Generic placeholder image

Current Molecular Pharmacology

Editor-in-Chief

ISSN (Print): 1874-4672
ISSN (Online): 1874-4702

Review Article

Deregulated MicroRNAs involved in P53 Signaling Pathway in Breast Cancer with Focus on Triple-negative Breast Cancer

Author(s): Yasaman Naeimzadeh, Zahra Heidari, Vahid Razban* and Sahar Khajeh*

Volume 17, 2024

Published on: 24 October, 2023

Article ID: e18761429263841 Pages: 20

DOI: 10.2174/0118761429263841230926014118

open_access

Abstract

Background: Breast cancer (BC), as a heterogenous disease, is the most common cancer among women worldwide. Triple-negative breast cancer (TNBC) is the most aggressive and malignant subtype with a poor prognosis and a high rate of relapse and metastasis that is closely linked to epithelial–mesenchymal transition (EMT). It is well-documented that miRNAs play oncogenic (oncomiR) or tumor-suppressive (TS-miR) roles in controlling apoptosis (apoptomiR), differentiation, cell proliferation, invasion, migration, etc. Regarding the regulatory roles of miRNAs in the expression levels of various genes, dysfunction or deregulated expression of these molecules can lead to various disorders, including various types of cancers, such as BC. Many miRNAs have been identified with critical contributions in the initiation and development of different types of BCs due to their influence on the p53 signaling network.

Objective: The aim of this review was to discuss several important deregulated miRNAs that are involved in the p53 signaling pathway in BC, especially the TNBC subtype. Finally, miRNAs’ involvement in tumor properties and their applications as diagnostic, prognostic, and therapeutic agents have been elaborated in detail.

Results: The miRNA expression profile of BC is involved in tumor-grade estrogen receptor (ER) and progesterone receptor (PR) expression, and other pathological properties from luminal A to TNBC/basal-like subtypes via p53 signaling pathways.

Conclusion: Developing our knowledge about miRNA expression profile in BC, as well as molecular mechanisms of initiation and progression of BC can help to find new prognostic, diagnostic, and therapeutic biomarkers, which can lead to a suitable treatment for BC patients.

Keywords: Triple-negative breast cancer, MiRNA, P53, Biomarker, Drug resistance.

[1]
Yin, L.; Duan, J-J.; Bian, X-W.; Yu, S-c. Triple-negative breast cancer molecular subtyping and treatment progress. Breast Cancer Res., 2020, 22(1), 1-13.
[2]
Cosentino, G.; Plantamura, I.; Tagliabue, E.; Iorio, M.V.; Cataldo, A. Breast cancer drug resistance: Overcoming the challenge by capitalizing on microrna and tumor microenvironment interplay. Cancers, 2021, 13(15), 3691.
[http://dx.doi.org/10.3390/cancers13153691] [PMID: 34359591]
[3]
Ilbeigi, S.; Naeimzadeh, Y.; Davoodabadi Farahani, M.; Rafiee Monjezi, M.; Dastsooz, H.; Daraei, A.; Farahani, F.; Dastgheib, A.; Mansoori, Y.; Bagher Tabei, S.M. Clinical values of two estrogen receptor signaling targeted lncRNAs in invasive ductal breast carcinoma. Klin. Onkol., 2021, 34(5), 382-391.
[http://dx.doi.org/10.48095/ccko2021382] [PMID: 34702045]
[4]
Agboola, R.; Okikiade, A.; Afolayan-Oloye, O. The role of MicroRNAs regulated breast cancer stem cells in the pathogenesis, prognosis and aggressiveness of breast cancer. Adv. Res., 2023, 24(4), 1-18.
[http://dx.doi.org/10.9734/air/2023/v24i4943]
[5]
Al-thoubaity, F.K. Molecular classification of breast cancer: A retrospective cohort study. Ann. Med. Surg., 2020, 49, 44-48.
[http://dx.doi.org/10.1016/j.amsu.2019.11.021] [PMID: 31890196]
[6]
Coates, A.S.; Winer, E.P.; Goldhirsch, A.; Gelber, R.D.; Gnant, M.; Piccart-Gebhart, M.; Thürlimann, B.; Senn, H.J.; André, F.; Baselga, J.; Bergh, J.; Bonnefoi, H.; Burstein, H.; Cardoso, F.; Castiglione-Gertsch, M.; Coates, A.S.; Colleoni, M.; Curigliano, G.; Davidson, N.E.; Di Leo, A.; Ejlertsen, B.; Forbes, J.F.; Galimberti, V.; Gelber, R.D.; Gnant, M.; Goldhirsch, A.; Goodwin, P.; Harbeck, N.; Hayes, D.F.; Huober, J.; Hudis, C.A.; Ingle, J.N.; Jassem, J.; Jiang, Z.; Karlsson, P.; Morrow, M.; Orecchia, R.; Kent Osborne, C.; Partridge, A.H.; de la Peña, L.; Piccart-Gebhart, M.J.; Pritchard, K.I.; Rutgers, E.J.T.; Sedlmayer, F.; Semiglazov, V.; Shao, Z-M.; Smith, I.; Thürlimann, B.; Toi, M.; Tutt, A.; Viale, G.; von Minckwitz, G.; Watanabe, T.; Whelan, T.; Winer, E.P.; Xu, B. Tailoring therapies—improving the management of early breast cancer: St gallen international expert consensus on the primary therapy of early breast cancer 2015. Ann. Oncol., 2015, 26(8), 1533-1546.
[http://dx.doi.org/10.1093/annonc/mdv221] [PMID: 25939896]
[7]
Goldhirsch, A.; Winer, E.P.; Coates, A.S.; Gelber, R.D.; Piccart-Gebhart, M.; Thürlimann, B.; Senn, H.J.; Albain, K.S.; André, F.; Bergh, J.; Bonnefoi, H.; Bretel-Morales, D.; Burstein, H.; Cardoso, F.; Castiglione-Gertsch, M.; Coates, A.S.; Colleoni, M.; Costa, A.; Curigliano, G.; Davidson, N.E.; Di Leo, A.; Ejlertsen, B.; Forbes, J.F.; Gelber, R.D.; Gnant, M.; Goldhirsch, A.; Goodwin, P.; Goss, P.E.; Harris, J.R.; Hayes, D.F.; Hudis, C.A.; Ingle, J.N.; Jassem, J.; Jiang, Z.; Karlsson, P.; Loibl, S.; Morrow, M.; Namer, M.; Kent Osborne, C.; Partridge, A.H.; Penault-Llorca, F.; Perou, C.M.; Piccart-Gebhart, M.J.; Pritchard, K.I.; Rutgers, E.J.T.; Sedlmayer, F.; Semiglazov, V.; Shao, Z-M.; Smith, I.; Thürlimann, B.; Toi, M.; Tutt, A.; Untch, M.; Viale, G.; Watanabe, T.; Wilcken, N.; Winer, E.P.; Wood, W.C. Personalizing the treatment of women with early breast cancer: Highlights of the St gallen international expert consensus on the primary therapy of early breast cancer 2013. Ann. Oncol., 2013, 24(9), 2206-2223.
[http://dx.doi.org/10.1093/annonc/mdt303] [PMID: 23917950]
[8]
di Gennaro, A.; Damiano, V.; Brisotto, G.; Armellin, M.; Perin, T.; Zucchetto, A.; Guardascione, M.; Spaink, H.P.; Doglioni, C.; Snaar-Jagalska, B.E.; Santarosa, M.; Maestro, R. A p53/miR-30a/ZEB2 axis controls triple negative breast cancer aggressiveness. Cell Death Differ., 2018, 25(12), 2165-2180.
[http://dx.doi.org/10.1038/s41418-018-0103-x] [PMID: 29666469]
[9]
Jang, M.H.; Kim, H.J.; Gwak, J.M.; Chung, Y.R.; Park, S.Y. Prognostic value of microRNA-9 and microRNA-155 expression in triple-negative breast cancer. Hum. Pathol., 2017, 68, 69-78.
[http://dx.doi.org/10.1016/j.humpath.2017.08.026] [PMID: 28882698]
[10]
Judes, G.; Rifaï, K.; Daures, M.; Dubois, L.; Bignon, Y.J.; Penault-Llorca, F.; Bernard-Gallon, D. High-throughput «Omics» technologies: New tools for the study of triple-negative breast cancer. Cancer Lett., 2016, 382(1), 77-85.
[http://dx.doi.org/10.1016/j.canlet.2016.03.001] [PMID: 26965997]
[11]
Khorsand, M.; Mostafavi-Pour, Z.; Razban, V.; Khajeh, S.; Zare, R. Combinatorial effects of telmisartan and docetaxel on cell viability and metastatic gene expression in human prostate and breast cancer cells. Mol. Biol. Res. Commun., 2022, 11(1), 11-20.
[PMID: 35463822]
[12]
Kavousipour, S.; Mokarram, P.; Barazesh, M.; Arabizadeh, E.; Razban, V.; Mostafavipour, Z.; Mohammadi, S.; Abolmaali, S.S. Effect of CD44 aptamer on snail metastasis factor and aggressiveness of MDA-MB-231 breast cancer cell line. Shiraz E Med. J., 2020, 21(5)
[http://dx.doi.org/10.5812/semj.94641]
[13]
Tsai, H.P.; Huang, S.F.; Li, C.F.; Chien, H.T.; Chen, S.C. Differential microRNA expression in breast cancer with different onset age. PLoS One, 2018, 13(1), e0191195.
[http://dx.doi.org/10.1371/journal.pone.0191195] [PMID: 29324832]
[14]
Kurozumi, S.; Yamaguchi, Y.; Kurosumi, M.; Ohira, M.; Matsumoto, H.; Horiguchi, J. Recent trends in microRNA research into breast cancer with particular focus on the associations between microRNAs and intrinsic subtypes. J. Hum. Genet., 2017, 62(1), 15-24.
[http://dx.doi.org/10.1038/jhg.2016.89] [PMID: 27439682]
[15]
Gan, H.H.; Gunsalus, K.C. The role of tertiary structure in microRNA target recognition. MicroRNA Target Identification; Springer, 2019, pp. 43-64.
[http://dx.doi.org/10.1007/978-1-4939-9207-2_4]
[16]
Kaur, A.; Mackin, S.T.; Schlosser, K.; Wong, F.L.; Elharram, M.; Delles, C.; Stewart, D.J.; Dayan, N.; Landry, T.; Pilote, L. Systematic review of microRNA biomarkers in acute coronary syndrome and stable coronary artery disease. Cardiovasc. Res., 2020, 116(6), 1113-1124.
[http://dx.doi.org/10.1093/cvr/cvz302] [PMID: 31782762]
[17]
Kozomara, A.; Birgaoanu, M.; Griffiths-Jones, S. miRBase: From microRNA sequences to function. Nucleic Acids Res., 2019, 47(D1), D155-D162.
[http://dx.doi.org/10.1093/nar/gky1141] [PMID: 30423142]
[18]
Tang, L. Recapitulating miRNA biogenesis in cells. Nat. Methods, 2022, 19(1), 35.
[http://dx.doi.org/10.1038/s41592-021-01385-z] [PMID: 35017737]
[19]
Nammian, P.; Razban, V.; Tabei, S.M.B.; Asadi-Yousefabad, S.L. MicroRNA-126: Dual role in angiogenesis dependent diseases. Curr. Pharm. Des., 2020, 26(38), 4883-4893.
[http://dx.doi.org/10.2174/1381612826666200504120737] [PMID: 32364067]
[20]
Wei, X.; Ke, H.; Wen, A.; Gao, B.; Shi, J.; Feng, Y. Structural basis of microRNA processing by Dicer-like 1. Nat. Plants, 2021, 7(10), 1389-1396.
[http://dx.doi.org/10.1038/s41477-021-01000-1] [PMID: 34593993]
[21]
Salim, U.; Kumar, A.; Kulshreshtha, R.; Vivekanandan, P. Biogenesis, characterization, and functions of mirtrons. Wiley Interdiscip. Rev. RNA, 2022, 13(1), e1680.
[http://dx.doi.org/10.1002/wrna.1680] [PMID: 34155810]
[22]
Wang, F.; Lv, P.; Liu, X.; Zhu, M.; Qiu, X. microRNA-214 enhances the invasion ability of breast cancer cells by targeting p53. Int. J. Mol. Med., 2015, 35(5), 1395-1402.
[http://dx.doi.org/10.3892/ijmm.2015.2123] [PMID: 25738546]
[23]
Liu, J.; Zhang, C.; Zhao, Y.; Feng, Z. MicroRNA control of p53. J. Cell. Biochem., 2017, 118(1), 7-14.
[http://dx.doi.org/10.1002/jcb.25609] [PMID: 27216701]
[24]
Jansson, M.D.; Lund, A.H. MicroRNA and cancer. Mol. Oncol., 2012, 6(6), 590-610.
[http://dx.doi.org/10.1016/j.molonc.2012.09.006] [PMID: 23102669]
[25]
Abdalla, F.; Singh, B.; Bhat, H.K. MicroRNAs and gene regulation in breast cancer. J. Biochem. Mol. Toxicol., 2020, 34(11), e22567.
[http://dx.doi.org/10.1002/jbt.22567] [PMID: 32729651]
[26]
Wang, L.; Wang, J. MicroRNA-mediated breast cancer metastasis: From primary site to distant organs. Oncogene, 2012, 31(20), 2499-2511.
[http://dx.doi.org/10.1038/onc.2011.444] [PMID: 21963843]
[27]
Piasecka, D.; Braun, M.; Kordek, R.; Sadej, R.; Romanska, H. MicroRNAs in regulation of triple-negative breast cancer progression. J. Cancer Res. Clin. Oncol., 2018, 144(8), 1401-1411.
[http://dx.doi.org/10.1007/s00432-018-2689-2] [PMID: 29923083]
[28]
Oztemur Islakoglu, Y.; Noyan, S.; Aydos, A.; Gur Dedeoglu, B. Meta-microRNA biomarker signatures to classify breast cancer subtypes. OMICS, 2018, 22(11), 709-716.
[http://dx.doi.org/10.1089/omi.2018.0157] [PMID: 30388053]
[29]
Non-coding RNAs, guardians of the p53 galaxy. Semin Cancer Biol, 2021, 75, 72-83.
[http://dx.doi.org/10.1016/j.semcancer.2020.09.002]
[30]
Dumay, A.; Feugeas, J.P.; Wittmer, E.; Lehmann-Che, J.; Bertheau, P.; Espié, M.; Plassa, L.F.; Cottu, P.; Marty, M.; André, F.; Sotiriou, C.; Pusztai, L.; de Thé, H. Distinct tumor protein p53 mutants in breast cancer subgroups. Int. J. Cancer, 2013, 132(5), 1227-1231.
[http://dx.doi.org/10.1002/ijc.27767] [PMID: 22886769]
[31]
Mencia, R.; Gonzalo, L.; Tossolini, I.; Manavella, P.A. Keeping up with the miRNAs: Current paradigms of the biogenesis pathway. J. Exp. Bot., 2022, 74(7), 2213-2227.
[PMID: 35959860]
[32]
Partin, A.C.; Ngo, T.D.; Herrell, E.; Jeong, B.C.; Hon, G.; Nam, Y. Heme enables proper positioning of Drosha and DGCR8 on primary microRNAs. Nat. Commun., 2017, 8(1), 1737.
[http://dx.doi.org/10.1038/s41467-017-01713-y] [PMID: 29170488]
[33]
Liu, J.; Zhou, F.; Guan, Y.; Meng, F.; Zhao, Z.; Su, Q.; Bao, W.; Wang, X.; Zhao, J.; Huo, Z.; Zhang, L.; Zhou, S.; Chen, Y.; Wang, X. The biogenesis of miRNAs and their role in the development of amyotrophic lateral sclerosis. Cells, 2022, 11(3), 572.
[http://dx.doi.org/10.3390/cells11030572] [PMID: 35159383]
[34]
Shoffner, G.M.; Peng, Z.; Guo, F. Structures of microRNA-precursor apical junctions and loops reveal non-canonical base pairs important for processing. bioRxiv, 2020. Preprint.
[http://dx.doi.org/10.1101/2020.05.05.078014]
[35]
Overview of microRNA biology., Semin Liver Dis., 2015, 35(1), 3-11.
[36]
Jin, S.; Zeng, X.; Fang, J.; Lin, J.; Chan, S.Y.; Erzurum, S.C.; Cheng, F. A network-based approach to uncover microRNA-mediated disease comorbidities and potential pathobiological implications. NPJ Syst. Biol. Appl., 2019, 5(1), 41.
[http://dx.doi.org/10.1038/s41540-019-0115-2] [PMID: 31754458]
[37]
Negrini, M.; Calin, G.A. Breast cancer metastasis: A microRNA story. Breast Cancer Res., 2008, 10(2), 303.
[http://dx.doi.org/10.1186/bcr1867] [PMID: 18373886]
[38]
Di Agostino, S. The impact of mutant p53 in the non-coding RNA world. Biomolecules, 2020, 10(3), 472.
[http://dx.doi.org/10.3390/biom10030472] [PMID: 32204575]
[39]
Babikir, H.A.; Afjei, R.; Paulmurugan, R.; Massoud, T.F. Restoring guardianship of the genome: Anticancer drug strategies to reverse oncogenic mutant p53 misfolding. Cancer Treat. Rev., 2018, 71, 19-31.
[http://dx.doi.org/10.1016/j.ctrv.2018.09.004] [PMID: 30336366]
[40]
Neilsen, P.M.; Noll, J.E.; Mattiske, S.; Bracken, C.P.; Gregory, P.A.; Schulz, R.B.; Lim, S.P.; Kumar, R.; Suetani, R.J.; Goodall, G.J.; Callen, D.F. Mutant p53 drives invasion in breast tumors through up-regulation of miR-155. Oncogene, 2013, 32(24), 2992-3000.
[http://dx.doi.org/10.1038/onc.2012.305] [PMID: 22797073]
[41]
Pant, V.; Lozano, G. Limiting the power of p53 through the ubiquitin proteasome pathway. Genes Dev., 2014, 28(16), 1739-1751.
[http://dx.doi.org/10.1101/gad.247452.114] [PMID: 25128494]
[42]
Yu, D.; Xu, Z.; Cheng, X.; Qin, J. The role of miRNAs in MDMX-p53 interplay. J. Evid. Based Med., 2021, 14(2), 152-160.
[http://dx.doi.org/10.1111/jebm.12428] [PMID: 33988919]
[43]
Wang, X.; Qiu, H.; Tang, R.; Song, H.; Pan, H.; Feng, Z.; Chen, L. miR‑30a inhibits epithelial‑mesenchymal transition and metastasis in triple‑negative breast cancer by targeting ROR1. Oncol. Rep., 2018, 39(6), 2635-2643.
[http://dx.doi.org/10.3892/or.2018.6379] [PMID: 29693179]
[44]
Cheng, C.W.; Wang, H.W.; Chang, C.W.; Chu, H.W.; Chen, C.Y.; Yu, J.C.; Chao, J.I.; Liu, H.F.; Ding, S.; Shen, C.Y. MicroRNA-30a inhibits cell migration and invasion by downregulating vimentin expression and is a potential prognostic marker in breast cancer. Breast Cancer Res. Treat., 2012, 134(3), 1081-1093.
[http://dx.doi.org/10.1007/s10549-012-2034-4] [PMID: 22476851]
[45]
Gregory, P.A.; Bert, A.G.; Paterson, E.L.; Barry, S.C.; Tsykin, A.; Farshid, G.; Vadas, M.A.; Khew-Goodall, Y.; Goodall, G.J. The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat. Cell Biol., 2008, 10(5), 593-601.
[http://dx.doi.org/10.1038/ncb1722] [PMID: 18376396]
[46]
Berber, U.; Yilmaz, I.; Narli, G.; Haholu, A.; Kucukodaci, Z.; Demirel, D. miR-205 and miR-200c: Predictive micro RNAs for lymph node metastasis in triple negative breast cancer. J. Breast Cancer, 2014, 17(2), 143-148.
[http://dx.doi.org/10.4048/jbc.2014.17.2.143] [PMID: 25013435]
[47]
Piovan, C.; Palmieri, D.; Di Leva, G.; Braccioli, L.; Casalini, P.; Nuovo, G.; Tortoreto, M.; Sasso, M.; Plantamura, I.; Triulzi, T.; Taccioli, C.; Tagliabue, E.; Iorio, M.V.; Croce, C.M. Oncosuppressive role of p53-induced miR-205 in triple negative breast cancer. Mol. Oncol., 2012, 6(4), 458-472.
[http://dx.doi.org/10.1016/j.molonc.2012.03.003] [PMID: 22578566]
[48]
Iliopoulos, D.; Hirsch, H.A.; Struhl, K. An epigenetic switch involving NF-kappaB, Lin28, Let-7 MicroRNA, and IL6 links inflammation to cell transformation. Cell, 2009, 139(4), 693-706.
[http://dx.doi.org/10.1016/j.cell.2009.10.014] [PMID: 19878981]
[49]
Yu, F.; Yao, H.; Zhu, P.; Zhang, X.; Pan, Q.; Gong, C.; Huang, Y.; Hu, X.; Su, F.; Lieberman, J.; Song, E. let-7 regulates self renewal and tumorigenicity of breast cancer cells. Cell, 2007, 131(6), 1109-1123.
[http://dx.doi.org/10.1016/j.cell.2007.10.054] [PMID: 18083101]
[50]
Yao, J.; Zhou, E.; Wang, Y.; Xu, F.; Zhang, D.; Zhong, D. microRNA-200a inhibits cell proliferation by targeting mitochondrial transcription factor A in breast cancer. DNA Cell Biol., 2014, 33(5), 291-300.
[http://dx.doi.org/10.1089/dna.2013.2132] [PMID: 24684598]
[51]
Tsouko, E.; Wang, J.; Frigo, D.E.; Aydoğdu, E.; Williams, C. miR-200a inhibits migration of triple-negative breast cancer cells through direct repression of the EPHA2 oncogene. Carcinogenesis, 2015, 36(9), 1051-1060.
[http://dx.doi.org/10.1093/carcin/bgv087] [PMID: 26088362]
[52]
Feng, T.; Xu, D.; Tu, C.; Li, W.; Ning, Y.; Ding, J.; Wang, S.; Yuan, L.; Xu, N.; Qian, K.; Wang, Y.; Qi, C. miR-124 inhibits cell proliferation in breast cancer through downregulation of CDK4. Tumour Biol., 2015, 36(8), 5987-5997.
[http://dx.doi.org/10.1007/s13277-015-3275-8] [PMID: 25731732]
[53]
Liang, Y.J.; Wang, Q.Y.; Zhou, C.X.; Yin, Q.Q.; He, M.; Yu, X.T.; Cao, D.X.; Chen, G.Q.; He, J.R.; Zhao, Q. MiR-124 targets slug to regulate epithelial–mesenchymal transition and metastasis of breast cancer. Carcinogenesis, 2013, 34(3), 713-722.
[http://dx.doi.org/10.1093/carcin/bgs383] [PMID: 23250910]
[54]
Dong, G.; Liang, X.; Wang, D.; Gao, H.; Wang, L.; Wang, L.; Liu, J.; Du, Z. High expression of miR-21 in triple-negative breast cancers was correlated with a poor prognosis and promoted tumor cell in vitro proliferation. Med. Oncol., 2014, 31(7), 57.
[http://dx.doi.org/10.1007/s12032-014-0057-x] [PMID: 24930006]
[55]
Yan, L.X.; Huang, X.F.; Shao, Q.; Huang, M.A.Y.; Deng, L.; Wu, Q.L.; Zeng, Y.X.; Shao, J.Y. MicroRNA miR-21 overexpression in human breast cancer is associated with advanced clinical stage, lymph node metastasis and patient poor prognosis. RNA, 2008, 14(11), 2348-2360.
[http://dx.doi.org/10.1261/rna.1034808] [PMID: 18812439]
[56]
D’Ippolito, E.; Plantamura, I.; Bongiovanni, L.; Casalini, P.; Baroni, S.; Piovan, C.; Orlandi, R.; Gualeni, A.V.; Gloghini, A.; Rossini, A.; Cresta, S.; Tessari, A.; De Braud, F.; Di Leva, G.; Tripodo, C.; Iorio, M.V. miR-9 and miR-200 regulate PDGFRβ-Mediated endothelial differentiation of tumor cells in triple-negative breast cancer. Cancer Res., 2016, 76(18), 5562-5572.
[http://dx.doi.org/10.1158/0008-5472.CAN-16-0140] [PMID: 27402080]
[57]
Gwak, J.M.; Kim, H.J.; Kim, E.J.; Chung, Y.R.; Yun, S.; Seo, A.N.; Lee, H.J.; Park, S.Y. MicroRNA-9 is associated with epithelial-mesenchymal transition, breast cancer stem cell phenotype, and tumor progression in breast cancer. Breast Cancer Res. Treat., 2014, 147(1), 39-49.
[http://dx.doi.org/10.1007/s10549-014-3069-5] [PMID: 25086633]
[58]
Johansson, J.; Berg, T.; Kurzejamska, E.; Pang, M-F.; Tabor, V.; Jansson, M.; Roswall, P.; Pietras, K.; Sund, M.; Religa, P.; Fuxe, J. MiR-155-mediated loss of C/EBPβ shifts the TGF-β response from growth inhibition to epithelial-mesenchymal transition, invasion and metastasis in breast cancer. Oncogene, 2013, 32(50), 5614-5624.
[http://dx.doi.org/10.1038/onc.2013.322] [PMID: 23955085]
[59]
Wang, Q.; Li, C.; Zhu, Z.; Teng, Y.; Che, X.; Wang, Y.; Ma, Y.; Wang, Y.; Zheng, H.; Liu, Y.; Qu, X. miR-155-5p antagonizes the apoptotic effect of bufalin in triple-negative breast cancer cells. Anticancer Drugs, 2016, 27(1), 9-16.
[http://dx.doi.org/10.1097/CAD.0000000000000296] [PMID: 26398931]
[60]
Czyzyk-Krzeska, M.F.; Zhang, X. MiR-155 at the heart of oncogenic pathways. Oncogene, 2014, 33(6), 677-678.
[http://dx.doi.org/10.1038/onc.2013.26] [PMID: 23416982]
[61]
Garcia, A.I.; Buisson, M.; Bertrand, P.; Rimokh, R.; Rouleau, E.; Lopez, B.S.; Lidereau, R.; Mikaélian, I.; Mazoyer, S. Down-regulation of BRCA1 expression by miR-146a and miR-146b-5p in triple negative sporadic breast cancers. EMBO Mol. Med., 2011, 3(5), 279-290.
[http://dx.doi.org/10.1002/emmm.201100136] [PMID: 21472990]
[62]
Si, C.; Yu, Q.; Yao, Y. Effect of miR-146a-5p on proliferation and metastasis of triple-negative breast cancer via regulation of SOX5. Exp. Ther. Med., 2018, 15(5), 4515-4521.
[http://dx.doi.org/10.3892/etm.2018.5945] [PMID: 29731835]
[63]
Kumaraswamy, E.; Wendt, K.L.; Augustine, L.A.; Stecklein, S.R.; Sibala, E.C.; Li, D.; Gunewardena, S.; Jensen, R.A. BRCA1 regulation of epidermal growth factor receptor (EGFR) expression in human breast cancer cells involves microRNA-146a and is critical for its tumor suppressor function. Oncogene, 2015, 34(33), 4333-4346.
[http://dx.doi.org/10.1038/onc.2014.363] [PMID: 25417703]
[64]
Becker, L.E.; Lu, Z.; Chen, W.; Xiong, W.; Kong, M.; Li, Y. A systematic screen reveals MicroRNA clusters that significantly regulate four major signaling pathways. PLoS One, 2012, 7(11), e48474.
[http://dx.doi.org/10.1371/journal.pone.0048474] [PMID: 23144891]
[65]
Becker, L.E.; Takwi, A.A.L.; Lu, Z.; Li, Y. The role of miR-200a in mammalian epithelial cell transformation. Carcinogenesis, 2015, 36(1), 2-12.
[http://dx.doi.org/10.1093/carcin/bgu202] [PMID: 25239643]
[66]
Choi, S.K.; Kim, H.S.; Jin, T.; Hwang, E.H.; Jung, M.; Moon, W.K. Overexpression of the miR-141/200c cluster promotes the migratory and invasive ability of triple-negative breast cancer cells through the activation of the FAK and PI3K/AKT signaling pathways by secreting VEGF-A. BMC Cancer, 2016, 16(1), 570.
[http://dx.doi.org/10.1186/s12885-016-2620-7] [PMID: 27484639]
[67]
Damiano, V.; Brisotto, G.; Borgna, S.; di Gennaro, A.; Armellin, M.; Perin, T.; Guardascione, M.; Maestro, R.; Santarosa, M. Epigenetic silencing of miR-200c in breast cancer is associated with aggressiveness and is modulated by ZEB1. Genes Chromosomes Cancer, 2017, 56(2), 147-158.
[http://dx.doi.org/10.1002/gcc.22422] [PMID: 27717206]
[68]
Huang, Q.D.; Zheng, S.R.; Cai, Y.J.; Chen, D.L.; Shen, Y.Y.; Lin, C.Q.; Hu, X.Q.; Wang, X.H.; Shi, H.; Guo, G.L. IMP3 promotes TNBC stem cell property through miRNA-34a regulation. Eur. Rev. Med. Pharmacol. Sci., 2018, 22(9), 2688-2696.
[PMID: 29771420]
[69]
Behzad, M.; Ali, M.; Solmaz, S.; Elham, B.; Behzad, B. Micro RNA 34a and Let-7a expression in human breast cancers is associated with apoptotic expression genes. Asian Pac. J. Cancer Prev., 2016, 17(4), 1887-1890.
[http://dx.doi.org/10.7314/APJCP.2016.17.4.1887] [PMID: 27221871]
[70]
Ren, Y.; Han, X.; Yu, K.; Sun, S.; Zhen, L.; Li, Z.; Wang, S. microRNA-200c downregulates XIAP expression to suppress proliferation and promote apoptosis of triple-negative breast cancer cells. Mol. Med. Rep., 2014, 10(1), 315-321.
[http://dx.doi.org/10.3892/mmr.2014.2222] [PMID: 24821285]
[71]
Hurst, D.R.; Edmonds, M.D.; Scott, G.K.; Benz, C.C.; Vaidya, K.S.; Welch, D.R. Breast cancer metastasis suppressor 1 up-regulates miR-146, which suppresses breast cancer metastasis. Cancer Res., 2009, 69(4), 1279-1283.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-3559] [PMID: 19190326]
[72]
Liu, R.; Liu, C.; Chen, D.; Yang, W.H.; Liu, X.; Liu, C.G.; Dugas, C.M.; Tang, F.; Zheng, P.; Liu, Y.; Wang, L. FOXP3 Controls an miR-146/NF-κB negative feedback loop that inhibits apoptosis in breast cancer cells. Cancer Res., 2015, 75(8), 1703-1713.
[http://dx.doi.org/10.1158/0008-5472.CAN-14-2108] [PMID: 25712342]
[73]
Yadav, P.; Mirza, M.; Nandi, K.; Jain, S.K.; Kaza, R.C.M.; Khurana, N.; Ray, P.C.; Saxena, A. Serum microRNA-21 expression as a prognostic and therapeutic biomarker for breast cancer patients. Tumour Biol., 2016, 37(11), 15275-15282.
[http://dx.doi.org/10.1007/s13277-016-5361-y] [PMID: 27696295]
[74]
Di Agostino, S.; Vahabi, M.; Turco, C.; Fontemaggi, G. Secreted non-coding RNAs: Functional impact on the tumor microenvironment and clinical relevance in triple-negative breast cancer. Noncoding RNA, 2022, 8(1), 5.
[http://dx.doi.org/10.3390/ncrna8010005] [PMID: 35076579]
[75]
MacKenzie, T.A.; Schwartz, G.N.; Calderone, H.M.; Graveel, C.R.; Winn, M.E.; Hostetter, G.; Wells, W.A.; Sempere, L.F. Stromal expression of miR-21 identifies high-risk group in triple-negative breast cancer. Am. J. Pathol., 2014, 184(12), 3217-3225.
[http://dx.doi.org/10.1016/j.ajpath.2014.08.020] [PMID: 25440114]
[76]
Gazinska, P.; Grigoriadis, A.; Brown, J.P.; Millis, R.R.; Mera, A.; Gillett, C.E.; Holmberg, L.H.; Tutt, A.N.; Pinder, S.E. Comparison of basal-like triple-negative breast cancer defined by morphology, immunohistochemistry and transcriptional profiles. Mod. Pathol., 2013, 26(7), 955-966.
[http://dx.doi.org/10.1038/modpathol.2012.244] [PMID: 23392436]
[77]
Stevens, K.N.; Vachon, C.M.; Couch, F.J. Genetic susceptibility to triple-negative breast cancer. Cancer Res., 2013, 73(7), 2025-2030.
[http://dx.doi.org/10.1158/0008-5472.CAN-12-1699] [PMID: 23536562]
[78]
Amirfallah, A.; Knutsdottir, H.; Arason, A.; Hilmarsdottir, B.; Johannsson, O.T.; Agnarsson, B.A.; Barkardottir, R.B.; Reynisdottir, I. Hsa-miR-21-3p associates with breast cancer patient survival and targets genes in tumor suppressive pathways. PLoS One, 2021, 16(11), e0260327.
[http://dx.doi.org/10.1371/journal.pone.0260327] [PMID: 34797887]
[79]
Najjary, S.; Mohammadzadeh, R.; Mokhtarzadeh, A.; Mohammadi, A.; Kojabad, A.B.; Baradaran, B. Role of miR-21 as an authentic oncogene in mediating drug resistance in breast cancer. Gene, 2020, 738, 144453.
[http://dx.doi.org/10.1016/j.gene.2020.144453] [PMID: 32035242]
[80]
Lu, Z.; Liu, M.; Stribinskis, V.; Klinge, C.M.; Ramos, K.S.; Colburn, N.H.; Li, Y. MicroRNA-21 promotes cell transformation by targeting the programmed cell death 4 gene. Oncogene, 2008, 27(31), 4373-4379.
[http://dx.doi.org/10.1038/onc.2008.72] [PMID: 18372920]
[81]
Fang, H.; Xie, J.; Zhang, M.; Zhao, Z.; Wan, Y.; Yao, Y. miRNA-21 promotes proliferation and invasion of triple-negative breast cancer cells through targeting PTEN. Am. J. Transl. Res., 2017, 9(3), 953-961.
[PMID: 28386324]
[82]
Yu, X.; Li, R.; Shi, W.; Jiang, T.; Wang, Y.; Li, C.; Qu, X. Silencing of MicroRNA-21 confers the sensitivity to tamoxifen and fulvestrant by enhancing autophagic cell death through inhibition of the PI3K-AKT-mTOR pathway in breast cancer cells. Biomed. Pharmacother., 2016, 77, 37-44.
[http://dx.doi.org/10.1016/j.biopha.2015.11.005] [PMID: 26796263]
[83]
Sharma, S.; Patnaik, P.K.; Aronov, S.; Kulshreshtha, R. ApoptomiRs of breast cancer: Basics to clinics. Front. Genet., 2016, 7, 175.
[http://dx.doi.org/10.3389/fgene.2016.00175] [PMID: 27746811]
[84]
Wang, H.; Tan, Z.; Hu, H.; Liu, H.; Wu, T.; Zheng, C.; Wang, X.; Luo, Z.; Wang, J.; Liu, S.; Lu, Z.; Tu, J. microRNA-21 promotes breast cancer proliferation and metastasis by targeting LZTFL1. BMC Cancer, 2019, 19(1), 738.
[http://dx.doi.org/10.1186/s12885-019-5951-3] [PMID: 31351450]
[85]
Arisan, E.D.; Rencuzogullari, O.; Cieza-Borrella, C.; Miralles Arenas, F.; Dwek, M.; Lange, S.; Uysal-Onganer, P. MiR-21 Is required for the epithelial–mesenchymal transition in MDA-MB-231 breast cancer cells. Int. J. Mol. Sci., 2021, 22(4), 1557.
[http://dx.doi.org/10.3390/ijms22041557] [PMID: 33557112]
[86]
Qi, L.; Bart, J.; Tan, L.P.; Platteel, I.; Sluis, T.; Huitema, S.; Harms, G.; Fu, L.; Hollema, H.; Berg, A. Expression of miR-21 and its targets (PTEN, PDCD4, TM1) in flat epithelial atypia of the breast in relation to ductal carcinoma in situ and invasive carcinoma. BMC Cancer, 2009, 9(1), 163.
[http://dx.doi.org/10.1186/1471-2407-9-163] [PMID: 19473551]
[87]
Li, S.; Yang, X.; Yang, J.; Zhen, J.; Zhang, D. Serum microRNA-21 as a potential diagnostic biomarker for breast cancer: a systematic review and meta-analysis. Clin. Exp. Med., 2016, 16(1), 29-35.
[http://dx.doi.org/10.1007/s10238-014-0332-3] [PMID: 25516467]
[88]
Zelli, V.; Compagnoni, C.; Capelli, R.; Cannita, K.; Sidoni, T.; Ficorella, C.; Capalbo, C.; Zazzeroni, F.; Tessitore, A.; Alesse, E. Circulating microRNAs as prognostic and therapeutic biomarkers in breast cancer molecular subtypes. J. Pers. Med., 2020, 10(3), 98.
[http://dx.doi.org/10.3390/jpm10030098] [PMID: 32842653]
[89]
Mathe, A.; Scott, R.; Avery-Kiejda, K. MiRNAs and other epigenetic changes as biomarkers in triple negative breast cancer. Int. J. Mol. Sci., 2015, 16(12), 28347-28376.
[http://dx.doi.org/10.3390/ijms161226090] [PMID: 26633365]
[90]
Naorem, L.D.; Muthaiyan, M.; Venkatesan, A. Identification of dysregulated miRNAs in triple negative breast cancer: A meta-analysis approach. J. Cell. Physiol., 2019, 234(7), 11768-11779.
[http://dx.doi.org/10.1002/jcp.27839] [PMID: 30488443]
[91]
Hasanzadeh, A.; Mesrian Tanha, H.; Ghaedi, K.; Madani, M. Aberrant expression of miR-9 in benign and malignant breast tumors. Mol. Cell. Probes, 2016, 30(5), 279-284.
[http://dx.doi.org/10.1016/j.mcp.2016.10.005] [PMID: 27725294]
[92]
Sabit, H.; Cevik, E.; Tombuloglu, H.; Abdel-Ghany, S.; Tombuloglu, G.; Esteller, M. Triple negative breast cancer in the era of miRNA. Crit. Rev. Oncol. Hematol., 2021, 157, 103196.
[http://dx.doi.org/10.1016/j.critrevonc.2020.103196] [PMID: 33307198]
[93]
Jiang, S.; Zhang, H.W.; Lu, M.H.; He, X.H.; Li, Y.; Gu, H.; Liu, M.F.; Wang, E.D. MicroRNA-155 functions as an OncomiR in breast cancer by targeting the suppressor of cytokine signaling 1 gene. Cancer Res., 2010, 70(8), 3119-3127.
[http://dx.doi.org/10.1158/0008-5472.CAN-09-4250] [PMID: 20354188]
[94]
Kong, W.; Yang, H.; He, L.; Zhao, J.; Coppola, D.; Dalton, W.S.; Cheng, J.Q. MicroRNA-155 is regulated by the transforming growth factor β/Smad pathway and contributes to epithelial cell plasticity by targeting RhoA. Mol. Cell. Biol., 2008, 28(22), 6773-6784.
[http://dx.doi.org/10.1128/MCB.00941-08] [PMID: 18794355]
[95]
Pasculli, B.; Barbano, R.; Fontana, A.; Biagini, T.; Di Viesti, M.P.; Rendina, M.; Valori, V.M.; Morritti, M.; Bravaccini, S.; Ravaioli, S.; Maiello, E.; Graziano, P.; Murgo, R.; Copetti, M.; Mazza, T.; Fazio, V.M.; Esteller, M.; Parrella, P. Hsa-miR-155-5p up-regulation in breast cancer and its relevance for treatment with poly [ADP-Ribose] polymerase 1 (PARP-1) inhibitors. Front. Oncol., 2020, 10, 1415.
[http://dx.doi.org/10.3389/fonc.2020.01415] [PMID: 32903519]
[96]
Teng, G.; Papavasiliou, F.N. Shhh! Silencing by microRNA-155. Philos. Trans. R. Soc. Lond. B Biol. Sci., 2009, 364(1517), 631-637.
[http://dx.doi.org/10.1098/rstb.2008.0209] [PMID: 19008191]
[97]
Kong, W.; He, L.; Coppola, M.; Guo, J.; Esposito, N.N.; Coppola, D.; Cheng, J.Q. MicroRNA-155 regulates cell survival, growth, and chemosensitivity by targeting FOXO3a in breast cancer. J. Biol. Chem., 2010, 285(23), 17869-17879.
[http://dx.doi.org/10.1074/jbc.M110.101055] [PMID: 20371610]
[98]
Ouyang, M.; Li, Y.; Ye, S.; Ma, J.; Lu, L.; Lv, W.; Chang, G.; Li, X.; Li, Q.; Wang, S.; Wang, W. MicroRNA profiling implies new markers of chemoresistance of triple-negative breast cancer. PLoS One, 2014, 9(5), e96228.
[http://dx.doi.org/10.1371/journal.pone.0096228] [PMID: 24788655]
[99]
Yu, D.; Lv, M.; Chen, W.; Zhong, S.; Zhang, X.; Chen, L.; Ma, T.; Tang, J.; Zhao, J. Role of miR-155 in drug resistance of breast cancer. Tumour Biol., 2015, 36(3), 1395-1401.
[http://dx.doi.org/10.1007/s13277-015-3263-z] [PMID: 25744731]
[100]
Tucci, P.; Agostini, M.; Grespi, F.; Markert, E.K.; Terrinoni, A.; Vousden, K.H.; Muller, P.A.J.; Dötsch, V.; Kehrloesser, S.; Sayan, B.S.; Giaccone, G.; Lowe, S.W.; Takahashi, N.; Vandenabeele, P.; Knight, R.A.; Levine, A.J.; Melino, G. Loss of p63 and its microRNA-205 target results in enhanced cell migration and metastasis in prostate cancer. Proc. Natl. Acad. Sci., 2012, 109(38), 15312-15317.
[http://dx.doi.org/10.1073/pnas.1110977109] [PMID: 22949650]
[101]
Kawaguchi, T.; Yan, L.; Qi, Q.; Peng, X.; Gabriel, E.M.; Young, J.; Liu, S.; Takabe, K. Overexpression of suppressive microRNAs, miR-30a and miR-200c are associated with improved survival of breast cancer patients. Sci. Rep., 2017, 7(1), 15945.
[http://dx.doi.org/10.1038/s41598-017-16112-y] [PMID: 29162923]
[102]
Xiong, J.; Wei, B.; Ye, Q.; Liu, W. MiR-30a-5p/UBE3C axis regulates breast cancer cell proliferation and migration. Biochem. Biophys. Res. Commun., 2019, 516(3), 1013-1018.
[http://dx.doi.org/10.1016/j.bbrc.2016.03.069] [PMID: 27003255]
[103]
Parfenyev, S.; Singh, A.; Fedorova, O.; Daks, A.; Kulshreshtha, R.; Barlev, N.A. Interplay between p53 and non-coding RNAs in the regulation of EMT in breast cancer. Cell Death Dis., 2021, 12(1), 17.
[http://dx.doi.org/10.1038/s41419-020-03327-7] [PMID: 33414456]
[104]
Castilla, M.Á.; Díaz-Martín, J.; Sarrió, D.; Romero-Pérez, L.; López-García, M.Á.; Vieites, B.; Biscuola, M.; Ramiro-Fuentes, S.; Isacke, C.M.; Palacios, J. MicroRNA-200 family modulation in distinct breast cancer phenotypes. PLoS One, 2012, 7(10), e47709.
[http://dx.doi.org/10.1371/journal.pone.0047709] [PMID: 23112837]
[105]
Chang, C.J.; Chao, C.H.; Xia, W.; Yang, J.Y.; Xiong, Y.; Li, C.W.; Yu, W.H.; Rehman, S.K.; Hsu, J.L.; Lee, H.H.; Liu, M.; Chen, C.T.; Yu, D.; Hung, M.C. p53 regulates epithelial–mesenchymal transition and stem cell properties through modulating miRNAs. Nat. Cell Biol., 2011, 13(3), 317-323.
[http://dx.doi.org/10.1038/ncb2173] [PMID: 21336307]
[106]
Chao, C.H.; Wang, C.Y.; Wang, C.H.; Chen, T.W.; Hsu, H.Y.; Huang, H.W.; Li, C.W.; Mai, R.T. Mutant p53 attenuates oxidative phosphorylation and facilitates cancer stemness through downregulating miR-200c–PCK2 Axis in basal-like breast cancer. Mol. Cancer Res., 2021, 19(11), 1900-1916.
[http://dx.doi.org/10.1158/1541-7786.MCR-21-0098] [PMID: 34312289]
[107]
Wang, B.; Li, J.; Sun, M.; Sun, L.; Zhang, X. MiRNA expression in breast cancer varies with lymph node metastasis and other clinicopathologic features. IUBMB Life, 2014, 66(5), 371-377.
[http://dx.doi.org/10.1002/iub.1273] [PMID: 24846313]
[108]
Zhou, H.; Gao, L.; Yu, Z.; Hong, S.; Zhang, Z.; Qiu, Z. LncRNA HOTAIR promotes renal interstitial fibrosis by regulating Notch1 pathway via the modulation of miR-124. Nephrology, 2019, 24(4), 472-480.
[http://dx.doi.org/10.1111/nep.13394] [PMID: 29717517]
[109]
Liang, R.; Li, Y.; Wang, M.; Tang, S.C.; Xiao, G.; Sun, X.; Li, G.; Du, N.; Liu, D.; Ren, H. MiR-146a promotes the asymmetric division and inhibits the self-renewal ability of breast cancer stem-like cells via indirect upregulation of Let-7. Cell Cycle, 2018, 17(12), 1445-1456.
[http://dx.doi.org/10.1080/15384101.2018.1489176] [PMID: 29954239]
[110]
Sandhu, R.; Rein, J.; D’Arcy, M.; Herschkowitz, J.I.; Hoadley, K.A.; Troester, M.A. Overexpression of miR-146a in basal-like breast cancer cells confers enhanced tumorigenic potential in association with altered p53 status. Carcinogenesis, 2014, 35(11), 2567-2575.
[http://dx.doi.org/10.1093/carcin/bgu175] [PMID: 25123132]
[111]
Iacona, J.R.; Lutz, C.S. miR-146a-5p: Expression, regulation, and functions in cancer. Wiley Interdiscip. Rev. RNA, 2019, 10(4), e1533.
[http://dx.doi.org/10.1002/wrna.1533] [PMID: 30895717]
[112]
Fkih M’hamed, I.; Privat, M.; Trimeche, M.; Penault-Llorca, F.; Bignon, Y.J.; Kenani, A. miR-10b, miR-26a, miR-146a And miR-153 expression in triple negative vs non triple negative breast cancer: potential biomarkers. Pathol. Oncol. Res., 2017, 23(4), 815-827.
[http://dx.doi.org/10.1007/s12253-017-0188-4] [PMID: 28101798]
[113]
Bhaumik, D.; Scott, G.K.; Schokrpur, S.; Patil, C.K.; Campisi, J.; Benz, C.C. Expression of microRNA-146 suppresses NF-κB activity with reduction of metastatic potential in breast cancer cells. Oncogene, 2008, 27(42), 5643-5647.
[http://dx.doi.org/10.1038/onc.2008.171] [PMID: 18504431]
[114]
Liu, Q.; Wang, W.; Yang, X.; Zhao, D.; Li, F.; Wang, H. MicroRNA-146a inhibits cell migration and invasion by targeting RhoA in breast cancer. Oncol. Rep., 2016, 36(1), 189-196.
[http://dx.doi.org/10.3892/or.2016.4788] [PMID: 27175941]
[115]
Chang, H.Y.; Lee, C.H.; Li, Y.S.; Huang, J.T.; Lan, S.H.; Wang, Y.F.; Lai, W.W.; Wang, Y.C.; Lin, Y.J.; Liu, H.S.; Cheng, H.C. MicroRNA-146a suppresses tumor malignancy via targeting vimentin in esophageal squamous cell carcinoma cells with lower fibronectin membrane assembly. J. Biomed. Sci., 2020, 27(1), 102.
[http://dx.doi.org/10.1186/s12929-020-00693-4] [PMID: 33248456]
[116]
Luo, D.; Wilson, J.M.; Harvel, N.; Liu, J.; Pei, L.; Huang, S.; Hawthorn, L.; Shi, H. A systematic evaluation of miRNA:mRNA interactions involved in the migration and invasion of breast cancer cells. J. Transl. Med., 2013, 11(1), 57.
[http://dx.doi.org/10.1186/1479-5876-11-57] [PMID: 23497265]
[117]
Imani, S.; Wu, R.C.; Fu, J. MicroRNA-34 family in breast cancer: From research to therapeutic potential. J. Cancer, 2018, 9(20), 3765-3775.
[http://dx.doi.org/10.7150/jca.25576] [PMID: 30405848]
[118]
Adams, B.D.; Wali, V.B.; Cheng, C.J.; Inukai, S.; Booth, C.J.; Agarwal, S.; Rimm, D.L.; Győrffy, B.; Santarpia, L.; Pusztai, L.; Saltzman, W.M.; Slack, F.J. miR-34a silences c-SRC to attenuate tumor growth in triple-negative breast cancer. Cancer Res., 2016, 76(4), 927-939.
[http://dx.doi.org/10.1158/0008-5472.CAN-15-2321] [PMID: 26676753]
[119]
Li, L.; Xie, X.; Luo, J.; Liu, M.; Xi, S.; Guo, J.; Kong, Y.; Wu, M.; Gao, J.; Xie, Z.; Tang, J.; Wang, X.; Wei, W.; Yang, M.; Hung, M.C.; Xie, X. Targeted expression of miR-34a using the T-VISA system suppresses breast cancer cell growth and invasion. Mol. Ther., 2012, 20(12), 2326-2334.
[http://dx.doi.org/10.1038/mt.2012.201] [PMID: 23032974]
[120]
Shaban, N.Z.; Ibrahim, N.K.; Saada, H.N.; El-Rashidy, F.H.; Shaaban, H.M.; Farrag, M.A.; ElDebaiky, K.; Kodous, A.S. miR-34a and miR-21 as biomarkers in evaluating the response of chemo-radiotherapy in Egyptian breast cancer patients. J. Radia. Res. App. Sci., 2022, 15(3), 285-292.
[http://dx.doi.org/10.1016/j.jrras.2022.08.001]
[121]
Deng, X.; Cao, M.; Zhang, J.; Hu, K.; Yin, Z.; Zhou, Z.; Xiao, X.; Yang, Y.; Sheng, W.; Wu, Y.; Zeng, Y. Hyaluronic acid-chitosan nanoparticles for co-delivery of MiR-34a and doxorubicin in therapy against triple negative breast cancer. Biomaterials, 2014, 35(14), 4333-4344.
[http://dx.doi.org/10.1016/j.biomaterials.2014.02.006] [PMID: 24565525]
[122]
Lodygin, D.; Tarasov, V.; Epanchintsev, A.; Berking, C.; Knyazeva, T.; Körner, H.; Knyazev, P.; Diebold, J.; Hermeking, H. Inactivation of miR-34a by aberrant CpG methylation in multiple types of cancer. Cell Cycle, 2008, 7(16), 2591-2600.
[http://dx.doi.org/10.4161/cc.7.16.6533] [PMID: 18719384]
[123]
Hermeking, H. The miR-34 family in cancer and apoptosis. Cell Death Differ., 2010, 17(2), 193-199.
[http://dx.doi.org/10.1038/cdd.2009.56] [PMID: 19461653]
[124]
Deng, S; Wang, M; Wang, C; Zeng, Y; Qin, X; Tan, Y p53 downregulates PD-L1 expression via miR-34a to inhibit the growth of triple-negative breast cancer cells: A potential clinical immunotherapeutic target. Mol Biol Rep., 2022, 50(1), 577-587.
[125]
Imani, S.; Wei, C.; Cheng, J.; Asaduzzaman Khan, M.; Fu, S.; Yang, L.; Tania, M.; Zhang, X.; Xiao, X.; Zhang, X.; Fu, J. MicroRNA-34a targets epithelial to mesenchymal transition-inducing transcription factors (EMT-TFs) and inhibits breast cancer cell migration and invasion. Oncotarget, 2017, 8(13), 21362-21379.
[http://dx.doi.org/10.18632/oncotarget.15214] [PMID: 28423483]
[126]
Siemens, H.; Jackstadt, R.; Hünten, S.; Kaller, M.; Menssen, A.; Götz, U.; Hermeking, H. miR-34 and SNAIL form a double-negative feedback loop to regulate epithelial-mesenchymal transitions. Cell Cycle, 2011, 10(24), 4256-4271.
[http://dx.doi.org/10.4161/cc.10.24.18552] [PMID: 22134354]
[127]
De Carolis, S.; Bertoni, S.; Nati, M.; D’Anello, L.; Papi, A.; Tesei, A.; Cricca, M.; Bonafé, M. Carbonic anhydrase 9 mRNA/microRNA34a interplay in hypoxic human mammospheres. J. Cell. Physiol., 2016, 231(7), 1534-1541.
[http://dx.doi.org/10.1002/jcp.25245] [PMID: 26553365]
[128]
Song, P.; Ye, L.F.; Zhang, C.; Peng, T.; Zhou, X.H. Long non-coding RNA XIST exerts oncogenic functions in human nasopharyngeal carcinoma by targeting miR-34a-5p. Gene, 2016, 592(1), 8-14.
[http://dx.doi.org/10.1016/j.gene.2016.07.055] [PMID: 27461945]
[129]
Ji, Y.; Wang, M.; Li, X.; Cui, F. The long noncoding RNA NEAT1 targets miR-34a-5p and drives nasopharyngeal carcinoma progression via Wnt/β-catenin signaling. Yonsei Med. J., 2019, 60(4), 336-345.
[http://dx.doi.org/10.3349/ymj.2019.60.4.336] [PMID: 30900419]
[130]
Plantamura, I.; Cataldo, A.; Cosentino, G.; Iorio, M.V. MiR-205 in breast cancer: State of the art. Int. J. Mol. Sci., 2020, 22(1), 27.
[http://dx.doi.org/10.3390/ijms22010027] [PMID: 33375067]
[131]
Radojicic, J.; Zaravinos, A.; Vrekoussis, T.; Kafousi, M.; Spandidos, D.A.; Stathopoulos, E.N. MicroRNA expression analysis in triple-negative (ER, PR and Her2/neu) breast cancer. Cell Cycle, 2011, 10(3), 507-517.
[http://dx.doi.org/10.4161/cc.10.3.14754] [PMID: 21270527]
[132]
Guan, B.; Li, Q.; Shen, L.; Rao, Q.; Wang, Y.; Zhu, Y.; Zhou, X.J.; Li, X.H. MicroRNA-205 directly targets Krüppel-like factor 12 and is involved in invasion and apoptosis in basal-like breast carcinoma. Int. J. Oncol., 2016, 49(2), 720-734.
[http://dx.doi.org/10.3892/ijo.2016.3573] [PMID: 27278159]
[133]
Xiao, Y.; Wang, Z.; Li, Y.; Wu, J.; Tao, H.; Li, A. MiR-205 targets integrin-α5 and inhibits triple-negative breast cancer metastasis. Cancer. Lett., 2018, 433, 199-209.
[http://dx.doi.org/10.1158/1538-7445.AM2018-26]
[134]
Lee, J-Y.; Park, M.K.; Park, J-H.; Lee, H.J.; Shin, D.H.; Kang, Y.; Lee, C.H.; Kong, G. Loss of the polycomb protein Mel-18 enhances the epithelial–mesenchymal transition by ZEB1 and ZEB2 expression through the downregulation of miR-205 in breast cancer. Oncogene, 2014, 33(10), 1325-1335.
[http://dx.doi.org/10.1038/onc.2013.53] [PMID: 23474752]
[135]
Wu, H.; Zhu, S.; Mo, Y.Y. Suppression of cell growth and invasion by miR-205 in breast cancer. Cell Res., 2009, 19(4), 439-448.
[http://dx.doi.org/10.1038/cr.2009.18] [PMID: 19238171]
[136]
Xiao, Y.; Humphries, B.; Yang, C.; Wang, Z. MiR-205 dysregulations in breast cancer: The complexity and opportunities. Noncoding RNA, 2019, 5(4), 53.
[http://dx.doi.org/10.3390/ncrna5040053] [PMID: 31752366]
[137]
Huo, L.; Wang, Y.; Gong, Y.; Krishnamurthy, S.; Wang, J.; Diao, L.; Liu, C.G.; Liu, X.; Lin, F.; Symmans, W.F.; Wei, W.; Zhang, X.; Sun, L.; Alvarez, R.H.; Ueno, N.T.; Fouad, T.M.; Harano, K.; Debeb, B.G.; Wu, Y.; Reuben, J.; Cristofanilli, M.; Zuo, Z. MicroRNA expression profiling identifies decreased expression of miR-205 in inflammatory breast cancer. Mod. Pathol., 2016, 29(4), 330-346.
[http://dx.doi.org/10.1038/modpathol.2016.38] [PMID: 26916073]
[138]
De Cola, A; Volpe, S; Budani, M; Ferracin, M; Lattanzio, R; Turdo, A miR-205-5p-mediated downregulation of ErbB/HER receptors in breast cancer stem cells results in targeted therapy resistance. Cell death & disease., 2015, 6(7), e1823.
[139]
Hou, P; Zhao, Y; Li, Z; Yao, R; Ma, M; Gao, Y LincRNA-ROR induces epithelial-to-mesenchymal transition and contributes to breast cancer tumorigenesis and metastasis. Cell death & disease., 2014, 5(6), 1287.
[http://dx.doi.org/10.1038/cddis.2014.249]
[140]
Avery-Kiejda, K.A.; Braye, S.G.; Mathe, A.; Forbes, J.F.; Scott, R.J. Decreased expression of key tumour suppressor microRNAs is associated with lymph node metastases in triple negative breast cancer. BMC Cancer, 2014, 14(1), 51.
[http://dx.doi.org/10.1186/1471-2407-14-51] [PMID: 24479446]
[141]
Comprehensive analysis of microRNAs in breast cancer. BMC Genomics, 2012, 13(7), 18.
[142]
Choudhury, S.N.; Li, Y. miR-21 and let-7 in the Ras and NF-κB pathways. MicroRNA, 2012, 1(1), 65-69.
[http://dx.doi.org/10.2174/2211536611201010065] [PMID: 25048092]
[143]
Zhang, D.G.; Zheng, J.N.; Pei, D.S. P53/microRNA-34-induced metabolic regulation: New opportunities in anticancer therapy. Mol. Cancer, 2014, 13(1), 115.
[http://dx.doi.org/10.1186/1476-4598-13-115] [PMID: 29304823]
[144]
Hau, A.; Ceppi, P.; Peter, M.E. CD95 is part of a let-7/p53/miR-34 regulatory network. PLoS One, 2012, 7(11), e49636.
[http://dx.doi.org/10.1371/journal.pone.0049636] [PMID: 23166734]
[145]
Barh, D.; Malhotra, R.; Ravi, B.; Sindhurani, P. MicroRNA let-7: An emerging next-generation cancer therapeutic. Curr. Oncol., 2010, 17(1), 70-80.
[http://dx.doi.org/10.3747/co.v17i1.356] [PMID: 20179807]
[146]
Raveh, E.; Matouk, I.J.; Gilon, M.; Hochberg, A. The H19 Long non-coding RNA in cancer initiation, progression and metastasis: A proposed unifying theory. Mol. Cancer, 2015, 14(1), 184.
[http://dx.doi.org/10.1186/s12943-015-0458-2] [PMID: 26536864]
[147]
Wang, M.; Li, Y.; Xiao, G.D.; Zheng, X.Q.; Wang, J.C.; Xu, C.W.; Qin, S.; Ren, H.; Tang, S.C.; Sun, X. H19 regulation of oestrogen induction of symmetric division is achieved by antagonizing Let-7c in breast cancer stem-like cells. Cell Prolif., 2019, 52(1), e12534.
[http://dx.doi.org/10.1111/cpr.12534] [PMID: 30338598]
[148]
Peng, F; Li, T-T; Wang, K-L; Xiao, G-Q; Wang, J-H; Zhao, H-D H19/let-7/LIN28 reciprocal negative regulatory circuit promotes breast cancer stem cell maintenance. Cell death & disease, 2018, 8(1), 2569.
[149]
Martello, G.; Rosato, A.; Ferrari, F.; Manfrin, A.; Cordenonsi, M.; Dupont, S.; Enzo, E.; Guzzardo, V.; Rondina, M.; Spruce, T.; Parenti, A.R.; Daidone, M.G.; Bicciato, S.; Piccolo, S. A MicroRNA targeting dicer for metastasis control. Cell, 2010, 141(7), 1195-1207.
[http://dx.doi.org/10.1016/j.cell.2010.05.017] [PMID: 20603000]
[150]
Kleivi Sahlberg, K.; Bottai, G.; Naume, B.; Burwinkel, B.; Calin, G.A.; Børresen-Dale, A.L.; Santarpia, L. A serum microRNA signature predicts tumor relapse and survival in triple-negative breast cancer patients. Clin. Cancer Res., 2015, 21(5), 1207-1214.
[http://dx.doi.org/10.1158/1078-0432.CCR-14-2011] [PMID: 25547678]
[151]
Nabih, H.K. Crosstalk between NRF2 and Dicer through metastasis regulating MicroRNAs; mir-34a, mir-200 family and mir-103/107 family. Arch. Biochem. Biophys., 2020, 686, 108326.
[http://dx.doi.org/10.1016/j.abb.2020.108326] [PMID: 32142889]
[152]
Xiong, B.; Lei, X.; Zhang, L.; Fu, J. miR-103 regulates triple negative breast cancer cells migration and invasion through targeting olfactomedin. Biomed. Pharmacother., 2017, 89, 1401-1408.
[http://dx.doi.org/10.1016/j.biopha.2017.02.028] [PMID: 28320108]
[153]
Kanabe, B.O.; Ozaslan, M.; Aziz, S.A.; Al-Attar, M.S.; Kılıç, İ.H.; Khailany, R.A. Expression patterns of LncRNA-GAS5 and its target APOBEC3C gene through miR-103 in breast cancer patients. Cell. Mol. Biol., 2021, 67(3), 5-10.
[http://dx.doi.org/10.14715/cmb/2021.67.3.2] [PMID: 34933738]
[154]
Wang, X; Wu, X; Yan, L; Shao, J. Serum miR-103 as a potential diagnostic biomarker for breast cancer. Nan fang yi ke da xue xue bao= Journal of Southern Medical University., 2012, 32(5), 631-4.
[155]
Maryam, M.; Naemi, M.; Hasani, S.S. A comprehensive review on oncogenic miRNAs in breast cancer. J. Genet., 2021, 100, 1-21.
[PMID: 33764337]
[156]
Chen, P.S.; Su, J.L.; Cha, S.T.; Tarn, W.Y.; Wang, M.Y.; Hsu, H.C.; Lin, M.T.; Chu, C.Y.; Hua, K.T.; Chen, C.N.; Kuo, T.C.; Chang, K.J.; Hsiao, M.; Chang, Y.W.; Chen, J.S.; Yang, P.C.; Kuo, M.L. miR-107 promotes tumor progression by targeting the let-7 microRNA in mice and humans. J. Clin. Invest., 2011, 121(9), 3442-3455.
[http://dx.doi.org/10.1172/JCI45390] [PMID: 21841313]
[157]
Chen, Y.; Luo, Y.; Tian, Q.; Zeng, D. miR-103 Derived from bone marrow mesenchymal stem cell (BMSC) retards the chemo-resistance through targeted-regulation of tp53 regulated inhibitor of apoptosis 1 (TRIAP1) in breast cancer. J. Biomater. Tissue Eng., 2022, 12(6), 1175-1181.
[http://dx.doi.org/10.1166/jbt.2022.3018]
[158]
Salama, Y.; Takahashi, S.; Tsuda, Y.; Okada, Y.; Hattori, K.; Heissig, B. YO2 induces melanoma cell apoptosis through p53-mediated lrp1 downregulation. Cancers, 2022, 15(1), 288.
[http://dx.doi.org/10.3390/cancers15010288] [PMID: 36612285]
[159]
Leslie, P.L.; Franklin, D.A.; Liu, Y.; Zhang, Y. p53 regulates the expression of LRP1 and apoptosis through a stress intensity-dependent MicroRNA feedback loop. Cell Rep., 2018, 24(6), 1484-1495.
[http://dx.doi.org/10.1016/j.celrep.2018.07.010] [PMID: 30089260]
[160]
Zhang, Z.; Zhang, B.; Li, W.; Fu, L.; Fu, L.; Zhu, Z.; Dong, J.T. Epigenetic silencing of miR-203 upregulates SNAI2 and contributes to the invasiveness of malignant breast cancer cells. Genes Cancer, 2011, 2(8), 782-791.
[http://dx.doi.org/10.1177/1947601911429743] [PMID: 22393463]
[161]
McKenna, D.J.; McDade, S.S.; Patel, D.; McCance, D.J. MicroRNA 203 expression in keratinocytes is dependent on regulation of p53 levels by E6. J. Virol., 2010, 84(20), 10644-10652.
[http://dx.doi.org/10.1128/JVI.00703-10] [PMID: 20702634]
[162]
Funamizu, N.; Lacy, C.R.; Kamada, M.; Yanaga, K.; Manome, Y. MicroRNA-203 induces apoptosis by upregulating Puma expression in colon and lung cancer cells. Int. J. Oncol., 2015, 47(5), 1981-1988.
[http://dx.doi.org/10.3892/ijo.2015.3178] [PMID: 26397233]
[163]
Piva, R.; Spandidos, D.A.; Gambari, R. From microRNA functions to microRNA therapeutics: Novel targets and novel drugs in breast cancer research and treatment. Int. J. Oncol., 2013, 43(4), 985-994.
[http://dx.doi.org/10.3892/ijo.2013.2059] [PMID: 23939688]
[164]
Lambertini, E.; Lolli, A.; Vezzali, F.; Penolazzi, L.; Gambari, R.; Piva, R. Correlation between Slug transcription factor and miR-221 in MDA-MB-231 breast cancer cells. BMC Cancer, 2012, 12(1), 445.
[http://dx.doi.org/10.1186/1471-2407-12-445] [PMID: 23031797]
[165]
Fornari, F.; Milazzo, M.; Galassi, M.; Callegari, E.; Veronese, A.; Miyaaki, H.; Sabbioni, S.; Mantovani, V.; Marasco, E.; Chieco, P.; Negrini, M.; Bolondi, L.; Gramantieri, L. p53/mdm2 feedback loop sustains miR-221 expression and dictates the response to anticancer treatments in hepatocellular carcinoma. Mol. Cancer Res., 2014, 12(2), 203-216.
[http://dx.doi.org/10.1158/1541-7786.MCR-13-0312-T] [PMID: 24324033]
[166]
Arora, H.; Qureshi, R.; Park, W.Y. miR-506 regulates epithelial mesenchymal transition in breast cancer cell lines. PLoS One, 2013, 8(5), e64273.
[http://dx.doi.org/10.1371/journal.pone.0064273] [PMID: 23717581]
[167]
Wang, X.X.; Guo, G.C.; Qian, X.K.; Dou, D.W.; Zhang, Z.; Xu, X.D.; Duan, X.; Pei, X.H. miR-506 attenuates methylation of lncRNA MEG3 to inhibit migration and invasion of breast cancer cell lines via targeting SP1 and SP3. Cancer Cell Int., 2018, 18(1), 171.
[http://dx.doi.org/10.1186/s12935-018-0642-8] [PMID: 30386180]
[168]
Sun, L.; Li, Y.; Yang, B. Downregulated long non-coding RNA MEG3 in breast cancer regulates proliferation, migration and invasion by depending on p53’s transcriptional activity. Biochem. Biophys. Res. Commun., 2016, 478(1), 323-329.
[http://dx.doi.org/10.1016/j.bbrc.2016.05.031] [PMID: 27166155]
[169]
Yin, M.; Ren, X.; Zhang, X.; Luo, Y.; Wang, G.; Huang, K.; Feng, S.; Bao, X.; Huang, K.; He, X.; Liang, P.; Wang, Z.; Tang, H.; He, J.; Zhang, B. Selective killing of lung cancer cells by miRNA-506 molecule through inhibiting NF-κB p65 to evoke reactive oxygen species generation and p53 activation. Oncogene, 2015, 34(6), 691-703.
[http://dx.doi.org/10.1038/onc.2013.597] [PMID: 24469051]
[170]
Schwickert, A.; Weghake, E.; Brüggemann, K.; Engbers, A.; Brinkmann, B.F.; Kemper, B.; Seggewiß, J.; Stock, C.; Ebnet, K.; Kiesel, L.; Riethmüller, C.; Götte, M. microRNA miR-142-3p inhibits breast cancer cell invasiveness by synchronous targeting of WASL, integrin alpha V, and additional cytoskeletal elements. PLoS One, 2015, 10(12), e0143993.
[http://dx.doi.org/10.1371/journal.pone.0143993] [PMID: 26657485]
[171]
Godfrey, J.D.; Morton, J.P.; Wilczynska, A.; Sansom, O.J.; Bushell, M.D. MiR-142-3p is downregulated in aggressive p53 mutant mouse models of pancreatic ductal adenocarcinoma by hypermethylation of its locus. Cell Death Dis., 2018, 9(6), 644.
[http://dx.doi.org/10.1038/s41419-018-0628-4] [PMID: 29844410]
[172]
Rakha, E.A.; Elsheikh, S.E.; Aleskandarany, M.A.; Habashi, H.O.; Green, A.R.; Powe, D.G.; El-Sayed, M.E.; Benhasouna, A.; Brunet, J.S.; Akslen, L.A.; Evans, A.J.; Blamey, R.; Reis-Filho, J.S.; Foulkes, W.D.; Ellis, I.O. Triple-negative breast cancer: Distinguishing between basal and nonbasal subtypes. Clin. Cancer Res., 2009, 15(7), 2302-2310.
[http://dx.doi.org/10.1158/1078-0432.CCR-08-2132] [PMID: 19318481]
[173]
Chang, S.; Wang, R.H.; Akagi, K.; Kim, K.A.; Martin, B.K.; Cavallone, L.; Haines, D.C.; Basik, M.; Mai, P.; Poggi, E.; Isaacs, C.; Looi, L.M.; Mun, K.S.; Greene, M.H.; Byers, S.W.; Teo, S.H.; Deng, C.X.; Sharan, S.K. Tumor suppressor BRCA1 epigenetically controls oncogenic microRNA-155. Nat. Med., 2011, 17(10), 1275-1282.
[http://dx.doi.org/10.1038/nm.2459] [PMID: 21946536]
[174]
Pastrello, C.; Polesel, J.; Della Puppa, L.; Viel, A.; Maestro, R. Association between hsa-mir-146a genotype and tumor age-of-onset in BRCA1/BRCA2-negative familial breast and ovarian cancer patients. Carcinogenesis, 2010, 31(12), 2124-2126.
[http://dx.doi.org/10.1093/carcin/bgq184] [PMID: 20810544]
[175]
Tanic, M.; Zajac, M.; Gómez-López, G.; Benítez, J.; Martínez-Delgado, B. Integration of BRCA1-mediated miRNA and mRNA profiles reveals microRNA regulation of TRAF2 and NFκB pathway. Breast Cancer Res. Treat., 2012, 134(1), 41-51.
[http://dx.doi.org/10.1007/s10549-011-1905-4] [PMID: 22167321]
[176]
Reyisdottir, ST; Reynisdottir, ST; Stefansson, OA; Bödvarsdottir, SK; Palsson, A; Eyfjörd, JE Abstract A33: Expression of BRCA2 and Mir-21 in sporadic and BRCA2 mutated breast cancer in Iceland. Mole. Can. Res., 2016, 14(2), A33.
[177]
Aceto, N.; Sausgruber, N.; Brinkhaus, H.; Gaidatzis, D.; Martiny-Baron, G.; Mazzarol, G.; Confalonieri, S.; Quarto, M.; Hu, G.; Balwierz, P.J.; Pachkov, M.; Elledge, S.J.; van Nimwegen, E.; Stadler, M.B.; Bentires-Alj, M. Tyrosine phosphatase SHP2 promotes breast cancer progression and maintains tumor-initiating cells via activation of key transcription factors and a positive feedback signaling loop. Nat. Med., 2012, 18(4), 529-537.
[http://dx.doi.org/10.1038/nm.2645] [PMID: 22388088]
[178]
Isada, A.; Konno, S.; Hizawa, N.; Tamari, M.; Hirota, T.; Harada, M.; Maeda, Y.; Hattori, T.; Takahashi, A.; Nishimura, M. A functional polymorphism (−603A → G) in the tissue factor gene promoter is associated with adult-onset asthma. J. Hum. Genet., 2010, 55(3), 167-174.
[http://dx.doi.org/10.1038/jhg.2010.4] [PMID: 20150920]
[179]
Jang, MH; Kim, HJ; Gwak, JM; Chung, YR; Park, SYJHP Prognostic value of microRNA-9 and microRNA-155 expression in triple-negative breast cancer., 2017, 68, 69-78.
[http://dx.doi.org/10.1016/j.humpath.2017.08.026]
[180]
Xiang, X.; Zhuang, X.; Ju, S.; Zhang, S.; Jiang, H.; Mu, J.; Zhang, L.; Miller, D.; Grizzle, W.; Zhang, H-G. miR-155 promotes macroscopic tumor formation yet inhibits tumor dissemination from mammary fat pads to the lung by preventing EMT. Oncogene, 2011, 30(31), 3440-3453.
[http://dx.doi.org/10.1038/onc.2011.54] [PMID: 21460854]
[181]
de Rinaldis, E.; Gazinska, P.; Mera, A.; Modrusan, Z.; Fedorowicz, G.M.; Burford, B.; Gillett, C.; Marra, P.; Grigoriadis, A.; Dornan, D.; Holmberg, L.; Pinder, S.; Tutt, A. Integrated genomic analysis of triple-negative breast cancers reveals novel microRNAs associated with clinical and molecular phenotypes and sheds light on the pathways they control. BMC Genomics, 2013, 14(1), 643.
[http://dx.doi.org/10.1186/1471-2164-14-643] [PMID: 24059244]
[182]
Gasparini, P.; Lovat, F.; Fassan, M.; Casadei, L.; Cascione, L.; Jacob, N.K.; Carasi, S.; Palmieri, D.; Costinean, S.; Shapiro, C.L.; Huebner, K.; Croce, C.M. Protective role of miR-155 in breast cancer through RAD51 targeting impairs homologous recombination after irradiation. Proc. Natl. Acad. Sci. USA, 2014, 111(12), 4536-4541.
[http://dx.doi.org/10.1073/pnas.1402604111] [PMID: 24616504]
[183]
Mandke, P; Wyatt, N; Fraser, J; Bates, B; Berberich, SJ; Markey, MP MicroRNA-34a modulates MDM4 expression via a target site in the open reading frame. PLoS One, 2012, 7(8), 42034.
[184]
Okada, N.; Lin, C.P.; Ribeiro, M.C.; Biton, A.; Lai, G.; He, X.; Bu, P.; Vogel, H.; Jablons, D.M.; Keller, A.C.; Wilkinson, J.E.; He, B.; Speed, T.P.; He, L. A positive feedback between p53 and miR-34 miRNAs mediates tumor suppression. Genes Dev., 2014, 28(5), 438-450.
[http://dx.doi.org/10.1101/gad.233585.113] [PMID: 24532687]
[185]
Gwak, JM; Kim, HJ; Kim, EJ; Chung, YR; Yun, S; Seo, AN MicroRNA-9 is associated with epithelial-mesenchymal transition, breast cancer stem cell phenotype, and tumor progression in breast cancer. 2014, 147(1), 39-49.
[186]
Ma, L.; Young, J.; Prabhala, H.; Pan, E.; Mestdagh, P.; Muth, D.; Teruya-Feldstein, J.; Reinhardt, F.; Onder, T.T.; Valastyan, S.; Westermann, F.; Speleman, F.; Vandesompele, J.; Weinberg, R.A. miR-9, a MYC/MYCN-activated microRNA, regulates E-cadherin and cancer metastasis. Nat. Cell Biol., 2010, 12(3), 247-256.
[http://dx.doi.org/10.1038/ncb2024] [PMID: 20173740]
[187]
Jin, C.; Yan; Lu, Q.; Lin, Y.; Ma, L. Reciprocal regulation of Hsa-miR-1 and long noncoding RNA MALAT1 promotes triple-negative breast cancer development. Tumour Biol., 2016, 37(6), 7383-7394.
[http://dx.doi.org/10.1007/s13277-015-4605-6] [PMID: 26676637]
[188]
Tang, Q.; Ouyang, H.; He, D.; Yu, C.; Tang, G. MicroRNA-based potential diagnostic, prognostic and therapeutic applications in triple-negative breast cancer. Artif. Cells Nanomed. Biotechnol., 2019, 47(1), 2800-2809.
[http://dx.doi.org/10.1080/21691401.2019.1638791] [PMID: 31284781]
[189]
Thakur, S.; Grover, R.K.; Gupta, S.; Yadav, A.K.; Das, B.C. Identification of specific miRNA signature in paired sera and tissue samples of Indian women with triple negative breast cancer. PLoS One, 2016, 11(7), e0158946.
[http://dx.doi.org/10.1371/journal.pone.0158946] [PMID: 27404381]
[190]
Imani, S.; Zhang, X.; Hosseinifard, H.; Fu, S.; Fu, J. The diagnostic role of microRNA-34a in breast cancer: A systematic review and meta-analysis. Oncotarget, 2017, 8(14), 23177-23187.
[http://dx.doi.org/10.18632/oncotarget.15520] [PMID: 28423566]
[191]
Mohamed, A.A.; Allam, A.E.; Aref, A.M.; Mahmoud, M.O.; Eldesoky, N.A.; Fawazy, N.; Sakr, Y.; Sobeih, M.E.; Albogami, S.; Fayad, E.; Althobaiti, F.; Jafri, I.; Alsharif, G.; El-Sayed, M.; Abdelgeliel, A.S.; Abdel Aziz, R.S. Evaluation of expressed micrornas as prospective biomarkers for detection of breast cancer. Diagnostics, 2022, 12(4), 789.
[http://dx.doi.org/10.3390/diagnostics12040789] [PMID: 35453838]
[192]
Heneghan, H.M.; Miller, N.; Kelly, R.; Newell, J.; Kerin, M.J. Systemic miRNA-195 differentiates breast cancer from other malignancies and is a potential biomarker for detecting noninvasive and early stage disease. Oncologist, 2010, 15(7), 673-682.
[http://dx.doi.org/10.1634/theoncologist.2010-0103] [PMID: 20576643]
[193]
Sochor, M.; Basova, P.; Pesta, M.; Dusilkova, N.; Bartos, J.; Burda, P.; Pospisil, V.; Stopka, T. Oncogenic MicroRNAs: miR-155, miR-19a, miR-181b, and miR-24 enable monitoring of early breast cancer in serum. BMC Cancer, 2014, 14(1), 448.
[http://dx.doi.org/10.1186/1471-2407-14-448] [PMID: 24938880]
[194]
Song, X.; Liu, Z.; Yu, Z. LncRNA NEF is downregulated in triple negative breast cancer and correlated with poor prognosis. Acta Biochim. Biophys. Sin., 2019, 51(4), 386-392.
[http://dx.doi.org/10.1093/abbs/gmz021] [PMID: 30839051]
[195]
Kong, W.; He, L.; Richards, E.J.; Challa, S.; Xu, C-X.; Permuth-Wey, J.; Lancaster, J.M.; Coppola, D.; Sellers, T.A.; Djeu, J.Y.; Cheng, J.Q. Upregulation of miRNA-155 promotes tumour angiogenesis by targeting VHL and is associated with poor prognosis and triple-negative breast cancer. Oncogene, 2014, 33(6), 679-689.
[http://dx.doi.org/10.1038/onc.2012.636] [PMID: 23353819]
[196]
Lü, L.; Mao, X.; Shi, P.; He, B.; Xu, K.; Zhang, S.; Wang, J. MicroRNAs in the prognosis of triple-negative breast cancer. Medicine, 2017, 96(22), e7085.
[http://dx.doi.org/10.1097/MD.0000000000007085] [PMID: 28562579]
[197]
Godfrey, S.S. MicroRNAs in triple-negative breast cancer: A potential biomarker; North Carolina Agricultural and Technical State University, 2015.
[198]
Turashvili, G.; Lightbody, E.D.; Tyryshkin, K.; SenGupta, S.K.; Elliott, B.E.; Madarnas, Y.; Ghaffari, A.; Day, A.; Nicol, C.J.B. Novel prognostic and predictive microRNA targets for triple-negative breast cancer. FASEB J., 2018, 32(11), 5937-5954.
[http://dx.doi.org/10.1096/fj.201800120R] [PMID: 29812973]
[199]
Roth, C.; Rack, B.; Müller, V.; Janni, W.; Pantel, K.; Schwarzenbach, H. Circulating microRNAs as blood-based markers for patients with primary and metastatic breast cancer. Breast Cancer Res., 2010, 12(6), R90.
[http://dx.doi.org/10.1186/bcr2766] [PMID: 21047409]
[200]
Huo, D.; Clayton, W.M.; Yoshimatsu, T.F.; Chen, J.; Olopade, O.I. Identification of a circulating MicroRNA signature to distinguish recurrence in breast cancer patients. Oncotarget, 2016, 7(34), 55231-55248.
[http://dx.doi.org/10.18632/oncotarget.10485] [PMID: 27409424]
[201]
Chirshev, E.; Oberg, K.C.; Ioffe, Y.J.; Unternaehrer, J.J. Let-7 as biomarker, prognostic indicator, and therapy for precision medicine in cancer. Clin. Transl. Med., 2019, 8(1), 24.
[http://dx.doi.org/10.1186/s40169-019-0240-y] [PMID: 31468250]
[202]
Sun, X.; Tang, S.C.; Xu, C.; Wang, C.; Qin, S.; Du, N.; Liu, J.; Zhang, Y.; Li, X.; Luo, G.; Zhou, J.; Xu, F.; Ren, H. DICER1 regulated let-7 expression levels in p53-induced cancer repression requires cyclin D1. J. Cell. Mol. Med., 2015, 19(6), 1357-1365.
[http://dx.doi.org/10.1111/jcmm.12522] [PMID: 25702703]
[203]
Lee, J.A.; Lee, H.Y.; Lee, E.S.; Kim, I.; Bae, J.W. Prognostic implications of microRNA-21 overexpression in invasive ductal carcinomas of the breast. J. Breast Cancer, 2011, 14(4), 269-275.
[http://dx.doi.org/10.4048/jbc.2011.14.4.269] [PMID: 22323912]
[204]
Gong, C.; Yao, Y.; Wang, Y.; Liu, B.; Wu, W.; Chen, J.; Su, F.; Yao, H.; Song, E. Up-regulation of miR-21 mediates resistance to trastuzumab therapy for breast cancer. J. Biol. Chem., 2011, 286(21), 19127-19137.
[http://dx.doi.org/10.1074/jbc.M110.216887] [PMID: 21471222]
[205]
Mei, M.; Ren, Y.; Zhou, X.; Yuan, X.; Han, L.; Wang, G.; Jia, Z.; Pu, P.; Kang, C.; Yao, Z. Downregulation of miR-21 enhances chemotherapeutic effect of taxol in breast carcinoma cells. Technol. Cancer Res. Treat., 2010, 9(1), 77-86.
[http://dx.doi.org/10.1177/153303461000900109] [PMID: 20082533]
[206]
Angius, A.; Cossu-Rocca, P.; Arru, C.; Muroni, M.R.; Rallo, V.; Carru, C.; Uva, P.; Pira, G.; Orrù, S.; De Miglio, M.R. Modulatory role of microRNAs in triple negative breast cancer with basal-like phenotype. Cancers, 2020, 12(11), 3298.
[http://dx.doi.org/10.3390/cancers12113298] [PMID: 33171872]
[207]
Jafri, M.A.; Zaidi, S.K.; Ansari, S.A.; Al-Qahtani, M.H.; Shay, J.W. MicroRNAs as potential drug targets for therapeutic intervention in colorectal cancer. Expert Opin. Ther. Targets, 2015, 19(12), 1705-1723.
[http://dx.doi.org/10.1517/14728222.2015.1069816] [PMID: 26189482]
[208]
Ding, L.; Gu, H.; Xiong, X.; Ao, H.; Cao, J.; Lin, W.; Yu, M.; Lin, J.; Cui, Q. MicroRNAs involved in carcinogenesis, prognosis, therapeutic resistance, and applications in human triple-negative breast cancer. Cells, 2019, 8(12), 1492.
[http://dx.doi.org/10.3390/cells8121492] [PMID: 31766744]
[209]
Shu, D.; Li, H.; Shu, Y.; Xiong, G.; Carson, W.E., III; Haque, F.; Xu, R.; Guo, P. Systemic delivery of anti-miRNA for suppression of triple negative breast cancer utilizing RNA nanotechnology. ACS Nano, 2015, 9(10), 9731-9740.
[http://dx.doi.org/10.1021/acsnano.5b02471] [PMID: 26387848]
[210]
Yin, H.; Xiong, G.; Guo, S.; Xu, C.; Xu, R.; Guo, P.; Shu, D. Delivery of anti-miRNA for triple-negative breast cancer therapy using RNA nanoparticles targeting stem cell marker CD133. Mol. Ther., 2019, 27(7), 1252-1261.
[http://dx.doi.org/10.1016/j.ymthe.2019.04.018] [PMID: 31085078]
[211]
Devulapally, R.; Sekar, N.M.; Sekar, T.V.; Foygel, K.; Massoud, T.F.; Willmann, J.K.; Paulmurugan, R. Polymer nanoparticles mediated codelivery of antimiR-10b and antimiR-21 for achieving triple negative breast cancer therapy. ACS Nano, 2015, 9(3), 2290-2302.
[http://dx.doi.org/10.1021/nn507465d] [PMID: 25652012]
[212]
Zheng, S.R.; Guo, G.L.; Zhai, Q.; Zou, Z.Y.; Zhang, W. Effects of miR-155 antisense oligonucleotide on breast carcinoma cell line MDA-MB-157 and implanted tumors. Asian Pac. J. Cancer Prev., 2013, 14(4), 2361-2366.
[http://dx.doi.org/10.7314/APJCP.2013.14.4.2361] [PMID: 23725141]
[213]
Gucalp, A; Traina, TA Triple-negative breast cancer: Adjuvant therapeutic options. Chemother Res Pract, 2011, 2011, 696208.
[http://dx.doi.org/10.1155/2011/696208]
[214]
He, H.; Tian, W.; Chen, H.; Jiang, K. MiR-944 functions as a novel oncogene and regulates the chemoresistance in breast cancer. Tumour Biol., 2016, 37(2), 1599-1607.
[http://dx.doi.org/10.1007/s13277-015-3844-x] [PMID: 26298722]
[215]
Wang, J.; Yang, M.; Li, Y.; Han, B. The role of MicroRNAs in the chemoresistance of breast cancer. Drug Dev. Res., 2015, 76(7), 368-374.
[http://dx.doi.org/10.1002/ddr.21275] [PMID: 26310899]
[216]
Zheng, Y.; Lv, X.; Wang, X.; Wang, B.; Shao, X.; Huang, Y.; Shi, L.; Chen, Z.; Huang, J.; Huang, P. miR-181b promotes chemoresistance in breast cancer by regulating Bim expression. Oncol. Rep., 2016, 35(2), 683-690.
[http://dx.doi.org/10.3892/or.2015.4417] [PMID: 26572075]
[217]
Si, W.; Shen, J.; Zheng, H.; Fan, W. The role and mechanisms of action of microRNAs in cancer drug resistance. Clin. Epigenetics, 2019, 11(1), 25.
[http://dx.doi.org/10.1186/s13148-018-0587-8] [PMID: 30744689]
[218]
Khan, M.A.; Jain, V.K.; Rizwanullah, M.; Ahmad, J.; Jain, K. PI3K/AKT/mTOR pathway inhibitors in triple-negative breast cancer: A review on drug discovery and future challenges. Drug Discov. Today, 2019, 24(11), 2181-2191.
[http://dx.doi.org/10.1016/j.drudis.2019.09.001] [PMID: 31520748]
[219]
Pawar, A.; Prabhu, P. Nanosoldiers: A promising strategy to combat triple negative breast cancer. Biomed. Pharmacother., 2019, 110, 319-341.
[http://dx.doi.org/10.1016/j.biopha.2018.11.122] [PMID: 30529766]
[220]
Nagini, S. Breast cancer: current molecular therapeutic targets and new players. Curr. Med. Chem. Anticancer., 2017, 17(2), 152-163.
[http://dx.doi.org/10.2174/1871520616666160502122724]
[221]
Hossain, F.; Sorrentino, C.; Ucar, D.A.; Peng, Y.; Matossian, M.; Wyczechowska, D.; Crabtree, J.; Zabaleta, J.; Morello, S.; Del Valle, L.; Burow, M.; Collins-Burow, B.; Pannuti, A.; Minter, L.M.; Golde, T.E.; Osborne, B.A.; Miele, L. Notch signaling regulates mitochondrial metabolism and NF-κB activity in triple-negative breast cancer cells via IKKα-dependent non-canonical pathways. Front. Oncol., 2018, 8, 575.
[http://dx.doi.org/10.3389/fonc.2018.00575] [PMID: 30564555]
[222]
DeNardo, D.G.; Brennan, D.J.; Rexhepaj, E.; Ruffell, B.; Shiao, S.L.; Madden, S.F.; Gallagher, W.M.; Wadhwani, N.; Keil, S.D.; Junaid, S.A.; Rugo, H.S.; Hwang, E.S.; Jirström, K.; West, B.L.; Coussens, L.M. Leukocyte complexity predicts breast cancer survival and functionally regulates response to chemotherapy. Cancer Discov., 2011, 1(1), 54-67.
[http://dx.doi.org/10.1158/2159-8274.CD-10-0028] [PMID: 22039576]
[223]
Wang, Q.; Cheng, Y.; Wang, Y.; Fan, Y.; Li, C.; Zhang, Y.; Wang, Y.; Dong, Q.; Ma, Y.; Teng, Y.; Qu, X.; Liu, Y. Tamoxifen reverses epithelial–mesenchymal transition by demethylating miR-200c in triple-negative breast cancer cells. BMC Cancer, 2017, 17(1), 492.
[http://dx.doi.org/10.1186/s12885-017-3457-4] [PMID: 28724364]
[224]
Ozawa, P.M.M.; Alkhilaiwi, F.; Cavalli, I.J.; Malheiros, D.; de Souza Fonseca Ribeiro, E.M.; Cavalli, L.R. Extracellular vesicles from triple-negative breast cancer cells promote proliferation and drug resistance in non-tumorigenic breast cells. Breast Cancer Res. Treat., 2018, 172(3), 713-723.
[http://dx.doi.org/10.1007/s10549-018-4925-5] [PMID: 30173296]
[225]
Bonetti, P.; Climent, M.; Panebianco, F.; Tordonato, C.; Santoro, A.; Marzi, M.J.; Pelicci, P.G.; Ventura, A.; Nicassio, F. Dual role for miR-34a in the control of early progenitor proliferation and commitment in the mammary gland and in breast cancer. Oncogene, 2019, 38(3), 360-374.
[http://dx.doi.org/10.1038/s41388-018-0445-3] [PMID: 30093634]
[226]
Chen, Z.; Chen, J.; Keshamouni, V.G.; Kanapathipillai, M. Polyarginine and its analogues inhibit p53 mutant aggregation and cancer cell proliferation in vitro. Biochem. Biophys. Res. Commun., 2017, 489(2), 130-134.
[http://dx.doi.org/10.1016/j.bbrc.2017.05.111] [PMID: 28536076]
[227]
Alyami, N.M. MicroRNAs role in breast cancer: Theranostic application in Saudi arabia. Front. Oncol., 2021, 11, 717759.
[http://dx.doi.org/10.3389/fonc.2021.717759] [PMID: 34760689]
[228]
Aggarwal, V.; Priyanka, K.; Tuli, H.S. Emergence of circulating MicroRNAs in breast cancer as diagnostic and therapeutic efficacy biomarkers. Mol. Diagn. Ther., 2020, 24(2), 153-173.
[http://dx.doi.org/10.1007/s40291-020-00447-w] [PMID: 32067191]

© 2024 Bentham Science Publishers | Privacy Policy