Generic placeholder image

Current Pharmaceutical Analysis

Editor-in-Chief

ISSN (Print): 1573-4129
ISSN (Online): 1875-676X

Research Article

A Rapid and Sensitive UPLC-MS/MS Method for the Determination of Bellidifolin and Pharmacokinetics Study of Bellidifolin Nano-microcells

Author(s): Jiaye Tian, Ran Bai, Ziyue Chen, Piaoran Qin, XingChao Liu, Haoran Shen, Li Zhou* and Qiuhong Guo*

Volume 19, Issue 9, 2023

Published on: 20 October, 2023

Page: [704 - 711] Pages: 8

DOI: 10.2174/0115734129253094231018115646

Price: $65

Abstract

Background: Bellidifolin (BEL) has a decent enemy of myocardial fibrosis impact, and its preparation into nano-micelles can build security and great biocompatibility in vitro and in vivo. The pharmacokinetic assessment of BEL can be utilized as the reason for the security and viability of BEL in clinical use.

Objective: This research aimed to establish an effective UPLC-MS/MS strategy for assuring BEL in rodent plasma and concentrating on its pharmacokinetics in vivo.

Methods: Luteolin was utilized as an internal standard (IS). Chromatographic separation was accomplished utilizing a UPLC HSS T3 column (2.1 ×100 mm, 1.8 μm) section using a mobile phase of 0.1% acetonitrile (A) and 0.1% formic acid in water (B) with gradient elution. Electrospray ionization (ESI) coupled mass spectrometry was applied in various response checking (MRM) modes with negative ionization.

Results: The pharmacokinetic behaviour of bellidifolin nano-micelles in vivo showed that the peak concentration (Cmax) was 1666.19±479.92 μg/L, the time to peak (Tmax) was 0.167 h, and the apparent elimination half-life (t1/2) was 7.60±3.58 h. The plasma clearance rate (CL/F) was 1.15±0.48 L/h/kg, the apparent volume of distribution (V/F) was 14.38±11.04, the area under the curve (AUC) was 8292.57±4193.13 μg/L*h, and the mean retention time (MRT) was 9.70±4.55 h.

Conclusion: The method was successfully applied to the plasma pharmacokinetics of bellidifolin nano-micelles after intragastric administration to rats.

Keywords: Bellidifolin, nano-micelles, pharmacokinetic study, UPLC-MS/MS, plasma, rat.

Graphical Abstract
[1]
Zhao, Z.; Gao, Y.; Gao, L.; Zhang, M.; Wang, H.; Zhang, C. Protective effects of bellidifolin in hypoxia-induced in pheochromocytoma cells (PC12) and underlying mechanisms. J. Toxicol. Environ. Health A, 2017, 80(22), 1187-1192.
[http://dx.doi.org/10.1080/15287394.2017.1367114] [PMID: 28895799]
[2]
Tian, L.Y.; Bai, X.; Chen, X.H.; Fang, J.B.; Liu, S.H.; Chen, J.C. Anti-diabetic effect of methylswertianin and bellidifolin from Swertia punicea Hemsl. and its potential mechanism. Phytomedicine, 2010, 17(7), 533-539.
[http://dx.doi.org/10.1016/j.phymed.2009.10.007] [PMID: 19962285]
[3]
Yan, L.; Yali, L.; Chenghao, L.; Caiqin, F.; Zhongbo, Z.; Weiyu, R.; Yu, M.; Xiaotian, Z.; Biwen, W.; Xiaojie, J.; Yongqi, L. Bellidifolin inhibits proliferation of A549 cells by regulating STAT3/COX-2 expression and protein activity. J. Oncol., 2020, 2020, 1-17.
[http://dx.doi.org/10.1155/2020/1723791] [PMID: 33299414]
[4]
Li, S.; Huang, C.; Li, X.; Meng, X.; Wen, R.; Zhang, X.; Zhang, C.; Li, M. Bellidifolin from Gentianella acuta (Michx.) Hulten protects H9c2 cells from hydrogen peroxide-induced injury via the PI3K-Akt signal pathway. Toxicol. Rep., 2022, 9, 1655-1665.
[http://dx.doi.org/10.1016/j.toxrep.2022.08.006] [PMID: 36518482]
[5]
Ren, K.; Su, H.; Lv, L.; Yi, L.; Gong, X.; Dang, L.; Zhang, R.; Li, M. Effects of Four Compounds from Gentianella acuta (Michx.) Hulten on Hydrogen Peroxide-Induced Injury in H9c2 Cells. BioMed Res. Int., 2019, 2019, 1-9.
[http://dx.doi.org/10.1155/2019/2692970] [PMID: 30800665]
[6]
Yang, H.X.; Sun, J.H.; Yao, T.T.; Li, Y.; Xu, G.R.; Zhang, C.; Liu, X.C.; Zhou, W.W.; Song, Q.H.; Zhang, Y.; Li, A.Y. Bellidifolin ameliorates isoprenaline-induced myocardial fibrosis by regulating TGF-β1/Smads and p38 signaling and preventing NR4A1 cytoplasmic localization. Front. Pharmacol., 2021, 12, 644886.
[http://dx.doi.org/10.3389/fphar.2021.644886] [PMID: 33995055]
[7]
Majumder, N.G.; Das, N.; Das, S.K. Polymeric micelles for anticancer drug delivery. Ther. Deliv., 2020, 11(10), 613-635.
[http://dx.doi.org/10.4155/tde-2020-0008] [PMID: 32933425]
[8]
Kwon, G.S. Polymeric micelles for delivery of poorly water-soluble compounds. Crit. Rev. Ther. Drug Carrier Syst., 2003, 20(5), 357-403.
[http://dx.doi.org/10.1615/CritRevTherDrugCarrierSyst.v20.i5.20] [PMID: 14959789]
[9]
Pepić, I.; Lovrić, J.; Filipović-Grčić, J. How do polymeric micelles cross epithelial barriers? Eur. J. Pharm. Sci., 2013, 50(1), 42-55.
[http://dx.doi.org/10.1016/j.ejps.2013.04.012] [PMID: 23619286]
[10]
Illum, L.; Jordan, F.; Lewis, A.L. CriticalSorb™: A novel efficient nasal delivery system for human growth hormone based on Solutol HS15. J. Control. Release, 2012, 162(1), 194-200.
[http://dx.doi.org/10.1016/j.jconrel.2012.06.014] [PMID: 22709592]
[11]
Leonardi, A.; Bucolo, C.; Romano, G.L.; Platania, C.B.M.; Drago, F.; Puglisi, G.; Pignatello, R. Influence of different surfactants on the technological properties and in vivo ocular tolerability of lipid nanoparticles. Int. J. Pharm., 2014, 470(1-2), 133-140.
[http://dx.doi.org/10.1016/j.ijpharm.2014.04.061] [PMID: 24792979]
[12]
Gao, F.; Chen, Z.; Zhou, L.; Xiao, X.; Wang, L.; Liu, X.; Wang, C.; Guo, Q. Preparation, characterization and in vitro study of bellidifolin nano-micelles. RSC Advances, 2022, 12(34), 21982-21989.
[http://dx.doi.org/10.1039/D2RA02779H] [PMID: 36043071]
[13]
Guo, X.; Wang, P.; Hu, X.; Fang, L.; Zhao, P.; Jiang, Z.; Guo, X. Pharmacokinetic study of four components in rat plasma after oral administration of guanmaitong granule by UPLC-MS/MS. Curr. Pharm. Anal., 2018, 14(3), 223-232.
[http://dx.doi.org/10.2174/1573412913666170303105121]
[14]
Li, R.; Fan, C.; Xu, W.; Wei, W.; Wang, X.; Li, Z.; Zhao, P.; Su, Z.; Tang, X.; Yao, Z.; Dai, Y. Simultaneous determination of multiple constituents of Qi-Lin pill by UPLC-MS/MS: Applications to pharmacokinetics and testicular tissue distribution in rats. J. Pharm. Biomed. Anal., 2023, 223, 115157.
[http://dx.doi.org/10.1016/j.jpba.2022.115157] [PMID: 36379101]
[15]
Wang, H.Q.; Gong, X.M.; Lan, F.; Zhang, Y.H.; Xia, J.E.; Zhang, H.; Guo, J.L.; Liu, M. Biopharmaceutics and pharmacokinetics of timosaponin A-III by a Sensitive HPLC-MS/MS method: Low bioavailability resulting from poor permeability and solubility. Curr. Pharm. Biotechnol., 2021, 22(5), 672-681.
[http://dx.doi.org/10.2174/1389201021666200707134045] [PMID: 32634081]
[16]
Chen, M.; Jiang, Q.; Zhang, M.; Chen, S.; Lou, J.; Chen, Y.; Wang, F.; Wang, R. Establishment of quantitative methodology for sophoridine analysis and determination of its pharmacokinetics and bioavailability in rat. Drug Dev. Ind. Pharm., 2021, 47(5), 741-747.
[http://dx.doi.org/10.1080/03639045.2021.1934862] [PMID: 34213992]
[17]
Guo, Y. lü, S.; Yang, B.; Li, G.; Ma, W.; Guo, Q.; Wang, Q.; Kuang, H. HPLC–MS/MS method for the determination and pharmacokinetic study of six compounds against rheumatoid arthritis in rat plasma after oral administration of the extract of Caulophyllum robustum Maxim. J. Pharm. Biomed. Anal., 2020, 181, 112923.
[http://dx.doi.org/10.1016/j.jpba.2019.112923] [PMID: 32029347]
[18]
Guan, X.; Morris, M.E. Pharmacokinetics of the monocarboxylate transporter 1 inhibitor AZD3965 in mice: Potential enterohepatic circulation and target-mediated disposition. Pharm. Res., 2020, 37(1), 5.
[http://dx.doi.org/10.1007/s11095-019-2735-z] [PMID: 31823112]
[19]
Keunecke, A.; Hoefman, S.; Drenth, H.J.; Zisowsky, J.; Cleton, A.; Ploeger, B.A. Population pharmacokinetics of regorafenib in solid tumours: Exposure in clinical practice considering enterohepatic circulation and food intake. Br. J. Clin. Pharmacol., 2020, 86(12), 2362-2376.
[http://dx.doi.org/10.1111/bcp.14334] [PMID: 32358822]
[20]
Yang, Y.Y.; Tsai, T.H. Enterohepatic circulation and pharmacokinetics of genistin and genistein in rats. ACS Omega, 2019, 4(19), 18428-18433.
[http://dx.doi.org/10.1021/acsomega.9b02762] [PMID: 31720546]
[21]
Zheng, B.; Wang, C.; Song, W.; Ye, X.; Xiang, Z. Pharmacokinetics and enterohepatic circulation of jervine, an antitumor steroidal alkaloid from Veratrum nigrum in rats. J. Pharm. Anal., 2019, 9(5), 367-372.
[http://dx.doi.org/10.1016/j.jpha.2019.04.004] [PMID: 31929946]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy