Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Systematic Review Article

A Review of Cartilage Defect Treatments Using Chitosan Hydrogels in Experimental Animal Models

Author(s): Lais Caroline Souza-Silva, Cintia Cristina Santi Martignago, Homero Garcia Motta, Mirian Bonifacio, Ingrid Regina Avanzi, Lívia Assis, Daniel Araki Ribeiro, Julia Risso Parisi and Ana Claudia Rennó*

Volume 25, Issue 8, 2024

Published on: 24 October, 2023

Page: [1058 - 1072] Pages: 15

DOI: 10.2174/0113892010245946230919062908

Price: $65

Open Access Journals Promotions 2
Abstract

Introduction: Chitosan (CS) is a polycationic polysaccharide comprising glucosamine and N-acetylglucosamine and constitutes a potential material for use in cartilage tissue engineering. Moreover, CS hydrogels are able to promote the expression of cartilage matrix components and reduce inflammatory and catabolic mediator production by chondrocytes. Although all the positive outcomes, no review has analyzed the effects of CS hydrogels on cartilage repair in animal models.

Methods: This study aimed to review the literature to examine the effects of CS hydrogels on cartilage repair in experimental animal models. The search was done by the descriptors of the Medical Subject Headings (MeSH) defined below: “Chitosan,” “hydrogel,” “cartilage repair,” and “in vivo.” A total of 420 articles were retrieved from the databases Pubmed, Scopus, Embase, Lilacs, and Web of Science. After the eligibility analyses, this review reported 9 different papers from the beginning of 2002 through the middle of 2022.

Results: It was found that cartilage repair was improved with the treatment of CS hydrogel, especially the one enriched with cells. In addition, CS hydrogel produced an upregulation of genes and proteins that act in the cartilage repair process, improving the biomechanical properties of gait..

Conclusion: In conclusion, CS hydrogels were able to stimulate tissue ingrowth and accelerate the process of cartilage repair in animal studies.

Keywords: Hydrogel, chitosan, tissue engineering, cartilage repair, in vivo studies, review.

Graphical Abstract
[1]
Cervantes-Diaz, F.; Contreras, P.; Marcellini, S. Evolutionary origin of endochondral ossification: The transdifferentiation hypothesis. Dev. Genes Evol., 2017, 227(2), 121-127.
[http://dx.doi.org/10.1007/s00427-016-0567-y] [PMID: 27909803]
[2]
Oliveira, J.M.; Ribeiro, V.P.; Reis, R.L. Advances on gradient scaffolds for osteochondral tissue engineering. Prog. Biomed. Eng., 2021, 3(3), 033001.
[http://dx.doi.org/10.1088/2516-1091/abfc2c]
[3]
Liao, J.; Tian, T.; Shi, S.; Xie, X.; Ma, Q.; Li, G.; Lin, Y. The fabrication of biomimetic biphasic CAN-PAC hydrogel with a seamless interfacial layer applied in osteochondral defect repair. Bone Res., 2017, 5, 17018.
[http://dx.doi.org/10.1038/boneres.2017.18]
[4]
Mellati, A.; Fan, C.M.; Tamayol, A.; Annabi, N.; Dai, S.; Bi, J.; Jin, B.; Xian, C.; Khademhosseini, A.; Zhang, H. Microengineered 3D cell-laden thermoresponsive hydrogels for mimicking cell morphology and orientation in cartilage tissue engineering. Biotechnol. Bioeng., 2017, 114(1), 217-231.
[http://dx.doi.org/10.1002/bit.26061] [PMID: 27477393]
[5]
Han, L.; Liu, K.; Wang, M.; Wang, K.; Fang, L.; Chen, H.; Zhou, J.; Lu, X. Mussel-inspired adhesive and conductive hydrogel with long-lasting moisture and extreme temperature tolerance. Adv. Funct. Mater., 2018, 28(3), 1704195.
[http://dx.doi.org/10.1002/adfm.201704195]
[6]
Zhang, Y.S.; Khademhosseini, A. 乳鼠心肌提取 HHS Public Access. Science, 2017, 356(6337), 139-148.
[http://dx.doi.org/10.1126/science.aaf3627.Advances]
[7]
Comblain, F.; Rocasalbas, G.; Gauthier, S.; Henrotin, Y. Chitosan: A promising polymer for cartilage repair and viscosupplementation. Biomed. Mater. Eng., 2017, 28(s1), S209-S215.
[http://dx.doi.org/10.3233/BME-171643] [PMID: 28372297]
[8]
Kaderli, S.; Boulocher, C.; Pillet, E.; Watrelot-Virieux, D.; Rougemont, A.L.; Roger, T.; Viguier, E.; Gurny, R.; Scapozza, L.; Jordan, O. A novel biocompatible hyaluronic acid–chitosan hybrid hydrogel for osteoarthrosis therapy. Int. J. Pharm., 2015, 483(1-2), 158-168.
[http://dx.doi.org/10.1016/j.ijpharm.2015.01.052] [PMID: 25666331]
[9]
Muzzarelli, R.; Baldassarre, V.; Conti, F.; Ferrara, P.; Biagini, G.; Gazzanelli, G.; Vasi, V. Biological activity of chitosan: Ultrastructural study. Biomaterials, 1988, 9(3), 247-252.
[http://dx.doi.org/10.1016/0142-9612(88)90092-0] [PMID: 3408796]
[10]
Oprenyeszk, F.; Chausson, M.; Maquet, V.; Dubuc, J.E.; Henrotin, Y. Protective effect of a new biomaterial against the development of experimental osteoarthritis lesions in rabbit: A pilot study evaluating the intra-articular injection of alginate-chitosan beads dispersed in an hydrogel. Osteoarthritis Cartilage, 2013, 21(8), 1099-1107.
[http://dx.doi.org/10.1016/j.joca.2013.04.017] [PMID: 23680875]
[11]
Li, Z.; Ramay, H.R.; Hauch, K.D.; Xiao, D.; Zhang, M. Chitosan–alginate hybrid scaffolds for bone tissue engineering. Biomaterials, 2005, 26(18), 3919-3928.
[http://dx.doi.org/10.1016/j.biomaterials.2004.09.062] [PMID: 15626439]
[12]
Patchornik, S.; Ram, E.; Ben Shalom, N.; Nevo, Z.; Robinson, D. Chitosan-hyaluronate hybrid gel intraarticular injection delays osteoarthritis progression and reduces pain in a rat meniscectomy model as compared to saline and hyaluronate treatment. Adv. Orthop., 2012, 2012, 1-5.
[http://dx.doi.org/10.1155/2012/979152] [PMID: 22611500]
[13]
Hooijmans, C.R.; Rovers, M.M.; de Vries, R.B.M.; Leenaars, M.; Ritskes-Hoitinga, M.; Langendam, M.W. SYRCLE’s risk of bias tool for animal studies. BMC Med. Res. Methodol., 2014, 14(1), 43.
[http://dx.doi.org/10.1186/1471-2288-14-43] [PMID: 24667063]
[14]
Liu, C.; Liu, D.; Wang, Y.; Li, Y.; Li, T.; Zhou, Z.; Yang, Z.; Wang, J.; Zhang, Q. Glycol chitosan/oxidized hyaluronic acid hydrogels functionalized with cartilage extracellular matrix particles and incorporating BMSCs for cartilage repair. Artif. Cells Nanomed. Biotechnol., 2018, 46(S1), 721-732.
[http://dx.doi.org/10.1080/21691401.2018.1434662]
[15]
Park, Y.B.; Song, M.; Lee, C.H.; Kim, J.A.; Ha, C.W. Cartilage repair by human umbilical cord blood‐derived mesenchymal stem cells with different hydrogels in a rat model. J. Orthop. Res., 2015, 33(11), 1580-1586.
[http://dx.doi.org/10.1002/jor.22950] [PMID: 26019012]
[16]
Yang, J.; Jing, X.; Wang, Z.; Liu, X.; Zhu, X.; Lei, T.; Li, X.; Guo, W.; Rao, H.; Chen, M.; Luan, K.; Sui, X.; Wei, Y.; Liu, S.; Guo, Q. In vitro and in vivo study on an injectable glycol chitosan/dibenzaldehyde-terminated polyethylene glycol hydrogel in repairing articular cartilage defects. Front. Bioeng. Biotechnol., 2021, 9, 607709.
[http://dx.doi.org/10.3389/fbioe.2021.607709] [PMID: 33681156]
[17]
Cui, P.; Pan, P.; Qin, L.; Wang, X.; Chen, X.; Deng, Y.; Zhang, X. Nanoengineered hydrogels as 3D biomimetic extracellular matrix with injectable and sustained delivery capability for cartilage regeneration. Bioact. Mater., 2023, 19, 487-498.
[http://dx.doi.org/10.1016/j.bioactmat.2022.03.032] [PMID: 35600973]
[18]
Jia, Z.; Zhu, F.; Li, X.; Liang, Q.; Zhuo, Z.; Huang, J.; Duan, L.; Xiong, J.; Wang, D. Repair of osteochondral defects using injectable chitosan-based hydrogel encapsulated synovial fluid-derived mesenchymal stem cells in a rabbit model. Mater. Sci. Eng. C, 2019, 99, 541-551.
[http://dx.doi.org/10.1016/j.msec.2019.01.115] [PMID: 30889728]
[19]
Naghizadeh, Z.; Karkhaneh, A.; Nokhbatolfoghahaei, H.; Farzad-Mohajeri, S.; Rezai-Rad, M.; Dehghan, M.M.; Aminishakib, P.; Khojasteh, A. Cartilage regeneration with dual‐drug‐releasing injectable hydrogel/microparticle system: In vitro and in vivo study. J. Cell. Physiol., 2021, 236(3), 2194-2204.
[http://dx.doi.org/10.1002/jcp.30006] [PMID: 32776540]
[20]
Wan, W.; Li, Q.; Gao, H.; Ge, L.; Liu, Y.; Zhong, W.; Ouyang, J.; Xing, M. BMSCs laden injectable amino-diethoxypropane modified alginate-chitosan hydrogel for hyaline cartilage reconstruction. J. Mater. Chem. B Mater. Biol. Med., 2015, 3(9), 1990-2005.
[http://dx.doi.org/10.1039/C4TB01394H] [PMID: 32262269]
[21]
Kumari, K.; Kundu, P.P. Studies on In vitro release of CPM from semi-interpenetrating polymer network (IPN) composed of chitosan and glutamic acid. Bull. Mater. Sci., 2008, 31(2), 159-167.
[http://dx.doi.org/10.1007/s12034-008-0028-y]
[22]
Shen, K.; Liu, X.; Qin, H.; Chai, Y.; Wang, L.; Yu, B. Ha-g-cs implant and moderate-intensity exercise stimulate subchondral bone remodeling and promote repair of osteochondral defects in mice. Int. J. Med. Sci., 2021, 18(16), 3808-3820.
[http://dx.doi.org/10.7150/ijms.63401] [PMID: 34790057]
[23]
Zhao, M.; Chen, Z.; Liu, K.; Wan, Y.; Li, X.; Luo, X.; Bai, Y.; Yang, Z.; Feng, G. Repair of articular cartilage defects in rabbits through tissue-engineered cartilage constructed with chitosan hydrogel and chondrocytes. J. Zhejiang Univ. Sci. B, 2015, 16(11), 914-923.
[http://dx.doi.org/10.1631/jzus.B1500036] [PMID: 26537209]
[24]
Ahmadi, F.; Oveisi, Z.; Samani, M.; Amoozgar, Z. Chitosan based hydrogels: Characteristics and pharmaceutical applications. Res. Pharm. Sci., 2015, 10(1), 1-16.
[25]
Assenmacher, A.T.; Pareek, A.; Reardon, P.J.; Macalena, J.A.; Stuart, M.J.; Krych, A.J. Long-term outcomes after osteochondral allograft: A systematic review at long-term follow-up of 12.3 Years. Arthroscopy, 2016, 32(10), 2160-2168.
[http://dx.doi.org/10.1016/j.arthro.2016.04.020] [PMID: 27317013]
[26]
Gan, D.; Wang, Z.; Xie, C.; Wang, X.; Xing, W.; Ge, X.; Yuan, H.; Wang, K.; Tan, H.; Lu, X. Mussel‐inspired tough hydrogel with in situ nanohydroxyapatite mineralization for osteochondral defect repair. Adv. Healthc. Mater., 2019, 8(22), 1901103.
[http://dx.doi.org/10.1002/adhm.201901103] [PMID: 31609095]
[27]
Levingstone, T.J.; Thompson, E.; Matsiko, A.; Schepens, A.; Gleeson, J.P.; O’Brien, F.J. Multi-layered collagen-based scaffolds for osteochondral defect repair in rabbits. Acta Biomater., 2016, 32, 149-160.
[http://dx.doi.org/10.1016/j.actbio.2015.12.034] [PMID: 26724503]
[28]
Kessler, M.W.; Ackerman, G.; Dines, J.S.; Grande, D. Emerging technologies and fourth generation issues in cartilage repair. Sports Med. Arthrosc. Rev., 2008, 16(4), 246-254.
[http://dx.doi.org/10.1097/JSA.0b013e31818d56b3] [PMID: 19011557]
[29]
Gonzalez-Fernandez, P.; Rodríguez-Nogales, C.; Jordan, O.; Allémann, E. Combination of mesenchymal stem cells and bioactive molecules in hydrogels for osteoarthritis treatment. Eur. J. Pharm. Biopharm., 2022, 172, 41-52.
[http://dx.doi.org/10.1016/j.ejpb.2022.01.003] [PMID: 35114357]
[30]
He, Z.; Wang, B.; Hu, C.; Zhao, J. An overview of hydrogel-based intra-articular drug delivery for the treatment of osteoarthritis. In: Colloids and Surfaces B: Biointerfaces; Elsevier, 2017; 154, pp. 33-39.
[http://dx.doi.org/10.1016/j.colsurfb.2017.03.003]
[31]
Narmatha Christy, P.; Khaleel Basha, S.; Sugantha Kumari, V.; Bashir, A.K.H.; Maaza, M.; Kaviyarasu, K. Biopolymeric nanocomposite scaffolds for bone tissue engineering applications - A review. J. Drug Deliv. Sci. Technol., 2020, 55, 101452.
[http://dx.doi.org/10.1016/j.jddst.2019.101452]
[32]
Minhajul Islam, Md.; Shahruzzaman, Md.; Shanta Biswas, Md. Chitosan based bioactive materials in tissue engineering applications-A review. Bioact. Mater., 2020, 5(1), 164-183.
[http://dx.doi.org/10.1016/j.bioactmat.2020.01.012]
[33]
Farokhi, M.; Jonidi Shariatzadeh, F.; Solouk, A.; Mirzadeh, H. Alginate based scaffolds for cartilage tissue engineering: A review. Int. J. Polym. Mater., 2020, 69(4), 230-247.
[http://dx.doi.org/10.1080/00914037.2018.1562924]
[34]
Alphandéry, E. A discussion on existing nanomedicine regulation: Progress and pitfalls. Appl. Mater. Today, 2019, 17, 193-205.
[http://dx.doi.org/10.1016/j.apmt.2019.07.005]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy