Generic placeholder image

Current Rheumatology Reviews

Editor-in-Chief

ISSN (Print): 1573-3971
ISSN (Online): 1875-6360

Review Article

Potential Roles for B cells and Autoantibodies in Ankylosing Spondylitis

Author(s): Samaneh Soltani, Ahmadreza Jamshidi, Mahdi Mahmoudi* and Elham Farhadi*

Volume 20, Issue 2, 2024

Published on: 20 October, 2023

Page: [157 - 164] Pages: 8

DOI: 10.2174/0115733971243468231012044909

Price: $65

Abstract

Ankylosing spondylitis (AS) is a chronic inflammatory rheumatic disease that predominantly affects young males. AS is a condition in which the spine and sacroiliac joints become inflamed. More specifically, most AS patients experience spine malformations over time, resulting in functional incapability. The etiopathogenesis of AS is a complex combination of genetic predisposition and environmental factors. Extensive studies on AS have revealed the central role of genetics and immune reactions in its etiology. However, an utmost agreement has yet to be created. The available evidence suggests that both autoinflammation and T-cell-mediated autoimmune processes have significant roles in the disease process of AS. So far, B cells have obtained moderately little attention in AS pathogenesis, primarily because of the absence of disease-defining autoantibodies. However, against general dogma, evidence is mounting showing B cell involvement. Disruptions depict this in circulating B cell populations, the increased expression of immunoglobulin (Ig)G, IgA, and IgM, and B cell infiltration within the axial skeleton of AS patients.

Meanwhile, compared to many other inflammatory autoimmune disorders, AS has no disease-specific autoantibodies that help disease diagnosis. This study has provided an overview of the B lymphocytes and antibodies' role in AS pathogenesis. It also introduces autoantibodies that can be the prognosis and diagnosis biomarkers of AS.

Keywords: Ankylosing spondylitis, antibodies, autoantibodies, autoimmunity, B cells, B cells subtypes.

Graphical Abstract
[1]
Zhu W, He X, Cheng K, et al. Ankylosing spondylitis: Etiology, pathogenesis, and treatments. Bone Res 2019; 7(1): 22.
[http://dx.doi.org/10.1038/s41413-019-0057-8] [PMID: 31666997]
[2]
Malakar A, Kakati S, Barman B, Dutta A. Clinical presentation and subtypes of spondyloarthritis patients in North East India. Egypt Rheumatol 2020; 42(4): 271-4.
[http://dx.doi.org/10.1016/j.ejr.2020.08.003]
[3]
Danve A, O’Dell J. The ongoing quest for biomarkers in ankylosing spondylitis. Int J Rheum Dis 2015; 18(8): 826-34.
[http://dx.doi.org/10.1111/1756-185X.12779] [PMID: 26469363]
[4]
Braun J, Sieper J. Ankylosing spondylitis. Lancet 2007; 369(9570): 1379-90.
[http://dx.doi.org/10.1016/S0140-6736(07)60635-7] [PMID: 17448825]
[5]
Xi Y, Jiang T, Chaurasiya B, et al. Advances in nanomedicine for the treatment of ankylosing spondylitis. Int J Nanomed 2019; 14: 8521-42.
[http://dx.doi.org/10.2147/IJN.S216199] [PMID: 31806960]
[6]
Eghtedari AA, Davis P, Bacon PA. Immunological reactivity in ankylosing spondylitis. Circulating immunoblasts, autoantibodies, and immunoglobulins. Ann Rheum Dis 1976; 35(2): 155-7.
[http://dx.doi.org/10.1136/ard.35.2.155] [PMID: 942271]
[7]
Burgos-Vargas R, Naranjo A, Castillo J, Katona G. Ankylosing spondylitis in the Mexican mestizo: Patterns of disease according to age at onset. J Rheumatol 1989; 16(2): 186-91.
[PMID: 2787404]
[8]
Wright C, Sibani S, Trudgian D, et al. Detection of multiple autoantibodies in patients with ankylosing spondylitis using nucleic acid programmable protein arrays. Mol Cell Proteomics 2012; 11(2): M9.00384.
[http://dx.doi.org/10.1074/mcp.M9.00384] [PMID: 22311593]
[9]
Quaden DHF, De Winter LM, Somers V. Detection of novel diagnostic antibodies in ankylosing spondylitis: An overview. Autoimmun Rev 2016; 15(8): 820-32.
[http://dx.doi.org/10.1016/j.autrev.2016.06.001] [PMID: 27288842]
[10]
Lin Q, Gu JR, Li TW, et al. Value of the peripheral blood B-cells subsets in patients with ankylosing spondylitis. Chin Med J 2009; 122(15): 1784-9.
[PMID: 19781326]
[11]
Appel H, Kuhne M, Spiekermann S, et al. Immunohistologic analysis of zygapophyseal joints in patients with ankylosing spondylitis. Arthritis Rheum 2006; 54(9): 2845-51.
[http://dx.doi.org/10.1002/art.22060] [PMID: 16947385]
[12]
Niu XY, Zhang HY, Liu YJ, Zhao D, Shan YX, Jiang YF. Peripheral B-cell activation and exhaustion markers in patients with ankylosing spondylitis. Life Sci 2013; 93(18-19): 687-92.
[http://dx.doi.org/10.1016/j.lfs.2013.09.003] [PMID: 24044883]
[13]
Sanz I, Wei C, Jenks SA, et al. Challenges and opportunities for consistent classification of human B cell and plasma cell populations. Front Immunol 2019; 10: 2458.
[http://dx.doi.org/10.3389/fimmu.2019.02458] [PMID: 31681331]
[14]
Ge L, Wang J, Zhu BQ, Zhang ZS. Effect of abnormal activated B cells in patients with ankylosing spondylitis and its molecular mechanism. Eur Rev Med Pharmacol Sci 2018; 22(9): 2527-33.
[PMID: 29771402]
[15]
Zhang Y, Wei S, Wu Q, et al. Interleukin-35 promotes Breg expansion and interleukin-10 production in CD19+ B cells in patients with ankylosing spondylitis. Clin Rheumatol 2022; 41(8): 2403-16.
[http://dx.doi.org/10.1007/s10067-022-06137-8] [PMID: 35420296]
[16]
Revell PA, Mayston V. Histopathology of the synovial membrane of peripheral joints in ankylosing spondylitis. Ann Rheum Dis 1982; 41(6): 579-86.
[http://dx.doi.org/10.1136/ard.41.6.579] [PMID: 6756321]
[17]
Wang C, Liao Q, Hu Y, Zhong D. T lymphocyte subset imbalances in patients contribute to ankylosing spondylitis. Exp Ther Med 2015; 9(1): 250-6.
[http://dx.doi.org/10.3892/etm.2014.2046] [PMID: 25452811]
[18]
Giltiay NV, Chappell CP, Clark EA. B-cell selection and the development of autoantibodies. Arthritis Res Ther 2012; 14(Suppl 4): S1.
[http://dx.doi.org/10.1186/ar3918] [PMID: 23281837]
[19]
Kim HR, Kim H-Y, Lee S-H. Elevated serum levels of soluble receptor activator of nuclear factors- B ligand (sRANKL) and reduced bone mineral density in patients with ankylosing spondylitis (AS). Rheumatology 2006; 45(10): 1197-200.
[http://dx.doi.org/10.1093/rheumatology/kel072] [PMID: 16567356]
[20]
Wilbrink R, Spoorenberg A, Verstappen GMPJ, Kroese FGM. B cell involvement in the pathogenesis of ankylosing spondylitis. Int J Mol Sci 2021; 22(24): 13325.
[http://dx.doi.org/10.3390/ijms222413325] [PMID: 34948121]
[21]
Chen M, Hu X, Wu M, et al. Serum levels of OPG, RANKL, and RANKL/OPG ratio in patients with ankylosing spondylitis: A systematic review and meta-analysis. Immunol Invest 2019; 48(5): 490-504.
[http://dx.doi.org/10.1080/08820139.2019.1567531] [PMID: 30689477]
[22]
Hauser B, Zhao S, Visconti MR, et al. Autoantibodies to osteoprotegerin are associated with low hip bone mineral density and history of fractures in axial spondyloarthritis: A cross-sectional observational study. Calcif Tissue Int 2017; 101(4): 375-83.
[http://dx.doi.org/10.1007/s00223-017-0291-2] [PMID: 28534161]
[23]
Zainabadi K, Liu CJ, Guarente L. SIRT1 is a positive regulator of the master osteoblast transcription factor, RUNX2. PLoS One 2017; 12(5): e0178520.
[http://dx.doi.org/10.1371/journal.pone.0178520] [PMID: 28542607]
[24]
Chen Y, Zhou F, Liu H, et al. SIRT1, a promising regulator of bone homeostasis. Life Sci 2021; 269: 119041.
[http://dx.doi.org/10.1016/j.lfs.2021.119041] [PMID: 33453243]
[25]
Hu Q, Sun Y, Li Y, et al. Anti-SIRT1 autoantibody is elevated in ankylosing spondylitis: A potential disease biomarker. BMC Immunol 2018; 19(1): 38.
[http://dx.doi.org/10.1186/s12865-018-0280-x] [PMID: 30558548]
[26]
Tsui FWL, Tsui HW, Las Heras F, Pritzker KPH, Inman RD. Serum levels of novel noggin and sclerostin-immune complexes are elevated in ankylosing spondylitis. Ann Rheum Dis 2014; 73(10): 1873-9.
[http://dx.doi.org/10.1136/annrheumdis-2013-203630] [PMID: 23894062]
[27]
Appel H, Ruiz-Heiland G, Listing J, et al. Altered skeletal expression of sclerostin and its link to radiographic progression in ankylosing spondylitis. Arthritis Rheum 2009; 60(11): 3257-62.
[http://dx.doi.org/10.1002/art.24888] [PMID: 19877044]
[28]
Luchetti MM, Ciccia F, Avellini C, et al. Sclerostin and antisclerostin antibody serum levels predict the presence of axial spondyloarthritis in patients with inflammatory bowel disease. J Rheumatol 2018; 45(5): 630-7.
[http://dx.doi.org/10.3899/jrheum.170833] [PMID: 29419466]
[29]
Kim YG, Sohn DH, Zhao X, et al. Role of protein phosphatase magnesium-dependent 1A and anti-protein phosphatase magnesium-dependent 1A autoantibodies in ankylosing spondylitis. Arthritis Rheumatol 2014; 66(10): 2793-803.
[http://dx.doi.org/10.1002/art.38763] [PMID: 24980965]
[30]
Kwon OC, Choi B, Lee EJ, et al. Negative regulation of osteoclast commitment by intracellular protein phosphatase magnesium-dependent 1A. Arthritis Rheumatol 2020; 72(5): 750-60.
[http://dx.doi.org/10.1002/art.41180] [PMID: 31762216]
[31]
Tani Y, Sato H, Hukuda S. Autoantibodies to collagens in Japanese patients with ankylosing spondylitis. Clin Exp Rheumatol 1997; 15(3): 295-7.
[PMID: 9177925]
[32]
Elango J, Sanchez C, de Val JEMS, et al. Cross-talk between primary osteocytes and bone marrow macrophages for osteoclastogenesis upon collagen treatment. Sci Rep 2018; 8(1): 5318.
[http://dx.doi.org/10.1038/s41598-018-23532-x] [PMID: 29593232]
[33]
Chiu LH, Lai WFT, Chang SF, et al. The effect of type II collagen on MSC osteogenic differentiation and bone defect repair. Biomaterials 2014; 35(9): 2680-91.
[http://dx.doi.org/10.1016/j.biomaterials.2013.12.005] [PMID: 24411332]
[34]
Tiwana H, Natt RS, Benitez-Brito R, et al. Correlation between the immune responses to collagens type I, III, IV and V and Klebsiella pneumoniae in patients with Crohn’s disease and ankylosing spondylitis. Rheumatology 2001; 40(1): 15-23.
[http://dx.doi.org/10.1093/rheumatology/40.1.15] [PMID: 11157137]
[35]
Locht H, Skogh T, Kihlström E. Anti-lactoferrin antibodies and other types of anti-neutrophil cytoplasmic antibodies (ANCA) in reactive arthritis and ankylosing spondylitis. Clin Exp Immunol 2001; 117(3): 568-73.
[http://dx.doi.org/10.1046/j.1365-2249.1999.01008.x] [PMID: 10469064]
[36]
de Vries M, van der Horst-Bruinsma I, van Hoogstraten I, et al. pANCA, ASCA, and OmpC antibodies in patients with ankylosing spondylitis without inflammatory bowel disease. J Rheumatol 2010; 37(11): 2340-4.
[http://dx.doi.org/10.3899/jrheum.100269] [PMID: 20810508]
[37]
Dixon AM, Roy S. Role of membrane environment and membrane-spanning protein regions in assembly and function of the Class II Major Histocompatibility complex. Hum Immunol 2019; 80(1): 5-14.
[http://dx.doi.org/10.1016/j.humimm.2018.07.004] [PMID: 30102939]
[38]
Dijkstra JM, Yamaguchi T. Ancient features of the MHC class II presentation pathway, and a model for the possible origin of MHC molecules. Immunogenetics 2019; 71(3): 233-49.
[http://dx.doi.org/10.1007/s00251-018-1090-2] [PMID: 30377750]
[39]
Schröder B. The multifaceted roles of the invariant chain CD74 — More than just a chaperone. Biochim Biophys Acta Mol Cell Res 2016; 1863(6): 1269-81.
[http://dx.doi.org/10.1016/j.bbamcr.2016.03.026] [PMID: 27033518]
[40]
Baraliakos X, Baerlecken N, Witte T, Heldmann F, Braun J. High prevalence of anti-CD74 antibodies specific for the HLA class II-associated invariant chain peptide (CLIP) in patients with axial spondyloarthritis: Table 1. Ann Rheum Dis 2014; 73(6): 1079-82.
[http://dx.doi.org/10.1136/annrheumdis-2012-202177] [PMID: 23644552]
[41]
Ziade NR, Mallak I, Merheb G, et al. Added value of anti-CD74 autoantibodies in axial spondyloarthritis in a population with low HLA-B27 prevalence. Front Immunol 2019; 10: 574.
[http://dx.doi.org/10.3389/fimmu.2019.00574] [PMID: 30972069]
[42]
Xu S, Zhang X, Chen Y, Ma Y, Deng J, Gao X, Eds. Anti-CD74 antibodies in spondyloarthritis: A systematic review and meta-analysis. Seminars in Arthritis and Rheumatism. Elsevier 2021.
[43]
van Kempen TS, Leijten EFA, Lindenbergh MFS, et al. Impaired proteolysis by SPPL2a causes CD74 fragment accumulation that can be recognized by anti-CD74 autoantibodies in human ankylosing spondylitis. Eur J Immunol 2020; 50(8): 1209-19.
[http://dx.doi.org/10.1002/eji.201948502] [PMID: 32198923]
[44]
Mäki-Ikola O, Hällgren R, Kanerud L, Feltelius N, Knutsson L, Granfors K. Enhanced jejunal production of antibodies to Klebsiella and other Enterobacteria in patients with ankylosing spondylitis and rheumatoid arthritis. Ann Rheum Dis 1997; 56(7): 421-5.
[http://dx.doi.org/10.1136/ard.56.7.421] [PMID: 9486004]
[45]
Smith MD, Gibson RA, Brooks PM. Abnormal bowel permeability in ankylosing spondylitis and rheumatoid arthritis. J Rheumatol 1985; 12(2): 299-305.
[PMID: 4032403]
[46]
Wallis D, Asaduzzaman A, Weisman M, et al. Elevated serum anti-flagellin antibodies implicate subclinical bowel inflammation in ankylosing spondylitis: An observational study. Arthritis Res Ther 2013; 15(5): R166.
[http://dx.doi.org/10.1186/ar4350] [PMID: 24286190]
[47]
Duftner C, Dejaco C, Klauser A, Falkenbach A, Lakomek HJ, Schirmer M. High positive predictive value of specific antibodies cross-reacting with a 28-kDa Drosophila antigen for diagnosis of ankylosing spondylitis. Rheumatology 2006; 45(1): 38-42.
[http://dx.doi.org/10.1093/rheumatology/kei109] [PMID: 16159948]
[48]
Tani Y, Sato H, Tanaka N, Hukuda S. Antibodies against bacterial lipopolysaccharides in Japanese patients with ankylosing spondylitis. Rheumatology 1997; 36(4): 491-3.
[http://dx.doi.org/10.1093/rheumatology/36.4.491] [PMID: 9159547]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy