Generic placeholder image

Current Pharmaceutical Analysis

Editor-in-Chief

ISSN (Print): 1573-4129
ISSN (Online): 1875-676X

Research Article

The Metabolism Study of Oleraisoquinoline in Rats Using Ultrahigh- performance Liquid Chromatography-electrospray Coupled with Quadrupole Time-of-flight Mass Spectrometry and its Bioactivities

Author(s): Peishan Liu, Rui Sun, Jiayin Tian, Fan He* and Xixiang Ying*

Volume 19, Issue 9, 2023

Published on: 07 November, 2023

Page: [695 - 703] Pages: 9

DOI: 10.2174/1573412919666230816090927

Price: $65

Abstract

Objective: This study aimed to investigate the main metabolites and metabolic pathways of oleraisoquinoline in rats, a new alkaloid isolated from Portulaca oleracea L., and test its antioxidation and anticholinesterase effects.

Methods: Ultra-high-performance liquid chromatography-electrospray coupled with quadrupole time-of-flight mass spectrometry (UHPLC-ESI-Q-TOF/MS) was applied to study the metabolism of oleraisoquinoline. Furthermore, 1,1-diphenyl-2-picrylhydrazyl assay and modified Ellman’s method were used to test the antioxidation and anticholinesterase effects of oleraisoquinoline, respectively.

Results: The metabolism results of oleraisoquinoline showed, after its administration through the tail vein of rats, 4 metabolites in the plasma samples, 17 metabolites in the urine sample, and 2 metabolites in the feces sample. The main metabolic pathways were hydrolyzation, oxidation, hydroxylation, sulfonation, glucuronidation, acetylation, and methylation. Additionally, IC50 values of antioxidant and anticholinesterase activities were 13.819 ± 0.005 μM and 10.551 ± 0.069 μM, respectively.

Conclusion: 21 metabolites were found in the rat’s plasma, urine, and feces samples, and the metabolic pathways included hydrolyzation, oxidation, hydroxylation, sulfonation, glucuronidation, acetylation, and methylation; among them, sulfonation was the main metabolic reaction. Meanwhile, oleraisoquinoline also showed extremely good antioxidant and anticholinesterase activities.

Keywords: Portulaca oleracea L., oleraisoquinoline, metabolism, ultra-high-performance liquid chromatographyelectrospray, bioactivity, hydrolyzation.

Graphical Abstract
[1]
The Pharmacopoeia of the People’s Republic of China; China Medical Science and Technology Press: Beijing, 2020, pp. 51-52.
[2]
Cui, X.Y.; Lan, X.J.; Leng, A.J.; Ying, X.X. The metabolism of portulacatone B from Portulaca oleracea L. in rats by UHPLC-ESI-Q-TOF/MS. Curr. Pharm. Anal., 2022, 19(4), 301-306.
[http://dx.doi.org/10.2174/1573412919666230306124751]
[3]
Li, C.Y.; Meng, Y.H.; Ying, Z.M.; Xu, N.; Hao, D.; Gao, M.Z.; Zhang, W.J.; Xu, L.; Gao, Y.C.; Ying, X.X. Three novel alkaloids from Portulaca oleracea L. and their anti-inflammatory effects. J. Agric. Food Chem., 2016, 64(29), 5837-5844.
[http://dx.doi.org/10.1021/acs.jafc.6b02673] [PMID: 27396870]
[4]
Wang, C.Y.; Guo, S.N.; Tian, J.Y.; Liu, P.S.; Song, M.Y.; Zhang, W.J.; Ying, X.X. Two new lignans with their biological activities in Portulaca oleracea L. Phytochem. Lett., 2022, 50, 95-99.
[http://dx.doi.org/10.1016/j.phytol.2022.06.003]
[5]
Du, Y.K.; Liu, J.; Li, X.M.; Pan, F.F.; Wen, Z.G.; Zhang, T.C.; Yang, P.L. Flavonoids extract from Portulaca oleracea L. induce Staphylococcus aureus death by apoptosis-like pathway. Int. J. Food Prop., 2017, 20(S1), S534-S542.
[6]
Xu, H.; Ying, Z.; Wang, L.; Zhang, W.; Ying, X.; Yang, G. Pharmacokinetics of benzoic acid, 4-[[(2-hydroxyethyl) amino]carbonyl]-, methyl ester from Portulaca oleracea L. in rats after intravenous and oral administrations using UHPLC-ESI-Q-TOF/MS. Curr. Pharm. Anal., 2020, 16(5), 601-607.
[http://dx.doi.org/10.2174/1573412915666190320154857]
[7]
Tang, W.; Liu, D.; Li, Y.; Zou, M.Y.; Shao, Y-C.; Yin, J-Y.; Nie, S-P. Structural characteristics of a highly branched and acetylated pectin from Portulaca oleracea L. Food Hydrocoll., 2021, 116(8), 106659.
[http://dx.doi.org/10.1016/j.foodhyd.2021.106659]
[8]
Cui, X.; Ying, Z.; Ying, X.; Jia, L.; Yang, G. Three new alkaloids from Portulaca oleracea L. and their bioactivities. Fitoterapia, 2021, 154105020.
[http://dx.doi.org/10.1016/j.fitote.2021.105020] [PMID: 34418491]
[9]
Ojah, E.O.; Oladele, E.O.; Chukwuemeka, P. Phytochemical and antibacterial properties of root extracts from Portulaca oleracea Linn. (Purslane) utilised in the management of diseases in Nigeria. J. Med. Plant. Econ. Dev., 2021, 5(1), a103.
[http://dx.doi.org/10.4102/jomped.v5i1.103]
[10]
De Souza, T.C.L.; Da Silveira, T.F.F.; Rodrigues, M.I.; Ruiz, A.L.T.G.; Neves, D.A.; Duarte, M.C.T.; Cunha-Santos, E.C.E.; Kuhnle, G.; Ribeiro, A.B.; Godoy, H.T. A study of the bioactive potential of seven neglected and underutilized leaves consumed in Brazil. Food Chem., 2021, 364(364), 130350.
[http://dx.doi.org/10.1016/j.foodchem.2021.130350] [PMID: 34153595]
[11]
Nitu, L.; Bhatnagar, N.; Kesri, N.S. HPTLC study to determine the antioxidant activity of dried leaves of Portulaca oleracea L. Int. J. Res. Pharm. Sci., 2021, 12(1), 254-261.
[http://dx.doi.org/10.26452/ijrps.v12i1.4174]
[12]
Zhou, Y.X.; Xin, H.L.; Rahman, K.; Wang, S.J.; Peng, C.; Zhang, H. Portulaca oleracea L.: A review of phytochemistry and pharmacological effects. BioMed Res. Int., 2015, 2015, 925631.
[http://dx.doi.org/10.1155/2015/925631] [PMID: 25692148]
[13]
Liu, P.; Lan, X.; Tao, X.; Tian, J.; Ying, X.; Stien, D. A new alkaloid and two organic acids from Portulaca oleracea L. and their bioactivities. Nat. Prod. Res., 2022, 23, 1-10.
[http://dx.doi.org/10.1080/14786419.2022.2103696] [PMID: 35876167]
[14]
Sharma, O.P.; Bhat, T.K. DPPH antioxidant assay revisited. Food Chem., 2009, 113(4), 1202-1205.
[http://dx.doi.org/10.1016/j.foodchem.2008.08.008]
[15]
Mensor, L.L.; Menezes, F.S.; Leitão, G.G.; Reis, A.S.; Santos, T.C.; Coube, C.S.; Leitão, S.G. Screening of Brazilian plant extracts for antioxidant activity by the use of DPPH free radical method. Phytother. Res., 2001, 15(2), 127-130.
[http://dx.doi.org/10.1002/ptr.687] [PMID: 11268111]
[16]
Ellman, G.L.; Courtney, K.D.; Andres, V., Jr; Featherstone, R.M. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol., 1961, 7(2), 88-95.
[http://dx.doi.org/10.1016/0006-2952(61)90145-9] [PMID: 13726518]
[17]
Fujiwara, M.; Yagi, N.; Miyazawa, M. Acetylcholinesterase inhibitory activity of volatile oil from Peltophorum dasyrachis Kurz ex Bakar (yellow batai) and Bisabolane-type sesquiterpenoids. J. Agric. Food Chem., 2010, 58(5), 2824-2829.
[http://dx.doi.org/10.1021/jf9042387] [PMID: 20146521]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy