Generic placeholder image

Current Molecular Medicine

Editor-in-Chief

ISSN (Print): 1566-5240
ISSN (Online): 1875-5666

Research Article

METTL14 Regulates the m6A Modification of TRAF6 to Suppress Mitochondrial Dysfunction and Ferroptosis in Dopaminergic Neurons via the cGAS-STING Pathway

Author(s): Liang Shao, Fan Hu, Renxu Xu, Hongbing Nie, Hong Zhang and Ping Zhang*

Volume 24, Issue 12, 2024

Published on: 20 October, 2023

Page: [1518 - 1528] Pages: 11

DOI: 10.2174/0115665240263859231018110107

Price: $65

Open Access Journals Promotions 2
Abstract

Objectives: The degeneration of dopaminergic (DA) neurons has emerged as a crucial pathological characteristic in Parkinson’s disease (PD). To enrich the related knowledge, we aimed to explore the impact of the METTL14-TRAF6-cGASSTING axis in mitochondrial dysfunction and ferroptosis underlying DA neuron degeneration.

Methods: 1-methyl-4-phenylpyridinium ion (MPP+) was used to treat DA neuron MN9D to develop the PD cell models. Afterward, a cell counting kit, flow cytometer, DCFH-DA fluorescent probe, and Dipyrromethene Boron Difluoride staining were utilized to measure the cell viability, iron concentration, ROS level, and lipid peroxidation, respectively. Meanwhile, the mitochondrial ultrastructure, the activity of mitochondrial respiratory chain complexes, and levels of malondialdehyde and glutathione were monitored. In addition, reverse transcription-quantitative polymerase chain reaction and western blot assays were adopted to measure the expression of related genes. cGAS ubiquitylation and TRAF6 messenger RNA (mRNA) N6-methyladenosine (m6A) levels, the linkages among METTL14, TRAF6, and the cGAS-STING pathway were also evaluated.

Results: METTL14 expression was low, and TRAF6 expression was high after MPP+ treatment. In MPP+-treated MN9D cells, METTL14 overexpression reduced ferroptosis, ROS generation, mitochondrial injury, and oxidative stress (OS) and enhanced mitochondrial membrane potentials. TRAF6 overexpression had promoting impacts on mitochondrial dysfunction and ferroptosis in MPP+-treated MN9D cells, which was reversed by further overexpression of METTL14. Mechanistically, METTL14 facilitated the m6A methylation of TRAF6 mRNA to down-regulate TRAF6 expression, thus inactivating the cGAS-STING pathway.

Conclusion: METTL14 down-regulated TRAF6 expression through TRAF6 m6A methylation to inactivate the cGAS-STING pathway, thereby relieving mitochondrial dysfunction and ferroptosis in DA neurons.

Keywords: METTL14, TRAF6, cGAS-STING pathway, parkinson's disease, ferroptosis, mitochondrial dysfunction, dopaminergic neurons.

[1]
Tolosa E, Garrido A, Scholz SW, Poewe W. Challenges in the diagnosis of Parkinson’s disease. Lancet Neurol 2021; 20(5): 385-97.
[http://dx.doi.org/10.1016/S1474-4422(21)00030-2] [PMID: 33894193]
[2]
Lotankar S, Prabhavalkar KS, Bhatt LK. Biomarkers for parkinson’s disease: Recent advancement. Neurosci Bull 2017; 33(5): 585-97.
[http://dx.doi.org/10.1007/s12264-017-0183-5] [PMID: 28936761]
[3]
Rajan S, Kaas B. Parkinson’s disease: Risk factor modification and prevention. Semin Neurol 2022; 42(5): 626-38.
[http://dx.doi.org/10.1055/s-0042-1758780] [PMID: 36427528]
[4]
Murata H, Barnhill LM, Bronstein JM. Air pollution and the risk of parkinson’s disease: A review. Mov Disord 2022; 37(5): 894-904.
[http://dx.doi.org/10.1002/mds.28922] [PMID: 35043999]
[5]
Balestrino R, Schapira AHV. Parkinson disease. Eur J Neurol 2020; 27(1): 27-42.
[http://dx.doi.org/10.1111/ene.14108] [PMID: 31631455]
[6]
Reich SG, Savitt JM. Parkinson’s disease. Med Clin North Am 2019; 103(2): 337-50.
[http://dx.doi.org/10.1016/j.mcna.2018.10.014] [PMID: 30704685]
[7]
Macdonald R, Barnes K, Hastings C, Mortiboys H. Mitochondrial abnormalities in Parkinson’s disease and Alzheimer’s disease: Can mitochondria be targeted therapeutically? Biochem Soc Trans 2018; 46(4): 891-909.
[http://dx.doi.org/10.1042/BST20170501] [PMID: 30026371]
[8]
Burbulla LF, Song P, Mazzulli JR, et al. Dopamine oxidation mediates mitochondrial and lysosomal dysfunction in Parkinson’s disease. Science 2017; 357(6357): 1255-61.
[http://dx.doi.org/10.1126/science.aam9080] [PMID: 28882997]
[9]
Zhao T, Wang J, Wu Y, et al. Increased m6A modification of RNA methylation related to the inhibition of demethylase FTO contributes to MEHP-induced Leydig cell injury. Environ Pollut 2021; 268((Pt A)): 115627.
[http://dx.doi.org/10.1016/j.envpol.2020.115627]
[10]
Berulava T, Buchholz E, Elerdashvili V, et al. Changes in m6A RNA methylation contribute to heart failure progression by modulating translation. Eur J Heart Fail 2020; 22(1): 54-66.
[http://dx.doi.org/10.1002/ejhf.1672] [PMID: 31849158]
[11]
Wang J, Wang K, Liu W, Cai Y, Jin H. m6A mRNA methylation regulates the development of gestational diabetes mellitus in Han Chinese women. Genomics 2021; 113(3): 1048-56.
[http://dx.doi.org/10.1016/j.ygeno.2021.02.016] [PMID: 33667648]
[12]
Zhang Y, Yang Y. Effects of m6A RNA methylation regulators on endometrial cancer. J Clin Lab Anal 2021; 35(9): e23942.
[http://dx.doi.org/10.1002/jcla.23942] [PMID: 34347888]
[13]
Zhang N, Ding C, Zuo Y, Peng Y, Zuo L. N6-methyladenosine and neurological diseases. Mol Neurobiol 2022; 59(3): 1925-37.
[http://dx.doi.org/10.1007/s12035-022-02739-0] [PMID: 35032318]
[14]
Meng L, Lin H, Huang X, Weng J, Peng F, Wu S. METTL14 suppresses pyroptosis and diabetic cardiomyopathy by downregulating TINCR lncRNA. Cell Death Dis 2022; 13(1): 38.
[http://dx.doi.org/10.1038/s41419-021-04484-z] [PMID: 35013106]
[15]
Gao G, Duan Y, Chang F, Zhang T, Huang X, Yu C. METTL14 promotes apoptosis of spinal cord neurons by inducing EEF1A2 m6A methylation in spinal cord injury. Cell Death Discov 2022; 8(1): 15.
[http://dx.doi.org/10.1038/s41420-021-00808-2] [PMID: 35013140]
[16]
Teng Y, Liu Z, Chen X, et al. Conditional deficiency of m6A methyltransferase Mettl14 in substantia nigra alters dopaminergic neuron function. J Cell Mol Med 2021; 25(17): 8567-72.
[http://dx.doi.org/10.1111/jcmm.16740] [PMID: 34288397]
[17]
Ouyang H, Zhang J, Chi D, et al. The YTHDF1–TRAF6 pathway regulates the neuroinflammatory response and contributes to morphine tolerance and hyperalgesia in the periaqueductal gray. J Neuroinflammation 2022; 19(1): 310.
[http://dx.doi.org/10.1186/s12974-022-02672-y] [PMID: 36550542]
[18]
Lu Y, Jiang BC, Cao DL, et al. TRAF6 upregulation in spinal astrocytes maintains neuropathic pain by integrating TNF-α and IL-1β signaling. Pain 2014; 155(12): 2618-29.
[http://dx.doi.org/10.1016/j.pain.2014.09.027] [PMID: 25267210]
[19]
Zucchelli S, Codrich M, Marcuzzi F, et al. TRAF6 promotes atypical ubiquitination of mutant DJ-1 and alpha-synuclein and is localized to Lewy bodies in sporadic Parkinson’s disease brains. Hum Mol Genet 2010; 19(19): 3759-70.
[http://dx.doi.org/10.1093/hmg/ddq290] [PMID: 20634198]
[20]
Kwon J, Bakhoum SF. The cytosolic DNA-sensing cGAS–STING pathway in cancer. Cancer Discov 2020; 10(1): 26-39.
[http://dx.doi.org/10.1158/2159-8290.CD-19-0761] [PMID: 31852718]
[21]
Decout A, Katz JD, Venkatraman S, Ablasser A. The cGAS–STING pathway as a therapeutic target in inflammatory diseases. Nat Rev Immunol 2021; 21(9): 548-69.
[http://dx.doi.org/10.1038/s41577-021-00524-z] [PMID: 33833439]
[22]
Chen Q, Sun L, Chen ZJ. Regulation and function of the cGAS–STING pathway of cytosolic DNA sensing. Nat Immunol 2016; 17(10): 1142-9.
[http://dx.doi.org/10.1038/ni.3558] [PMID: 27648547]
[23]
Szego EM, Malz L, Bernhardt N, Rösen-Wolff A, Falkenburger BH, Luksch H. Constitutively active STING causes neuroinflammation and degeneration of dopaminergic neurons in mice. eLife 2022; 11: e81943.
[http://dx.doi.org/10.7554/eLife.81943] [PMID: 36314770]
[24]
Chen X, Chen Y. Ubiquitination of cGAS by TRAF6 regulates anti-DNA viral innate immune responses. Biochem Biophys Res Commun 2019; 514(3): 659-64.
[http://dx.doi.org/10.1016/j.bbrc.2019.05.022] [PMID: 31078259]
[25]
Ayuk SM, Abrahamse H, Houreld NN. The role of photobiomodulation on gene expression of cell adhesion molecules in diabetic wounded fibroblasts in vitro. J Photochem Photobiol B 2016; 161: 364-74.
[http://dx.doi.org/10.1016/j.jphotobiol.2016.05.027]
[26]
Dai HY, Chang MX, Sun L. HOTAIRM1 knockdown reduces MPP + -induced oxidative stress injury of SH-SY5Y cells by activating the Nrf2/HO-1 pathway. Transl Neurosci 2023; 14(1): 20220296.
[http://dx.doi.org/10.1515/tnsci-2022-0296] [PMID: 37529170]
[27]
Liu J, Eckert MA, Harada BT, et al. m6A mRNA methylation regulates AKT activity to promote the proliferation and tumorigenicity of endometrial cancer. Nat Cell Biol 2018; 20(9): 1074-83.
[http://dx.doi.org/10.1038/s41556-018-0174-4] [PMID: 30154548]
[28]
Weintraub D, Aarsland D, Biundo R, Dobkin R, Goldman J, Lewis S. Management of psychiatric and cognitive complications in Parkinson’s disease. BMJ 2022; 379: e068718.
[http://dx.doi.org/10.1136/bmj-2021-068718]
[29]
Mollenhauer B, von Arnim CAF. Toward preventing Parkinson’s disease. Science 2022; 377(6608): 818-9.
[http://dx.doi.org/10.1126/science.add7162] [PMID: 35981039]
[30]
Panicker N, Kam TI, Wang H, et al. Neuronal NLRP3 is a parkin substrate that drives neurodegeneration in Parkinson’s disease. Neuron 2022; 110(15): 2422-2437.e9.
[http://dx.doi.org/10.1016/j.neuron.2022.05.009] [PMID: 35654037]
[31]
Heidari A, Yazdanpanah N, Rezaei N. The role of Toll-like receptors and neuroinflammation in Parkinson’s disease. J Neuroinflammation 2022; 19(1): 135.
[http://dx.doi.org/10.1186/s12974-022-02496-w] [PMID: 35668422]
[32]
Liu M, Liu C, Xiao X, et al. Role of upregulation of the K ATP channel subunit SUR1 in dopaminergic neuron degeneration in Parkinson’s disease. Aging Cell 2022; 21(5): e13618.
[http://dx.doi.org/10.1111/acel.13618] [PMID: 35441806]
[33]
Sun Y, He L, Wang W, et al. Activation of Atg7-dependent autophagy by a novel inhibitor of the Keap1-Nrf2 protein-protein interaction from Penthorum chinense Pursh. attenuates 6-hydroxydopamine-induced ferroptosis in zebrafish and dopaminergic neurons. Food Funct 2022; 13(14): 7885-900.
[http://dx.doi.org/10.1039/D2FO00357K] [PMID: 35776077]
[34]
Huang L, Bian M, Zhang J, Jiang L. Iron metabolism and ferroptosis in peripheral nerve injury. Oxid Med Cell Longev 2022; 5918218.
[http://dx.doi.org/10.1155/2022/5918218]
[35]
Raza C, Anjum R, Shakeel NUA. Parkinson’s disease: Mechanisms, translational models and management strategies. Life Sci 2019; 226: 77-90.
[36]
Cogliati S, Lorenzi I, Rigoni G, Caicci F, Soriano ME. Regulation of mitochondrial electron transport chain assembly. J Mol Biol 2018; 430(24): 4849-73.
[http://dx.doi.org/10.1016/j.jmb.2018.09.016] [PMID: 30292820]
[37]
Mahalanobish S, Dutta S, Saha S, Sil PC. Melatonin induced suppression of ER stress and mitochondrial dysfunction inhibited NLRP3 inflammasome activation in COPD mice. Food Chem Toxicol 2020; 144: 11588.
[http://dx.doi.org/10.1016/j.fct.2020.111588]
[38]
Chen Q, Huang X, Li R. lncRNA MALAT1/miR-205-5p axis regulates MPP+-induced cell apoptosis in MN9D cells by directly targeting LRRK2. Am J Transl Res 2018; 10(2): 563-72.
[PMID: 29511451]
[39]
Fan HN, Chen ZY, Chen XY, et al. METTL14-mediated m6A modification of circORC5 suppresses gastric cancer progression by regulating miR-30c-2-3p/AKT1S1 axis. Mol Cancer 2022; 21(1): 51.
[http://dx.doi.org/10.1186/s12943-022-01521-z] [PMID: 35164771]
[40]
Chen X, Xu M, Xu X, et al. METTL14-mediated N6-methyladenosine modification of SOX4 mRNA inhibits tumor metastasis in colorectal cancer. Mol Cancer 2020; 19(1): 106.
[http://dx.doi.org/10.1186/s12943-020-01220-7] [PMID: 32552762]
[41]
Weng YL, Wang X, An R, et al. Epitranscriptomic m6A regulation of axon regeneration in the adult mammalian nervous system. Neuron 2018; 97(2): 313.e6-25.
[http://dx.doi.org/10.1016/j.neuron.2017.12.036] [PMID: 29346752]
[42]
Zhang K, Li P, Jia Y, Liu M, Jiang J. Non-coding RNA and n6-methyladenosine modification play crucial roles in neuropathic pain. Front Mol Neurosci 2022; 15: 1008018.
[http://dx.doi.org/10.3389/fnmol.2022.1002018]
[43]
Qi L, Hu H, Wang Y, et al. New insights into the central sympathetic hyperactivity post‐myocardial infarction: Roles of METTL3‐mediated m 6 A methylation. J Cell Mol Med 2022; 26(4): 1264-80.
[http://dx.doi.org/10.1111/jcmm.17183] [PMID: 35040253]
[44]
Chen X, Yu C, Guo M, et al. Down-regulation of m6A mRNA methylation is involved in dopaminergic neuronal death. ACS Chem Neurosci 2019; 10(5): 2355-63.
[http://dx.doi.org/10.1021/acschemneuro.8b00657] [PMID: 30835997]
[45]
Du J, Sarkar R, Li Y, et al. N6-adenomethylation of GsdmC is essential for Lgr5+ stem cell survival to maintain normal colonic epithelial morphogenesis. Dev Cell 2022; 57(16): 1976-1994.e8.
[http://dx.doi.org/10.1016/j.devcel.2022.07.006] [PMID: 35917813]
[46]
Fan Z, Yang G, Zhang W, et al. Hypoxia blocks ferroptosis of hepatocellular carcinoma via suppression of METTL14 triggered YTHDF2‐dependent silencing of SLC7A11. J Cell Mol Med 2021; 25(21): 10197-212.
[http://dx.doi.org/10.1111/jcmm.16957] [PMID: 34609072]
[47]
Dou Y, Tian X, Zhang J, Wang Z, Chen G. Roles of TRAF6 in central nervous system. Curr Neuropharmacol 2018; 16(9): 1306-13.
[http://dx.doi.org/10.2174/1570159X16666180412094655] [PMID: 29651950]
[48]
Guo B, Zuo Z, Di X, et al. Salidroside attenuates HALI via IL-17A-mediated ferroptosis of alveolar epithelial cells by regulating Act1-TRAF6-p38 MAPK pathway. Cell Commun Signal 2022; 20(1): 183.
[http://dx.doi.org/10.1186/s12964-022-00994-1] [PMID: 36411467]
[49]
Arnoult D, Soares F, Tattoli I, Girardin SE. Mitochondria in innate immunity. EMBO Rep 2011; 12(9): 901-10.
[http://dx.doi.org/10.1038/embor.2011.157] [PMID: 21799518]
[50]
Ma C, Liu Y, Li S, et al. Microglial cGAS drives neuroinflammation in the MPTP mouse models of Parkinson’s disease. CNS Neurosci Ther 2023; 29(7): 2018-35.
[http://dx.doi.org/10.1111/cns.14157] [PMID: 36914567]
[51]
Hinkle JT, Patel J, Panicker N, et al. STING mediates neurodegeneration and neuroinflammation in nigrostriatal α-synucleinopathy. Proc Natl Acad Sci 2022; 119(15): e2118819119.
[http://dx.doi.org/10.1073/pnas.2118819119] [PMID: 35394877]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy