Generic placeholder image

Coronaviruses

Editor-in-Chief

ISSN (Print): 2666-7967
ISSN (Online): 2666-7975

Review Article

Biomarkers can Predict COVID-19 Disease

Author(s): Utkarsh Sharma and Shikha Sharma*

Volume 5, Issue 2, 2024

Published on: 24 October, 2023

Article ID: e241023222616 Pages: 12

DOI: 10.2174/0126667975259658231003074600

Price: $65

conference banner
Abstract

Health professionals have been confronted with a series of challenges because of the ongoing pandemic of coronavirus disease 2019 (COVID-19). To save the greatest number of lives possible, it is essential to make a prompt diagnosis and admission to the hospital, as well as to stratify risks, make efficient use of intensive care services, choose appropriate treatments, monitor patients, and ensure a prompt discharge. Laboratory markers, also known as biomarkers, can provide additional information that is objective and has the potential to significantly influence various aspects of patient care. Clinical assessment is necessary, but laboratory markers can provide this information. The COVID-19 virus is not an infection that causes the respiratory system; rather, it is a multisystem disease that is caused by a diffuse system-wide process that involves a complex interplay of the immune, nervous, and endocrine systems in inflammatory and coagulative cascades. A wide variety of potential biomarkers have been uncovered because of a better understanding of the virus's effects on the body and how the body responds to them. Here, the pathophysiology and current data are examined in relation to various kinds of biomarkers, such as immunological and inflammation biomarkers, coagulation and hematological biomarkers, as well as cardiac, biochemical, and other biomarkers. This review provides a comprehensive analysis of the research on the association between biomarkers and clinical characteristics, viral load, treatment efficacy, and how this knowledge might most usefully contribute to patient care.

Keywords: COVID-19, biomarkes, virous infection, D-dimer, sickness, endocrine system.

Graphical Abstract
[1]
Ashour HM, Elkhatib WF, Rahman MM, Elshabrawy HA. Insights into the recent 2019 novel coronavirus (SARS-CoV-2) in light of past human coronavirus outbreaks. Pathogens 2020; 9(3): 186.
[2]
Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020; 395(10223): 497-506.
[http://dx.doi.org/10.1016/S0140-6736(20)30183-5] [PMID: 31986264]
[3]
Cheng ZJ, Shan J. 2019 Novel coronavirus: Where we are and what we know. Infection 2020; 48(2): 155-63.
[http://dx.doi.org/10.1007/s15010-020-01401-y] [PMID: 32072569]
[4]
Director-General's remarks at the media briefing on 2019-nCoV on 11 February 2020. World Health Organization 2020.
[5]
Lauc G, Sinclair D. Biomarkers of biological age as predictors of COVID-19 disease severity. Aging 2020; 12(8): 6490-1.
[http://dx.doi.org/10.18632/aging.103052] [PMID: 32268300]
[6]
Kermali M, Khalsa RK, Pillai K, Ismail Z, Harky A. The role of biomarkers in diagnosis of COVID-19 – A systematic review. Life Sci 2020; 254: 117788.
[http://dx.doi.org/10.1016/j.lfs.2020.117788] [PMID: 32475810]
[7]
Querol-Ribelles JM, Tenias JM, Grau E, et al. Plasma d-dimer levels correlate with outcomes in patients with community-acquired pneumonia. Chest 2004; 126(4): 1087-92.
[http://dx.doi.org/10.1378/chest.126.4.1087] [PMID: 15486368]
[8]
Yao Y, Cao J, Wang Q, et al. D-dimer as a biomarker for disease severity and mortality in COVID-19 patients: A case control study. J Intensive Care 2020; 8(1): 49.
[http://dx.doi.org/10.1186/s40560-020-00466-z] [PMID: 32665858]
[9]
Rostami M, Mansouritorghabeh H. D-dimer level in COVID-19 infection: A systematic review. Expert Rev Hematol 2020; 13(11): 1265-75.
[http://dx.doi.org/10.1080/17474086.2020.1831383] [PMID: 32997543]
[10]
Bansal A, Singh AD, Jain V, et al. The association of D-dimers with mortality, intensive care unit admission or acute respiratory distress syndrome in patients hospitalized with coronavirus disease 2019 (COVID-19): A systematic review and meta-analysis. Heart Lung 2021; 50(1): 9-12.
[http://dx.doi.org/10.1016/j.hrtlng.2020.08.024] [PMID: 33041057]
[11]
Qeadan F, Tingey B, Gu LY, Packard AH, Erdei E, Saeed AI. Prognostic values of serum ferritin and d-dimer trajectory in patients with COVID-19. Viruses 2021; 13(3): 419.
[http://dx.doi.org/10.3390/v13030419]
[12]
Favaloro EJ, Thachil J. Reporting of D-dimer data in COVID-19: Some confusion and potential for misinformation. Clin Chem Lab Med 2020; 58(8): 1191-9.
[http://dx.doi.org/10.1515/cclm-2020-0573]
[13]
Han H, Yang L, Liu R, et al. Prominent changes in blood coagulation of patients with SARS-CoV-2 infection. Clin Chem Lab Med 2020; 58(7): 1116-20.
[http://dx.doi.org/10.1515/cclm-2020-0188]
[14]
Konstantinides SV, Barco S, Lankeit M, Meyer G. Management of pulmonary embolism: Update. J Am Coll Cardiol 2016; 67(8): 976-90.
[http://dx.doi.org/10.1016/j.jacc.2015.11.061] [PMID: 26916489]
[15]
Suh YJ, Hong H, Ohana M, et al. Pulmonary embolism and deep vein thrombosis in COVID-19: A systematic review and meta-analysis. Radiology 2021; 298(2): E70-80.
[http://dx.doi.org/10.1148/radiol.2020203557] [PMID: 33320063]
[16]
Righini M, Van ES. Age-adjusted D-dimer cutoff levels to rule out pulmonary embolism: The ADJUST-PE study. JAMA 2014; 311(11): 1117-24.
[17]
Wenzhong L, Hualan L. COVID-19: Attacks the 1-beta chain of hemoglobin and captures the porphyrin to inhibit human heme metabolism. ChemRxiv 2020.
[18]
Rivilla Marugán L, Lorente Aznar T, Molinero Rodriguez M, García-Erce JA. Anaemia and the elderly: Critical review of its definition and prevalence. Rev Esp Geriatr Gerontol 2019; 54(4): 189-94.
[PMID: 31164237]
[19]
Jiang Y, Jiang FQ, Kong F, et al. Inflammatory anemia-associated parameters are related to 28-day mortality in patients with sepsis admitted to the ICU: A preliminary observational study. Ann Intensive Care 2019; 9(1): 67.
[20]
Cavezzi A, Troiani E, Corrao S. COVID-19: Hemoglobin, iron, and hypoxia beyond inflammation. A narrative review. Clin Pract 2020; 10(2): 1271.
[21]
Rahimi-Levene N, Koren-Michowitz M, Zeidenstein R, Peer V, Golik A, Ziv-Baran T. Lower hemoglobin transfusion trigger is associated with higher mortality in patients hospitalized with pneumonia. Medicine 2018; 97(12): e0192.
[http://dx.doi.org/10.1097/MD.0000000000010192] [PMID: 29561440]
[22]
Wenzhong L, Hualan L. COVID-19 Disease: ORF8 and surface glycoproteins inhibit heme metabolism by binding to prophyrins. ChemRxiv 2020.
[23]
Liu Y, Sun W, Guo Y, et al. Association between platelet parameters and mortality in coronavirus disease 2019: retrospective cohort study. Platelets 2020; 31(4): 490-6.
[24]
The Lancet Haematology. COVID-19 coagulopathy: An evolving story. Lancet Haematol 2020; 7(6): e425.
[http://dx.doi.org/10.1016/S2352-3026(20)30151-4] [PMID: 32470428]
[25]
Giannis D, Ziogas IA, Gianni P. Coagulation disorders in coronavirus infected patients: COVID-19, SARS-CoV-1, MERS-CoV and lessons from the past. J Clin Virol 2020; 127: 104362.
[http://dx.doi.org/10.1016/j.jcv.2020.104362] [PMID: 32305883]
[26]
Levi M, Thachil J, Iba T, Levy JH. Coagulation abnormalities and thrombosis in patients with COVID-19. Lancet Haematol 2020; 7(6): e438-40.
[http://dx.doi.org/10.1016/S2352-3026(20)30145-9] [PMID: 32407672]
[27]
Lagunas-Rangel FA. Neutrophil‐to‐lymphocyte ratio and lymphocyte‐to‐C‐reactive protein ratio in patients with severe coronavirus disease 2019 (COVID‐19): A meta‐analysis. J Med Virol 2020; 92(10): 1733-4.
[http://dx.doi.org/10.1002/jmv.25819] [PMID: 32242950]
[28]
Young B, Gleeson M, Cripps AW. C-reactive protein: A critical review. Pathology 1991; 23(2): 118-24.
[http://dx.doi.org/10.3109/00313029109060809] [PMID: 1720888]
[29]
Wang S, Lin D, Yang X, et al. Prognostic value of C‐reactive protein in patients with COVID‐19. Clin Infect Dis 2020; 71(16): 2174-9.
[30]
Ballou SP, Kushner I. C-reactive protein and the acute phase response. Adv Intern Med 1992; 37: 313-36.
[PMID: 1558000]
[31]
Vasileva D, Badawi A. C-reactive protein as a biomarker of severe H1N1 influenza. Inflamm Res 2019; 68(1): 39-46.
[http://dx.doi.org/10.1007/s00011-018-1188-x] [PMID: 30288556]
[32]
Povoa P, Pereira J, Coelho L. C-reactive protein: structure, synthesis and function.In: C-Reactive Protein. New Research 2009.
[33]
Sahu BR, Kampa RK, Padhi A, Panda AK. C-reactive protein: A promising biomarker for poor prognosis in COVID-19 infection. Clin Chim Acta 2020; 509: 91-4.
[http://dx.doi.org/10.1016/j.cca.2020.06.013] [PMID: 32511972]
[34]
Sproston NR, Ashworth JJ. Role of C-reactive protein at sites of inflammation and infection. Front Immunol 2018; 9: 754.
[http://dx.doi.org/10.3389/fimmu.2018.00754] [PMID: 29706967]
[35]
Wang L. C-reactive protein levels in the early stage of COVID-19. Med Mal Infect 2020; 50(4): 332-4.
[http://dx.doi.org/10.1016/j.medmal.2020.03.007] [PMID: 32243911]
[36]
Lippi G, Cervellin G. Procalcitonin for diagnosing and monitoring bacterial infections: For or against? Clin Chem Lab Med 2018; 56(8): 1193-5.
[http://dx.doi.org/10.1515/cclm-2018-0312]
[37]
Kopelman PG. Physiopathology of prolactin secretion in obesity. Int J Obes 2000; 24(S2): S104-8.
[http://dx.doi.org/10.1038/sj.ijo.0801291] [PMID: 10997622]
[38]
van der Does Y, Limper M, Jie KE, et al. Procalcitonin-guided antibiotic therapy in patients with fever in a general emergency department population: A multicentre non-inferiority randomized clinical trial (HiTEMP study). Clin Microbiol Infect 2018; 24(12): 1282-9.
[http://dx.doi.org/10.1016/j.cmi.2018.05.011] [PMID: 29870855]
[39]
Maruna P, Nedelníková K, Gürlich R. Physiology and genetics of procalcitonin. Physiol Res 2000; 49(S1): S57-61.
[PMID: 10984072]
[40]
Huang DT, Yealy DM, Filbin MR, et al. Investigators, Pro-ACT. Procalcitonin-guided use of antibiotics for lower respiratory tract infection. N Engl J Med 2018; 379(3): 236-49.
[41]
Hoeboer SH, van der Geest PJ, Nieboer D, Groeneveld ABJ. The diagnostic accuracy of procalcitonin for bacteraemia: A systematic review and meta-analysis. Clin Microbiol Infect 2015; 21(5): 474-81.
[http://dx.doi.org/10.1016/j.cmi.2014.12.026] [PMID: 25726038]
[42]
Hu R, Han C, Pei S, Yin M, Chen X. Procalcitonin levels in COVID-19 patients. Int J Antimicrob Agents 2020; 56(2): 106051.
[http://dx.doi.org/10.1016/j.ijantimicag.2020.106051] [PMID: 32534186]
[43]
Inciardi RM, Lupi L, Zaccone G, et al. Cardiac involvement in a patient with coronavirus disease 2019 (COVID-19). JAMA Cardiol 2020; 5(7): 819.
[http://dx.doi.org/10.1001/jamacardio.2020.1096]
[44]
Menéndez R, Méndez R, Aldás I, et al. Community-acquired pneumonia patients at risk for early and long-term cardiovascular events are identified by cardiac biomarkers. Chest 2019; 156(6): 1080-91.
[http://dx.doi.org/10.1016/j.chest.2019.06.040] [PMID: 31381883]
[45]
Antman EM, Tanasijevic MJ, Thompson B, et al. Cardiac-specific troponin I levels to predict the risk of mortality in patients with acute coronary syndromes. N Engl J Med 1996; 335(18): 1342-9.
[http://dx.doi.org/10.1056/NEJM199610313351802] [PMID: 8857017]
[46]
Sandoval Y, Januzzi JL Jr, Jaffe AS. Cardiac troponin for assessment of myocardial injury in COVID-19. J Am Coll Cardiol 2020; 76(10): 1244-58.
[http://dx.doi.org/10.1016/j.jacc.2020.06.068] [PMID: 32652195]
[47]
Shi S, Qin M, Shen B. Association of cardiac injury with mortality in hospitalized patients with COVID-19 in Wuhan, China. JAMA Cardiol 2020; 5(7): 802-10.S.
[48]
Lin Z, Long F, Yang Y, Chen X, Xu L, Yang M. Serum ferritin as an independent risk factor for severity in COVID-19 patients. J Infect 2020; 81(4): 647-79.
[http://dx.doi.org/10.1016/j.jinf.2020.06.053] [PMID: 32592705]
[49]
Rasyid H, Sangkereng A, Harjianti T, Soetjipto AS. Impact of age to ferritin and neutrophil‐lymphocyte ratio as biomarkers for intensive care requirement and mortality risk in COVID‐19 patients in Makassar, Indonesia. Physiol Rep 2021; 9(10): e14876.
[http://dx.doi.org/10.14814/phy2.14876] [PMID: 34042296]
[50]
Cheng L, Li H, Li L, et al. Ferritin in the coronavirus disease 2019 (COVID‐19): A systematic review and meta‐analysis. J Clin Lab Anal 2020; 34(10): e23618.
[http://dx.doi.org/10.1002/jcla.23618] [PMID: 33078400]
[51]
Fara A, Mitrev Z, Rosalia RA, Assas BM. Cytokine storm and COVID-19: A chronicle of pro-inflammatory cytokines. Open Biol 2020; 10(9): 200160.
[http://dx.doi.org/10.1098/rsob.200160] [PMID: 32961074]
[52]
Channappanavar R, Perlman S. Pathogenic human coronavirus infections: causes and consequences of cytokine storm and immunopathology. Semin Immunopathol 2017; 39(5): 529-39.
[http://dx.doi.org/10.1007/s00281-017-0629-x] [PMID: 28466096]
[53]
Caricchio R, Gallucci M, Dass C, et al. Preliminary predictive criteria for COVID-19 cytokine storm. Ann Rheum Dis 2021; 80(1): 88-95.
[http://dx.doi.org/10.1136/annrheumdis-2020-218323] [PMID: 32978237]
[54]
Mehta P, McAuley DF, Brown M, Sanchez E, Tattersall RS, Manson JJ. COVID-19: Consider cytokine storm syndromes and immunosuppression. Lancet 2020; 395(10229): 1033-4.
[http://dx.doi.org/10.1016/S0140-6736(20)30628-0] [PMID: 32192578]
[55]
Liu Y, Zhang C, Huang F, et al. Elevated plasma levels of selective cytokines in COVID-19 patients reflect viral load and lung injury. Natl Sci Rev 2020; 7(6): 1003-11.
[http://dx.doi.org/10.1093/nsr/nwaa037] [PMID: 34676126]
[56]
Wolf J, Rose-John S, Garbers C. Interleukin-6 and its receptors: A highly regulated and dynamic system. Cytokine 2014; 70(1): 11-20.
[http://dx.doi.org/10.1016/j.cyto.2014.05.024] [PMID: 24986424]
[57]
Du P, Geng J, Wang F, Chen X, Huang Z, Wang Y. Role of IL-6 inhibitor in treatment of COVID-19-related cytokine release syndrome. Int J Med Sci 2021; 18(6): 1356-62.
[http://dx.doi.org/10.7150/ijms.53564] [PMID: 33628091]
[58]
Dinarello CA. Immunological and inflammatory functions of the interleukin-1 family. Annu Rev Immunol 2009; 27(1): 519-50.
[http://dx.doi.org/10.1146/annurev.immunol.021908.132612] [PMID: 19302047]
[59]
Cheung CY, Poon LLM, Ng IHY, et al. Cytokine responses in severe acute respiratory syndrome coronavirus-infected macrophages in vitro: possible relevance to pathogenesis. J Virol 2005; 79(12): 7819-26.
[http://dx.doi.org/10.1128/JVI.79.12.7819-7826.2005] [PMID: 15919935]
[60]
Dinarello CA. Interleukin-1 in the pathogenesis and treatment of inflammatory diseases. Blood 2011; 117(14): 3720-32.
[http://dx.doi.org/10.1182/blood-2010-07-273417] [PMID: 21304099]
[61]
Kim B, Lee Y, Kim E, et al. The interleukin-1α precursor is biologically active and is likely a key alarmin in the IL-1 family of cytokines. Front Immunol 2013; 4: 391.
[http://dx.doi.org/10.3389/fimmu.2013.00391] [PMID: 24312098]
[62]
Cheng Y, Luo R, Wang K, et al. Kidney disease is associated with in-hospital death of patients with COVID-19. Kidney Int 2020; 97(5): 829-38.
[http://dx.doi.org/10.1016/j.kint.2020.03.005] [PMID: 32247631]
[63]
Alfano G, Ferrari A, Fontana F, et al. Twenty-four-hour serum creatinine variation is associated with poor outcome in the novel coronavirus disease 2019 (COVID-19) patients. Kidney Res Clin Pract 2021; 40(2): 231-40.
[http://dx.doi.org/10.23876/j.krcp.20.177] [PMID: 34162049]
[64]
Lee E, Collier CP, White CA. Interlaboratory variability in plasma creatinine measurement and the relation to estimated glomerular filtration rate and chronic kidney disease diagnosis. Clin J is Soc Nephrol 2017; 12(1): 29-37.
[65]
Kao SS, Kim SW, Horwood CM, Hakendorf P, Li JY, Thompson CH. Variability in inpatient serum creatinine: Its impact upon short- and long-term mortality. QJM 2015; 108(10): 781-7.
[http://dx.doi.org/10.1093/qjmed/hcv020] [PMID: 25636343]
[66]
Levey AS, Bosch JP, Lewis JB, Greene T, Rogers N, Roth D. A more accurate method to estimate glomerular filtration rate from serum creatinine: A new prediction equation. Ann Intern Med 1999; 130(6): 461-70.
[http://dx.doi.org/10.7326/0003-4819-130-6-199903160-00002] [PMID: 10075613]
[67]
Ullah W, Basyal B, Tariq S, et al. Lymphocyte-to-C-reactive protein ratio: A novel predictor of adverse outcomes in COVID-19. J Clin Med Res 2020; 12(7): 415-22.
[http://dx.doi.org/10.14740/jocmr4227] [PMID: 32655735]
[68]
Yamasaki Y, Ooka S, Tsuchida T, et al. The peripheral lymphocyte count as a predictor of severe COVID-19 and the effect of treatment with ciclesonide. Virus Res 2020; 290: 198089.
[http://dx.doi.org/10.1016/j.virusres.2020.198089] [PMID: 32629085]
[69]
Tan L, Wang Q, Zhang D, et al. Lymphopenia predicts disease severity of COVID-19: a descriptive and predictive study. Signal Transduct Target Ther 2020; 5(1): 33.
[http://dx.doi.org/10.1038/s41392-020-0148-4] [PMID: 32296069]
[70]
Lin Y, Kim J, Metter EJ, et al. Changes in blood lymphocyte numbers with age in vivo and their association with the levels of cytokines/cytokine receptors. Immun Ageing 2016; 13(1): 24.
[http://dx.doi.org/10.1186/s12979-016-0079-7] [PMID: 27547234]
[71]
Li T, Qiu Z, Zhang L, et al. Significant changes of peripheral T lymphocyte subsets in patients with severe acute respiratory syndrome. J Infect Dis 2004; 189(4): 648-51.
[http://dx.doi.org/10.1086/381535] [PMID: 14767818]
[72]
Huang G, Kovalic AJ, Graber CJ. Prognostic value of leukocytosis and lymphopenia for coronavirus disease severity. Emerg Infect Dis 2020; 26(8): 1839-41.
[http://dx.doi.org/10.3201/eid2608.201160] [PMID: 32384045]
[73]
Liu J, Liu Y, Xiang P, et al. Neutrophil-to-lymphocyte ratio predicts severe illness patients with 2019 novel coronavirus in the early stage. J Transl Med 2020.
[74]
Zhao Q, Meng M, Kumar R, et al. Lymphopenia is associated with severe coronavirus disease 2019 (COVID-19) infections: A systemic review and meta-analysis. Int J Infect Dis 2020; 96: 131-5.
[http://dx.doi.org/10.1016/j.ijid.2020.04.086] [PMID: 32376308]
[75]
Diao B, Wang C, Tan Y, et al. Reduction and functional exhaustion of T cells in patients with coronavirus disease 2019 (COVID-19). Front Immunol 2020; 11: 827-7.
[http://dx.doi.org/10.3389/fimmu.2020.00827] [PMID: 32425950]
[76]
Palomino DCT, Marti LC. Chemokines and immunity. Einstein 2015; 13(3): 469-73.
[http://dx.doi.org/10.1590/S1679-45082015RB3438] [PMID: 26466066]
[77]
Crawford A, Angelosanto JM, Nadwodny KL, Blackburn SD, Wherry EJ. A role for the chemokine RANTES in regulating CD8 T cell responses during chronic viral infection. PLoS Pathog 2011; 7(7): e1002098.
[http://dx.doi.org/10.1371/journal.ppat.1002098] [PMID: 21814510]
[78]
Merad M, Martin JC. Pathological inflammation in patients with COVID-19: A key role for monocytes and macrophages. Nat Rev Immunol 2020; 20(6): 355-62.
[http://dx.doi.org/10.1038/s41577-020-0331-4] [PMID: 32376901]
[79]
Wislez M, Fujimoto N, Izzo JG, et al. High expression of ligands for chemokine receptor CXCR2 in alveolar epithelial neoplasia induced by oncogenic kras. Cancer Res 2006; 66(8): 4198-207.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-3842] [PMID: 16618742]
[80]
McNamara PS, Flanagan BF, Hart CA, Smyth RL. Production of chemokines in the lungs of infants with severe respiratory syncytial virus bronchiolitis. J Infect Dis 2005; 191(8): 1225-32.
[http://dx.doi.org/10.1086/428855] [PMID: 15776367]
[81]
Thiel V, Weber F. Interferon and cytokine responses to SARS-coronavirus infection. Cytokine Growth Factor Rev 2008; 19(2): 121-32.
[http://dx.doi.org/10.1016/j.cytogfr.2008.01.001] [PMID: 18321765]
[82]
Law HKW, Cheung CY, Ng HY, et al. Chemokine up-regulation in SARS-coronavirus–infected, monocyte-derived human dendritic cells. Blood 2005; 106(7): 2366-74.
[http://dx.doi.org/10.1182/blood-2004-10-4166] [PMID: 15860669]
[83]
Wong CK, Lam CWK, Wu AKL, et al. Plasma inflammatory cytokines and chemokines in severe acute respiratory syndrome. Clin Exp Immunol 2004; 136(1): 95-103.
[http://dx.doi.org/10.1111/j.1365-2249.2004.02415.x] [PMID: 15030519]
[84]
Salazar-Mather TP, Hamilton TA, Biron CA. A chemokine-to-cytokine-to-chemokine cascade critical in antiviral defense. J Clin Invest 2000; 105(7): 985-93.
[http://dx.doi.org/10.1172/JCI9232] [PMID: 10749577]
[85]
Maghazachi AA, Al-Aoukaty A, Schall TJ. CC chemokines induce the generation of killer cells from CD56 + cells. Eur J Immunol 1996; 26(2): 315-9.
[http://dx.doi.org/10.1002/eji.1830260207] [PMID: 8617297]
[86]
García LF. Immune response, inflammation, and the clinical spectrum of COVID-19. Front Immunol 2020; 11: 1441.
[http://dx.doi.org/10.3389/fimmu.2020.01441] [PMID: 32612615]
[87]
Xie G, Ding F, Han L, Yin D, Lu H, Zhang M. The role of peripheral blood eosinophil counts in COVID‐19 patients. Allergy 2021; 76(2): 471-82.
[http://dx.doi.org/10.1111/all.14465] [PMID: 32562554]
[88]
Cortés-Vieyra R, Gutiérrez-Castellanos S, Álvarez-Aguilar C, et al. Behavior of eosinophil counts in recovered and deceased COVID-19 patients during the disease. Viruses 2021; 13(9): 1675.
[http://dx.doi.org/10.3390/v13091675] [PMID: 34578258]
[89]
Dorgalaleh A, Dabbagh A, Tabibian S, et al. Patients with congenital bleeding disorders appear to be less severely affected by SARS-CoV-2: is inherited hypocoagulability overcoming acquired hypercoagulability of coronavirus disease 2019 (COVID-19)? Semin Thromb Hemost 2020; 46(7): 853-5.
[http://dx.doi.org/10.1055/s-0040-1713435] [PMID: 32557449]
[90]
Al-Samkari H, Karp Leaf RS, Dzik WH, et al. COVID-19 and coagulation: Bleeding and thrombotic manifestations of SARS-CoV-2 infection. Blood 2020; 136(4): 489-500.
[http://dx.doi.org/10.1182/blood.2020006520] [PMID: 32492712]
[91]
Zini G, Bellesi S, Ramundo F, d’Onofrio G. Morphological anomalies of circulating blood cells in COVID ‐19. Am J Hematol 2020; 95(7): 870-2.
[http://dx.doi.org/10.1002/ajh.25824] [PMID: 32279346]
[92]
Tagawa T, Anraku M, Morodomi Y, et al. Clinical role of a new prognostic score using platelet-to-lymphocyte ratio in patients with malignant pleural mesothelioma undergoing extrapleural pneumonectomy. J Thorac Dis 2015; 7(11): 1898-906.
[PMID: 26716028]
[93]
Yang X, Yang Q, Wang Y, et al. Thrombocytopenia and its association with mortality in patients with COVID‐19. J Thromb Haemost 2020; 18(6): 1469-72.
[http://dx.doi.org/10.1111/jth.14848] [PMID: 32302435]
[94]
Kitchens CS. Thrombocytopenia and thrombosis in disseminated intravascular coagulation (DIC). Hematology (Am Soc Hematol Educ Program) 2009; 2009(1): 240-6.
[http://dx.doi.org/10.1182/asheducation-2009.1.240] [PMID: 20008204]
[95]
Tang N, Li D, Wang X, Sun Z. Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia. J Thromb Haemost 2020; 18(4): 844-7.
[http://dx.doi.org/10.1111/jth.14768] [PMID: 32073213]
[96]
Zhou M, Qi J, Li X, et al. The proportion of patients with thrombocytopenia in three human‐susceptible coronavirus infections: A systematic review and meta‐analysis. Br J Haematol 2020; 189(3): 438-41.
[http://dx.doi.org/10.1111/bjh.16655] [PMID: 32285448]
[97]
Amgalan A, Othman M. Exploring possible mechanisms for COVID‐19 induced thrombocytopenia: Unanswered questions. J Thromb Haemost 2020; 18(6): 1514-6.
[http://dx.doi.org/10.1111/jth.14832] [PMID: 32278338]
[98]
Scaradavou A. HIV-related thrombocytopenia. Blood Rev 2002; 16(1): 73-6.
[http://dx.doi.org/10.1054/blre.2001.0188] [PMID: 11914001]
[99]
Nardi M, Tomlinson S, Greco MA, Karpatkin S. Complement-independent, peroxide-induced antibody lysis of platelets in HIV-1-related immune thrombocytopenia. Cell 2001; 106(5): 551-61.
[http://dx.doi.org/10.1016/S0092-8674(01)00477-9] [PMID: 11551503]
[100]
Lorenzo-Villalba N, Zulfiqar AA, Auburtin M, et al. Thrombocytopenia during COVID-19 infection. Eur J Case Rep Intern Med 2020; 7(6): 001702.
[PMID: 32523922]
[101]
Arnold DM. Bleeding complications in immune thrombocytopenia. Hematology is Soc Hematol Educ Program 2015; 2015: 237-42.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy