Generic placeholder image

Current Indian Science

Editor-in-Chief

ISSN (Print): 2210-299X
ISSN (Online): 2210-3007

Research Article

Effect of Surfactant Concentration on Physicochemical and Antibacterial Properties of Eugenol Nanoemulsions

Author(s): Indra Bhusan Basumatary and Santosh Kumar*

Volume 2, 2024

Published on: 23 October, 2023

Article ID: e2210299X262244 Pages: 9

DOI: 10.2174/012210299X262244231010050553

open_access

Abstract

Introduction: Nanoencapsulation has gained popularity in recent decades due to its numerous benefits, such as improved stability, oxidation resistance, retention of volatile ingredients, controlled release, delivery of multiple active ingredients in a row, improvement in organoleptic properties, reduction of toxic side effects, and water solubility.

Methods: The present study was aimed to prepare eugenol nanoemulsions (EuNEs) using non-ionic surfactant (Tween 80) by ultrasound-assisted techniques and to evaluate the effects of surfactant concentration on their droplets size, polydispersity index (PDI), zeta potential, storage stability, antioxidant, and antibacterial activities. Antimicrobial activity of the prepared nanoemulsions was tested against Gram-positive; Staphylococcus aureus, Bacillus subtilis and Gram-negative; Escherichia coli, and Alcaligenes faecalis bacteria using well diffusion method.

Results: The results showed that the droplet size decreased after a threshold Tween 80 concentration (10%), while PDI value increased with the increase in surfactant concentration (Tween 80).

Conclusion: The prepared EuNEs exhibited good antibacterial activity against all the four bacterial strains: E. coli, A. faecalis, S. aureus, and B. subtilis.

Keywords: Nanoencapsulation, Tween 80, Antimicrobial activity, Antioxidant activity, Stability of nanoemulsion, EuNEs.

[1]
Kumar, S.; Singh, N.; Devi, L.S.; Kumar, S.; Kamle, M.; Kumar, P.; Mukherjee, A. Neem oil and its nanoemulsion in sustainable food preservation and packaging: Current status and future prospects. J. Agric. Food Res., 2022, 7, 100254.
[http://dx.doi.org/10.1016/j.jafr.2021.100254]
[2]
Devi, L.S.; Mukherjee, A.; Dutta, D.; Kumar, S. Carnauba wax-based sustainable coatings for prolonging postharvest shelf-life of citrus fruits; Sustainable Food Technology, 2023.
[http://dx.doi.org/10.1039/D2FB00049K]
[3]
Yu, H.H.; Chin, Y.W.; Paik, H.D. Application of natural preservatives for meat and meat products against food-borne pathogens and spoilage bacteria: A review. Foods, 2021, 10(10), 2418.
[http://dx.doi.org/10.3390/foods10102418] [PMID: 34681466]
[4]
Amberg, N.; Fogarassy, C. Green consumer behavior in the cosmetics market. Resources, 2019, 8(3), 137.
[http://dx.doi.org/10.3390/resources8030137]
[5]
Nayak, M.; Sreedhar, D.; Prabhu, S.S.; Ligade, V.S. Global trends in cosmetics use-related adverse effects: A bibliometric analysis of literature published during 1957–2021. Cosmetics, 2021, 8(3), 75.
[http://dx.doi.org/10.3390/cosmetics8030075]
[6]
Dagli, N.; Dagli, R.; Mahmoud, R.; Baroudi, K. Essential oils, their therapeutic properties, and implication in dentistry: A review. J. Int. Soc. Prev. Community Dent., 2015, 5(5), 335-340.
[http://dx.doi.org/10.4103/2231-0762.165933] [PMID: 26539382]
[7]
Gandhi, G.R.; Vasconcelos, A.B.S.; Haran, G.H.; Calisto, V.K.S.; Jothi, G.; Quintans, J.S.S.; Cuevas, L.E.; Narain, N.; Júnior, L.J.Q.; Cipolotti, R.; Gurgel, R.Q. Essential oils and its bioactive compounds modulating cytokines: A systematic review on anti-asthmatic and immunomodulatory properties. Phytomedicine, 2020, 73, 152854.
[http://dx.doi.org/10.1016/j.phymed.2019.152854] [PMID: 31036393]
[8]
Ambrosio, C.M.S.; Ikeda, N.Y.; Miano, A.C.; Saldaña, E.; Moreno, A.M.; Stashenko, E.; Contreras-Castillo, C.J.; Da Gloria, E.M. Unraveling the selective antibacterial activity and chemical composition of citrus essential oils. Sci. Rep., 2019, 9(1), 17719.
[http://dx.doi.org/10.1038/s41598-019-54084-3] [PMID: 31776388]
[9]
Baptista-Silva, S.; Borges, S.; Ramos, O.L.; Pintado, M.; Sarmento, B. The progress of essential oils as potential therapeutic agents: A review. J. Essent. Oil Res., 2020, 32(4), 279-295.
[http://dx.doi.org/10.1080/10412905.2020.1746698]
[10]
Aswathanarayan, J.B.; Vittal, R.R. Nanoemulsions and their potential applications in food industry. Front. Sustain. Food Syst., 2019, 3, 95.
[http://dx.doi.org/10.3389/fsufs.2019.00095]
[11]
Lou, Z.; Chen, J.; Yu, F.; Wang, H.; Kou, X.; Ma, C.; Zhu, S. The antioxidant, antibacterial, antibiofilm activity of essential oil from Citrus medica L. var. sarcodactylis and its nanoemulsion. Lebensm. Wiss. Technol., 2017, 80, 371-377.
[http://dx.doi.org/10.1016/j.lwt.2017.02.037]
[12]
Harwansh, R.K.; Deshmukh, R.; Rahman, M.A. Nanoemulsion: Promising nanocarrier system for delivery of herbal bioactives. J. Drug Deliv. Sci. Technol., 2019, 51, 224-233.
[http://dx.doi.org/10.1016/j.jddst.2019.03.006]
[13]
Guan, Y.; Wu, J.; Zhong, Q. Eugenol improves physical and chemical stabilities of nanoemulsions loaded with β-carotene. Food Chem., 2016, 194, 787-796.
[http://dx.doi.org/10.1016/j.foodchem.2015.08.097] [PMID: 26471619]
[14]
Demisli, S.; Mitsou, E.; Pletsa, V.; Xenakis, A.; Papadimitriou, V. Development and study of nanoemulsions and nanoemulsion-based hydrogels for the encapsulation of lipophilic compounds. Nanomaterials., 2020, 10(12), 2464.
[http://dx.doi.org/10.3390/nano10122464] [PMID: 33317080]
[15]
Salvia-Trujillo, L.; Rojas-Graü, A.; Soliva-Fortuny, R.; Martín-Belloso, O. Physicochemical characterization and antimicrobial activity of food-grade emulsions and nanoemulsions incorporating essential oils. Food Hydrocoll., 2015, 43, 547-556.
[http://dx.doi.org/10.1016/j.foodhyd.2014.07.012]
[16]
Das, A.K.; Nanda, P.K.; Bandyopadhyay, S.; Banerjee, R.; Biswas, S.; McClements, D.J. Application of nanoemulsion‐based approaches for improving the quality and safety of muscle foods: A comprehensive review. Compr. Rev. Food Sci. Food Saf., 2020, 19(5), 2677-2700.
[http://dx.doi.org/10.1111/1541-4337.12604] [PMID: 33336977]
[17]
Sari, T.P.; Mann, B.; Kumar, R.; Singh, R.R.B.; Sharma, R.; Bhardwaj, M.; Athira, S. Preparation and characterization of nanoemulsion encapsulating curcumin. Food Hydrocoll., 2015, 43, 540-546.
[http://dx.doi.org/10.1016/j.foodhyd.2014.07.011]
[18]
Susmita Devi, L.; Kalita, S.; Mukherjee, A.; Kumar, S. Carnauba wax-based composite films and coatings: Recent advancement in prolonging postharvest shelf-life of fruits and vegetables. Trends Food Sci. Technol., 2022, 129, 296-305.
[http://dx.doi.org/10.1016/j.tifs.2022.09.019]
[19]
Ulanowska, M.; Olas, B. Biological properties and prospects for the application of eugenol—a review. Int. J. Mol. Sci., 2021, 22(7), 3671.
[http://dx.doi.org/10.3390/ijms22073671] [PMID: 33916044]
[20]
Basumatary, I.B.; Mukherjee, A.; Katiyar, V.; Dutta, J.; Kumar, S. Chitosan-based active coating for pineapple preservation: Evaluation of antimicrobial efficacy and shelf-life extension. Lebensm. Wiss. Technol., 2022, 168, 113940.
[http://dx.doi.org/10.1016/j.lwt.2022.113940]
[21]
Sharma, A.; Bhardwaj, G.; Sohal, H.S.; Gohain, A. Eugenol. In: Nutraceuticals and Health Care; Kour, J.; Nayik, G.A., Eds.; Academic Press, 2022; pp. 177-198.
[22]
Chen, H.; Jin, X.; Li, Y.; Tian, J. Investigation into the physical stability of a eugenol nanoemulsion in the presence of a high content of triglyceride. RSC Adv., 2016, 6(93), 91060-91067.
[http://dx.doi.org/10.1039/C6RA16270C]
[23]
Khalil, A.A.; Rahman, U.; Khan, M.R.; Sahar, A.; Mehmood, T.; Khan, M. Essential oil eugenol: Sources, extraction techniques and nutraceutical perspectives. RSC Adv., 2017, 7(52), 32669-32681.
[http://dx.doi.org/10.1039/C7RA04803C]
[24]
Ghosh, V.; Mukherjee, A.; Chandrasekaran, N. Eugenol-loaded antimicrobial nanoemulsion preserves fruit juice against, microbial spoilage. Colloids Surf. B Biointerfaces, 2014, 114, 392-397.
[http://dx.doi.org/10.1016/j.colsurfb.2013.10.034] [PMID: 24252231]
[25]
Ju, J.; Xie, Y.; Yu, H.; Guo, Y.; Cheng, Y.; Zhang, R.; Yao, W. Synergistic inhibition effect of citral and eugenol against Aspergillus niger and their application in bread preservation. Food Chem., 2020, 310, 125974.
[http://dx.doi.org/10.1016/j.foodchem.2019.125974] [PMID: 31835216]
[26]
Agustinisari, I.; Mulia, K.; Nasikin, M. The effect of eugenol and chitosan concentration on the encapsulation of eugenol using whey protein–maltodextrin conjugates. Appl. Sci., 2020, 10(9), 3205.
[http://dx.doi.org/10.3390/app10093205]
[27]
Rasul, H.O.; Aziz, B.K.; Ghafour, D.D.; Kivrak, A. In silico molecular docking and dynamic simulation of eugenol compounds against breast cancer. J. Mol. Model., 2022, 28(1), 17.
[http://dx.doi.org/10.1007/s00894-021-05010-w] [PMID: 34962586]
[28]
Dhara, L.; Tripathi, A. The use of eugenol in combination with cefotaxime and ciprofloxacin to combat ESBL‐producing quinolone‐resistant pathogenic Enterobacteriaceae. J. Appl. Microbiol., 2020, 129(6), 1566-1576.
[http://dx.doi.org/10.1111/jam.14737] [PMID: 32502298]
[29]
das Chagas, P.A.F.; Mendes, A.N. Computational analysis of eugenol inhibitory activity in lipoxygenase and cyclooxygenase pathways. Sci. Rep., 2020, 10(1), 16204.
[http://dx.doi.org/10.1038/s41598-020-73203-z] [PMID: 33004893]
[30]
Mondéjar-López, M.; López-Jimenez, A.J.; García Martínez, J.C.; Ahrazem, O.; Gómez-Gómez, L.; Niza, E. Comparative evaluation of carvacrol and eugenol chitosan nanoparticles as eco-friendly preservative agents in cosmetics. Int. J. Biol. Macromol., 2022, 206, 288-297.
[http://dx.doi.org/10.1016/j.ijbiomac.2022.02.164] [PMID: 35240208]
[31]
Makuch, E.; Nowak, A.; Günther, A.; Pełech, R.; Kucharski, Ł.; Duchnik, W.; Klimowicz, A. Enhancement of the antioxidant and skin permeation properties of eugenol by the esterification of eugenol to new derivatives. AMB Express, 2020, 10(1), 187.
[http://dx.doi.org/10.1186/s13568-020-01122-3] [PMID: 33078274]
[32]
Peng, S.; Zou, L.; Liu, W.; Gan, L.; Liu, W.; Liang, R.; Liu, C.; Niu, J.; Cao, Y.; Liu, Z.; Chen, X. Storage stability and antibacterial activity of eugenol nanoliposomes prepared by an ethanol injection-dynamic high-pressure microfluidization method. J. Food Prot., 2015, 78(1), 22-30.
[http://dx.doi.org/10.4315/0362-028X.JFP-14-246] [PMID: 25581174]
[33]
Pongsumpun, P.; Iwamoto, S.; Siripatrawan, U. Response surface methodology for optimization of cinnamon essential oil nanoemulsion with improved stability and antifungal activity. Ultrason. Sonochem., 2020, 60, 104604.
[http://dx.doi.org/10.1016/j.ultsonch.2019.05.021] [PMID: 31539730]
[34]
Zhang, S.; Zhang, M.; Fang, Z.; Liu, Y. Preparation and characterization of blended cloves/cinnamon essential oil nanoemulsions. Lebensm. Wiss. Technol., 2017, 75, 316-322.
[http://dx.doi.org/10.1016/j.lwt.2016.08.046]
[35]
Nejatian, M.; Abbasi, S. Formation of concentrated triglyceride nanoemulsions and nanogels: natural emulsifiers and high power ultrasound. RSC Adv., 2019, 9(49), 28330-28344.
[http://dx.doi.org/10.1039/C9RA04761A] [PMID: 35529609]
[36]
Kumar, N.; Mandal, A. Surfactant stabilized oil-in-water nanoemulsion: Stability, interfacial tension, and rheology study for enhanced oil recovery application. Energy Fuels, 2018, 32(6), 6452-6466.
[http://dx.doi.org/10.1021/acs.energyfuels.8b00043]
[37]
Witayaudom, P.; Klinkesorn, U. Effect of surfactant concentration and solidification temperature on the characteristics and stability of nanostructured lipid carrier (NLC) prepared from rambutan (Nephelium lappaceum L.) kernel fat. J. Colloid Interface Sci., 2017, 505, 1082-1092.
[http://dx.doi.org/10.1016/j.jcis.2017.07.008] [PMID: 28697547]
[38]
Saberi, A.H.; Fang, Y.; McClements, D.J. Fabrication of vitamin E-enriched nanoemulsions: Factors affecting particle size using spontaneous emulsification. J. Colloid Interface Sci., 2013, 391, 95-102.
[http://dx.doi.org/10.1016/j.jcis.2012.08.069] [PMID: 23116862]
[39]
Tian, Y.; Chen, L.; Zhang, W. Influence of ionic surfactants on the properties of nanoemulsions emulsified by nonionic surfactants span 80/Tween 80. J. Dispers. Sci. Technol., 2016, 37(10), 1511-1517.
[http://dx.doi.org/10.1080/01932691.2015.1048806]
[40]
Shao, Y.; Wu, C.; Wu, T.; Li, Y.; Chen, S.; Yuan, C.; Hu, Y. Eugenol-chitosan nanoemulsions by ultrasound-mediated emulsification: Formulation, characterization and antimicrobial activity. Carbohydr. Polym., 2018, 193, 144-152.
[http://dx.doi.org/10.1016/j.carbpol.2018.03.101] [PMID: 29773366]
[41]
Anand, T.; Anbukkarasi, M.; Thomas, P.A.; Geraldine, P. A comparison between plain eugenol and eugenol-loaded chitosan nanoparticles for prevention of in vitro selenite-induced cataractogenesis. J. Drug Deliv. Sci. Technol., 2021, 65, 102696.
[http://dx.doi.org/10.1016/j.jddst.2021.102696]
[42]
Kheradmandnia, S.; Vasheghani-Farahani, E.; Nosrati, M.; Atyabi, F. Preparation and characterization of ketoprofen-loaded solid lipid nanoparticles made from beeswax and carnauba wax. Nanomedicine, 2010, 6(6), 753-759.
[http://dx.doi.org/10.1016/j.nano.2010.06.003] [PMID: 20599527]
[43]
Yang, Y.; Leser, M.E.; Sher, A.A.; McClements, D.J. Formation and stability of emulsions using a natural small molecule surfactant: Quillaja saponin (Q-Naturale®). Food Hydrocoll., 2013, 30(2), 589-596.
[http://dx.doi.org/10.1016/j.foodhyd.2012.08.008]
[44]
Dynamic light scattering - common terms defined; Malvern Panalytical, 2017.
[45]
Chuacharoen, T.; Prasongsuk, S.; Sabliov, C.M. Effect of surfactant concentrations on physicochemical properties and functionality of curcumin nanoemulsions under conditions relevant to commercial utilization. Molecules, 2019, 24(15), 2744.
[http://dx.doi.org/10.3390/molecules24152744] [PMID: 31362362]
[46]
Marchese, A.; Barbieri, R.; Coppo, E.; Orhan, I.E.; Daglia, M.; Nabavi, S.F.; Izadi, M.; Abdollahi, M.; Nabavi, S.M.; Ajami, M. Antimicrobial activity of eugenol and essential oils containing eugenol: A mechanistic viewpoint. Crit. Rev. Microbiol., 2017, 43(6), 668-689.
[http://dx.doi.org/10.1080/1040841X.2017.1295225] [PMID: 28346030]
[47]
Das, B.; Mandal, D.; Dash, S.K.; Chattopadhyay, S.; Tripathy, S.; Dolai, D.P.; Dey, S.K.; Roy, S. Eugenol provokes ros-mediated membrane damage-associated antibacterial activity against clinically isolated multidrug-resistant Staphylococcus aureus strains. Infect. Dis., 2016, 9, IDRT.S31741.
[http://dx.doi.org/10.4137/IDRT.S31741] [PMID: 26917967]

© 2024 Bentham Science Publishers | Privacy Policy