http://dx.doi.org/10.1002/anie.200502946] [PMID: 16548034]
[39]
Yang, M.; Wang, W.; Su, K.; Yuan, D. Dimeric calix[4]resorcinarene-based porous organic cages for CO2/CH4 separation. Chem. Res. Chin. Univ., 2022, 38(2), 428-432.
[http://dx.doi.org/10.1007/s40242-022-1454-x]
[40]
Whitesides, G.M.; Simanek, E.E.; Mathias, J.P.; Seto, C.T.; Chin, D.; Mammen, M.; Gordon, D.M. Noncovalent synthesis: Using physical-organic chemistry to make aggregates. Acc. Chem. Res., 1995, 28(1), 37-44.
[http://dx.doi.org/10.1021/ar00049a006]
[41]
Lehn, J.M. Supramolecular chemistry-scope and perspectives molecules, supermolecules, and molecular devices. Angew. Chem. Int. Ed. Engl., 1988, 27(1), 89-112.
[http://dx.doi.org/10.1002/anie.198800891]
[42]
Lindsey, J.S. Self-assembly in synthetic routes to molecular devices. Biological principles and chemical perspectives: A review. ChemInform, 1991, 22(38), no..
[http://dx.doi.org/10.1002/chin.199138328]
[43]
Baldini, L.; Ballester, P.; Casnati, A.; Gomila, R.M.; Hunter, C.A.; Sansone, F.; Ungaro, R. Molecular acrobatics: Self-assembly of calixarene-porphyrin cages. J. Am. Chem. Soc., 2003, 125(46), 14181-14189.
[http://dx.doi.org/10.1021/ja036758a] [PMID: 14611257]
[44]
Baldini, L.; Casnati, A.; Sansone, F.; Ungaro, R. Calixarene-based multivalent ligands. Chem. Soc. Rev., 2007, 36(2), 254-266.
[http://dx.doi.org/10.1039/B603082N] [PMID: 17264928]
[45]
Wei, A. Calixarene-encapsulated nanoparticles: Self-assembly into functional nanomaterials. Chem. Commun., 2006, 15(15), 1581-1591.
[http://dx.doi.org/10.1039/b515806k] [PMID: 16582988]
[46]
Zadmard, R.; Akbarzadeh, A.; Jalali, M.R. Highly functionalized calix[4]arenes via multicomponent reactions: Synthesis and recognition properties. RSC Advances, 2019, 9(34), 19596-19605.
[http://dx.doi.org/10.1039/C9RA03354H] [PMID: 35519416]
[47]
Branda, N.; Wyler, R.; Rebek, J., Jr Encapsulation of methane and other small molecules in a self-assembling superstructure. Science, 1994, 263(5151), 1267-1268.
[http://dx.doi.org/10.1126/science.8122107] [PMID: 8122107]
[48]
Wyler, R.; de Mendoza, J.; Rebek, J., Jr A synthetic cavity assembles through self-complementary hydrogen Bonds. Jr. Angew. Chem. Int. Ed. Engl., 1993, 32(12), 1699-1701.
[http://dx.doi.org/10.1002/anie.199316991]
[49]
Hof, F.; Craig, S.L.; Nuckolls, C.; Rebek, J. Jr Molecular encapsulation. Angew. Chem. Int. Ed., 2002, 41(9), 1488-1508.
[http://dx.doi.org/10.1002/1521-3773(20020503)41:9<1488:AID-ANIE1488>3.0.CO;2-G] [PMID: 19750648]
[50]
Español, E.; Villamil, M. Calixarenes: generalities and their role in improving the solubility, biocompatibility, stability, bioavailability, detection, and transport of biomolecules. Biomolecules, 2019, 9(3), 90.
[http://dx.doi.org/10.3390/biom9030090] [PMID: 30841659]
[51]
Shimizu, K.D.; Rebek, J., Jr Synthesis and assembly of self-complementary calix[4]arenes. Proc. Natl. Acad. Sci., 1995, 92(26), 12403-12407.
[http://dx.doi.org/10.1073/pnas.92.26.12403] [PMID: 8618910]
[52]
Ballester, P.; Gil-Ramírez, G. Self-assembly of dimeric tetraurea calix[4]pyrrole capsules. Proc. Natl. Acad. Sci., 2009, 106(26), 10455-10459.
[http://dx.doi.org/10.1073/pnas.0809612106] [PMID: 19261848]
[53]
Arimura, T.; Matsumoto, S.; Teshima, O.; Nagasaki, T.; Shinkai, S. Calixarene-based molecular capsule. Tetrahedron Lett., 1991, 32(38), 5111-5114.
[http://dx.doi.org/10.1016/S0040-4039(00)93441-5]
[54]
Castellano, R.K.; Rudkevich, D.M.; Rebek, J., Jr Polycaps: Reversibly formed polymeric capsules. Proc. Natl. Acad. Sci., 1997, 94(14), 7132-7137.
[http://dx.doi.org/10.1073/pnas.94.14.7132] [PMID: 11038556]
[55]
Hailu, S.T.; Butcher, R.J.; Hudrlik, P.F.; Hudrlik, A.M. Calixarene-based molecular capsule from olefin metathesis. Acta Crystallogr. Sect. E Struct. Rep. Online, 2013, 69(7), o1001-o1002.
[http://dx.doi.org/10.1107/S1600536813014438] [PMID: 24046590]
[56]
Taghvaei-Ganjali, S.; Zadmard, R.; Saber-Tehrani, M. Immobilization of chlorosulfonyl-Calix[4]arene onto the surface of silica gel through the directly estrification. Appl. Surf. Sci., 2012, 258(16), 5925-5932.
[http://dx.doi.org/10.1016/j.apsusc.2011.09.019]
[57]
Shetty, D.; Skorjanc, T.; Raya, J.; Sharma, S.K.; Jahovic, I.; Polychronopoulou, K.; Asfari, Z.; Han, D.S.; Dewage, S.; Olsen, J.C.; Jagannathan, R.; Kirmizialtin, S.; Trabolsi, A. Calix[4]arene-based porous organic nanosheets. ACS Appl. Mater. Interfaces, 2018, 10(20), 17359-17365.
[http://dx.doi.org/10.1021/acsami.8b03800] [PMID: 29687997]
[58]
Moon, K.; Kaifer, A.E. Dimeric molecular capsules under redox control. J. Am. Chem. Soc., 2004, 126(46), 15016-15017.
[http://dx.doi.org/10.1021/ja045587m] [PMID: 15547984]
[59]
Peters, M.S.; Li, M.; Schrader, T. Interactions of calix[n]arenes with nucleic acids. Nat. Prod. Commun., 2012, 7(3), 1934578X1200700.
[http://dx.doi.org/10.1177/1934578X1200700325] [PMID: 22545418]
[60]
Vatsouro, I.; Rudzevich, V. Hydrogen-bonded dimers of tetra-urea calix[4]arenes stable in THF. Org. Lett., 2007, 9(7), 1375.
[http://dx.doi.org/10.1021/ol0702775]
[61]
Hu, W.; Blecking, C.; Kralj, M.; Šuman, L.; Piantanida, I.; Schrader, T. Dimeric calixarenes: A new family of major-groove binders. Chemistry, 2012, 18(12), 3589-3597.
[http://dx.doi.org/10.1002/chem.201100634] [PMID: 22336964]
[62]
Rescifina, A.; Zagni, C.; Mineo, P.G.; Giofrè, S.V.; Chiacchio, U.; Tommasone, S.; Talotta, C.; Gaeta, C.; Neri, P. DNA recognition with polycyclic-aromatic-hydrocarbon-presenting calixarene conjugates. Eur. J. Org. Chem., 2014, 2014(34), 7605-7613.
[http://dx.doi.org/10.1002/ejoc.201403050]
[63]
Zhanhua, C.; Gan, J.G.K. lei, L.; Sakharkar, M.K.; Kangueane, P. Protein subunit interfaces: Heterodimers versus homodimers. Bioinformation, 2005, 1(2), 28-39.
[http://dx.doi.org/10.6026/97320630001028] [PMID: 17597849]
[64]
Agrawal, Y.K.; Bhatt, S. Double calixarenes and their analytical applications. Rev. Anal. Chem., 2008, 27(1), 1-62.
[http://dx.doi.org/10.1515/REVAC.2008.27.1.1]
[65]
Martins, F.T.; da Silva, C.M.; Vasconcelos, G.A.; Gontijo Vaz, B.; Vieira, T.S.; Queiroz Júnior, L.H.K.; de Fátima, Â. Lower rim dimerization of a calixarene through the encapsulation of sodium ions. CrystEngComm, 2016, 18(37), 6987-6991.
[http://dx.doi.org/10.1039/C6CE01387B]
[66]
Lejeune, M.; Sémeril, D.; Jeunesse, C.; Matt, D.; Lutz, P.; Toupet, L. Fast propene dimerization using upper rim-diphosphinated calix[4]arenes as chelators. Adv. Synth. Catal., 2006, 348(7-8), 881-886.
[http://dx.doi.org/10.1002/adsc.200505410]
[67]
Arduini, A.; Pochini, A.; Secchi, A. Rigid calix[4]arene as a building block for the synthesis of new quaternary ammonium cation receptors. Eur. J. Org. Chem., 2000, 2000(12), 2325-2334.
[http://dx.doi.org/10.1002/1099-0690(200006)2000:12<2325:AID-EJOC2325>3.0.CO;2-E]
[68]
Sameni, S.; Jeunesse, C.; Matt, D.; Harrowfield, J. Calix[4]arene daisychains. Chem. Soc. Rev., 2009, 38(7), 2117-2146.
[http://dx.doi.org/10.1039/b900183b] [PMID: 19551184]
[69]
Sharma, V.S.; Shah, P.A.; Sharma, A.S.; Subba Rao Ganga, V.; Shrivastav, P.S.; Prajapat, V. Upper/lower rim functionalized calixarene based AIE-active liquid crystals with self-assembly behavior: Photophysical and electrochemical studies. J. Mol. Liq., 2022, 348, 118047.
[http://dx.doi.org/10.1016/j.molliq.2021.118047]
[70]
Al-Saraierh, H.; Miller, D.O.; Georghiou, P.E. Narrow-rim functionalization of calix[4]arenes via Sonogashira coupling reactions. J. Org. Chem., 2005, 70(21), 8273-8280.
[http://dx.doi.org/10.1021/jo050488s] [PMID: 16209567]
[71]
Mirza-Aghayan, M.; Yarmohammadi, M.; Zadmard, R.; Boukherroub, R. A convenient and efficient one-pot method for the synthesis of novel acridine-calix[4]arene derivatives as new DNA binding agents via multicomponent reaction. Supramol. Chem., 2014, 26(5-6), 442-449.
[http://dx.doi.org/10.1080/10610278.2013.832763]
[72]
Dondoni, A.; Marra, A. Calixarene and calixresorcarene glycosides: Their synthesis and biological applications. Chem. Rev., 2010, 110(9), 4949-4977.
[http://dx.doi.org/10.1021/cr100027b] [PMID: 20496911]
[73]
Retout, M.; Blond, P.; Jabin, I.; Bruylants, G. Ultrastable PEGylated calixarene-coated gold nanoparticles with a tunable bioconjugation density for biosensing applications. Bioconjug. Chem., 2021, 32(2), 290-300.
[http://dx.doi.org/10.1021/acs.bioconjchem.0c00669] [PMID: 33439626]
[74]
Vysotsky, M.O.; Bolte, M.; Thondorf, I.; Böhmer, V. New molecular topologies by fourfold metathesis reactions within a hydrogen-bonded calix[4]arene dimer. Chemistry, 2003, 9(14), 3375-3382.
[http://dx.doi.org/10.1002/chem.200304912] [PMID: 12866081]
[75]
Bogdan, A.; Bolte, M.; Böhmer, V. Molecules with new topologies derived from hydrogen-bonded dimers of tetraurea calix[4]arenes. Chemistry, 2008, 14(28), 8514-8520.
[http://dx.doi.org/10.1002/chem.200801268] [PMID: 18720432]
[76]
Bottino, A.; Cunsolo, F.; Piattelli, M.; Neri, P. Regio-and stereoselective alkylation of 5,5&.-bicalix[4]arene. Access to double calixarenes with different conformations of the two subunits. Tetrahedron Lett., 1998, 39(51), 9549-9552.
[http://dx.doi.org/10.1016/S0040-4039(98)02121-2]
[77]
Taghvaei-Ganjali, S.; Zadmard, R. Synthesis of new rigid dimeric calix[4]arene. Supramol. Chem., 2008, 20(5), 527-530.
[http://dx.doi.org/10.1080/10610270701468761]
[78]
Iwamoto, K.; Araki, K.; Shinkai, S. Conformations and structures of tetra-O-alkyl-p-tert-butylcalix[4]arenes. How is the conformation of calix[4]arenes immobilized? J. Org. Chem., 1991, 56(16), 4955-4962.
[http://dx.doi.org/10.1021/jo00016a027]
[79]
Alam, I.; Sharma, S.K.; Gutsche, C.D. The quinonemethide route to mono- and tetrasubstituted calix[4]arenes. J. Org. Chem., 1994, 59(13), 3716-3720.
[http://dx.doi.org/10.1021/jo00092a041]
[80]
Gutsche, C.D.; Dhawan, B.; No, K.H.; Muthukrishnan, R. Calixarenes. 4. The synthesis, characterization, and properties of the calixarenes from p-tert-butylphenol. J. Am. Chem. Soc., 1981, 103(13), 3782-3792.
[http://dx.doi.org/10.1021/ja00403a028]
[81]
Verboom, W.; Durie, A.; Egberink, R.J.M.; Asfari, Z.; Reinhoudt, D.N. Ipso nitration of p-tert-butylcalix[4]arenes. J. Org. Chem., 1992, 57(4), 1313-1316.
[http://dx.doi.org/10.1021/jo00030a050]
[82]
Araki, K.; Hisaichi, K.; Kanai, T.; Shinkai, S. Synthesis of an upper-rim-connected biscalix[4]arene and its improved inclusion ability based on the cooperative action. Chem. Lett., 1995, 24(7), 569-570.
[http://dx.doi.org/10.1246/cl.1995.569]
[83]
Costa, S.; Barata, P.D.; Costa, A.I.; Prata, J.V. A New fluorescent calixarene dimer: Synthesis, optical properties, and sensory applications. Chem. Proc, 2020, 3, 95.
[http://dx.doi.org/10.3390/ecsoc-24-08340]
[84]
Georghiou, Paris E. Calixarenes and fullerenes. In: Calixarenes and Beyond; Springer, 2016; p. 879.
[http://dx.doi.org/10.1007/978-3-319-31867-7_33]
[85]
Zadmard, R.; Akbari-Moghaddam, P.; Darvishi, S.; Mirza-Aghayan, M. A highly selective fluorescent chemosensor for NADH based on calix[4]arene dimer. Tetrahedron, 2017, 73(5), 604-607.
[http://dx.doi.org/10.1016/j.tet.2016.12.053]
[86]
Volpi, S.; Doolan, A.; Baldini, L.; Casnati, A.; Crowley, P.B.; Sansone, F. Complex formation between cytochrome c and a Tetra-alanino-calix[4]arene. Int. J. Mol. Sci., 2022, 23(23), 15391.
[http://dx.doi.org/10.3390/ijms232315391] [PMID: 36499717]
[87]
Habibi, Z.; Taghvaei-Ganjali, S.; Zadmard, R.; Mehrazar, M. Calixarene dimers as host molecules for inositol hexaphosphate, IP6, in an aqueous solution. Lett. Org. Chem., 2018, 15(9), 747-752.
[http://dx.doi.org/10.2174/1570178615666171221142658]
[88]
Shinde, S.; Incel, A.; Mansour, M.; Olsson, G.D.; Nicholls, I.A.; Esen, C.; Urraca, J.; Sellergren, B. Urea-based imprinted polymer hosts with switchable anion preference. J. Am. Chem. Soc., 2020, 142(26), 11404-11416.
[http://dx.doi.org/10.1021/jacs.0c00707] [PMID: 32425049]
[89]
Yokoya, M.; Kimura, S.; Yamanaka, M. Urea derivatives as functional molecules: Supramolecular capsules, supramolecular polymers, supramolecular gels, artificial hosts, and catalysts. Chemistry, 2021, 27(18), 5601-5614.
[http://dx.doi.org/10.1002/chem.202004367] [PMID: 33184975]
[90]
Vucenik, I.; Druzijanic, A.; Druzijanic, N. Inositol hexaphosphate (IP6) and colon cancer: From concepts and first experiments to clinical application. Molecules, 2020, 25(24), 5931.
[http://dx.doi.org/10.3390/molecules25245931] [PMID: 33333775]
[91]
Lan, T.T.; Song, Y.; Liu, X.H.; Liu, C.P.; Zhao, H.C.; Han, Y.S.; Wang, C.H.; Yang, N.; Xu, Z.; Tao, M.; Li, H. IP6 reduces colorectal cancer metastasis by mediating the interaction of gut microbiota with host genes. Front. Nutr., 2022, 9, 979135.
[http://dx.doi.org/10.3389/fnut.2022.979135] [PMID: 36118769]
[92]
Breitkreuz, C.J.; Zadmard, R.; Schrader, T. DNA recognition with large calixarene dimers and varying spacers. Supramol. Chem., 2008, 20(1-2), 109-115.
[http://dx.doi.org/10.1080/10610270701747040]
[93]
Zadmard, R.; Taghvaei-Ganjali, S.; Gorji, B.; Schrader, T. Calixarene dimers as host molecules for biologically important di- and oligophosphates. Chem. Asian J., 2009, 4(9), 1458-1464.
[http://dx.doi.org/10.1002/asia.200900085] [PMID: 19579252]
[94]
Munde, M.; Ismail, M.A.; Arafa, R.; Peixoto, P.; Collar, C.J.; Liu, Y.; Hu, L.; David-Cordonnier, M.H.; Lansiaux, A.; Bailly, C.; Boykin, D.W.; Wilson, W.D. Design of DNA minor groove binding diamidines that recognize GC base pair sequences: A dimeric-hinge interaction motif. J. Am. Chem. Soc., 2007, 129(44), 13732-13743.
[http://dx.doi.org/10.1021/ja074560a] [PMID: 17935330]
[95]
Baguley, B.C.; Drummond, C.J.; Chen, Y.Y.; Finlay, G.J. DNA-binding anticancer drugs: One target, two actions. Molecules, 2021, 26(3), 552.
[http://dx.doi.org/10.3390/molecules26030552] [PMID: 33494466]
[96]
Zadmard, R.; Taghvaei-Ganjali, S.; Gorji, B. Covalently linked at the lower rim double&.calix[4]arene as a precursor for multi-cavity supramolecular receptor. Synth. Commun., 2008, 38(11), 1830-1836.
[http://dx.doi.org/10.1080/00397910801982035]
[97]
Santoyo-González, F.; Torres-Pinedo, A.; Sanchéz-Ortega, A. Regioselective monoalkylation of calixarenes. Synthesis of homodimer calixarenes. J. Org. Chem., 2000, 65(14), 4409-4414.
[http://dx.doi.org/10.1021/jo0003495]
[98]
Wąsikiewicz, W.; Rokicki, G.; Kiełkiewicz, J.; Paulus, E.F.; Böhmer, V. Head-to-tail connected double calix[4]arenes. Monatsh. Chem., 1997, 128(8-9), 863-879.
[http://dx.doi.org/10.1007/BF00807096]
[99]
Gallego-Yerga, L.; Lomazzi, M.; Sansone, F.; Ortiz Mellet, C.; Casnati, A.; García Fernández, J.M. Glycoligand-targeted core-shell nanospheres with tunable drug release profiles from calixarene-cyclodextrin heterodimers. Chem. Commun., 2014, 50(56), 7440-7443.
[http://dx.doi.org/10.1039/C4CC02703E] [PMID: 24875493]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy