Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Mini-Review Article

Probiotics Show Promise as a Novel Natural Treatment for Neurological Disorders

Author(s): Preeti Jha, Neha Dangi and Shikha Sharma*

Volume 25, Issue 7, 2024

Published on: 18 October, 2023

Page: [799 - 806] Pages: 8

DOI: 10.2174/0113892010261604230919170143

Price: $65

Abstract

Probiotics are beneficial microorganisms shown to improve human health when consumed regularly and in sufficient quantities. Numerous health benefits can be attained by possessing important metabolites with nutritional and medicinal qualities. It has been shown through scientific research that these living microbial consortiums can influence a variety of mental health outcomes, including but not limited to anxiety, depression, cognitive processes, stress responses, and behavioral patterns. Selected strains of bacteria and yeasts control how the central nervous system (CNS) communicates with the gut-brain axis (GBA) through neuronal, humoral, and metabolic pathways to ease mood. Psychobiotics are substances that can affect the digestive system as well as mood and anxiety. There is scant evidence to validate the beneficial effects of psychiatric drugs in treating neurological diseases or disorders. The therapeutic method of research into psychobiotics opens exciting prospects for the future of the field of development. This review compiles the current evidence available in the scientific literature on the use of probiotics to influence neurological disorders.

Keywords: Probiotics, central nervous system, gut, microbiota, brain, psychiatric diseases.

Next »
Graphical Abstract
[1]
Kerry, R.G.; Patra, J.K.; Gouda, S.; Park, Y.; Shin, H-S.; Das, G. Benefaction of probiotics for human health: A review. Yao Wu Shi Pin Fen Xi, 2018, 26(3), 927-939.
[PMID: 29976412]
[2]
Alagiakrishnan, K.; Halverson, T. Microbial therapeutics in neurocognitive and psychiatric disorders. J. Clin. Med. Res., 2021, 13(9), 439-459.
[http://dx.doi.org/10.14740/jocmr4575] [PMID: 34691318]
[3]
Lubomski, M.; Tan, A.H.; Lim, S.Y.; Holmes, A.J.; Davis, R.L.; Sue, C.M. Parkinson’s disease and the gastrointestinal microbiome. J. Neurol., 2020, 267(9), 2507-2523.
[http://dx.doi.org/10.1007/s00415-019-09320-1] [PMID: 31041582]
[4]
Painold, A.; Mörkl, S.; Kashofer, K.; Halwachs, B.; Dalkner, N.; Bengesser, S.; Birner, A.; Fellendorf, F.; Platzer, M.; Queissner, R.; Schütze, G.; Schwarz, M.J.; Moll, N.; Holzer, P.; Holl, A.K.; Kapfhammer, H.P.; Gorkiewicz, G.; Reininghaus, E.Z. A step ahead: Exploring the gut microbiota in inpatients with bipolar disorder during a depressive episode. Bipolar Disord., 2019, 21(1), 40-49.
[http://dx.doi.org/10.1111/bdi.12682] [PMID: 30051546]
[5]
Thakur, A.K.; Tariq, U. Therapeutic potential and recent development of psychobiotics for the management of brain disorders. Trends Appl. Sci. Res., 2019, 14(2), 70-79.
[http://dx.doi.org/10.3923/tasr.2019.70.79]
[6]
Kwok, L.Y.; Wang, L.; Zhang, J.; Guo, Z.; Zhang, H. A pilot study on the effect of Lactobacillus casei Zhang on intestinal microbiota parameters in Chinese subjects of different age. Benef. Microbes, 2014, 5(3), 295-304.
[http://dx.doi.org/10.3920/BM2013.0047] [PMID: 24854958]
[7]
Grenham, S.; Clarke, G.; Cryan, J.F.; Dinan, T.G. Brain-gutmicrobe communication in health and disease. Front. Physiol., 2011, 2, 94.
[http://dx.doi.org/10.3389/fphys.2011.00094]
[8]
Bear, T.L.K.; Dalziel, J.E.; Coad, J.; Roy, N.C.; Butts, C.A.; Gopal, P.K. The role of the gut microbiota in dietary interventions for depression and anxiety. Adv. Nutr., 2020, 11(4), 890-907.
[http://dx.doi.org/10.1093/advances/nmaa016] [PMID: 32149335]
[9]
Sarkar, A.; Lehto, S.M.; Harty, S.; Dinan, T.G.; Cryan, J.F.; Burnet, P.W.J. Psychobiotics and the manipulation of bacteria-gutbrain signals. Trends Neurosci., 2016, 39(11), 763-781.
[http://dx.doi.org/10.1016/j.tins.2016.09.002] [PMID: 27793434]
[10]
Tomar, P.; Sharma, S.; Dangi, N. Probiotics and Health: A Review; Current Probiotics, 2023.
[http://dx.doi.org/10.2174/2666649901666230509155058]
[11]
Sharma, H.; Bajwa, J. Potential role and mechanism of probiotics. Ann. Rom. Soc. Cell Biol., 2021, 25, 3616-3624.
[12]
Al-Asmakh, M.; Hedin, L. Microbiota and the control of blood tissue barriers. Tissue Barriers, 2015, 3(3), e1039691.
[http://dx.doi.org/10.1080/21688370.2015.1039691] [PMID: 26451344]
[13]
Ding, H.T.; Taur, Y.; Walkup, J.T. Gut microbiota and autism: Key concepts and findings. J. Autism Dev. Disord., 2017, 47(2), 480-489.
[http://dx.doi.org/10.1007/s10803-016-2960-9] [PMID: 27882443]
[14]
Zhuang, Z.Q.; Shen, L.L.; Li, W.W.; Fu, X.; Zeng, F.; Gui, L.; Lü, Y.; Cai, M.; Zhu, C.; Tan, Y.L.; Zheng, P.; Li, H.Y.; Zhu, J.; Zhou, H.D.; Bu, X.L.; Wang, Y.J. Gut microbiota is altered in patients with Alzheimer’s disease. J. Alzheimers Dis., 2018, 63(4), 1337-1346.
[http://dx.doi.org/10.3233/JAD-180176] [PMID: 29758946]
[15]
Hu, X.; Wang, T.; Jin, F. Alzheimer’s disease and gut microbiota. Sci. China Life Sci., 2016, 59(10), 1006-1023.
[http://dx.doi.org/10.1007/s11427-016-5083-9] [PMID: 27566465]
[16]
Rautava, S. Early microbial contact, the breast milk microbiome and child health. J. Dev. Orig. Health Dis., 2016, 7(1), 5-14.
[http://dx.doi.org/10.1017/S2040174415001233] [PMID: 26051698]
[17]
Bright, M.; Bulgheresi, S. A complex journey: Transmission of microbial symbionts. Nat. Rev. Microbiol., 2010, 8(3), 218-230.
[http://dx.doi.org/10.1038/nrmicro2262] [PMID: 20157340]
[18]
Borre, Y.E.; O’Keeffe, G.W.; Clarke, G.; Stanton, C.; Dinan, T.G.; Cryan, J.F. Microbiota and neurodevelopmental windows: Implications for brain disorders. Trends Mol. Med., 2014, 20(9), 509-518.
[http://dx.doi.org/10.1016/j.molmed.2014.05.002] [PMID: 24956966]
[19]
Clemente, J.C.; Ursell, L.K.; Parfrey, L.W.; Knight, R. The impact of the gut microbiota on human health: An integrative view. Cell, 2012, 148(6), 1258-1270.
[http://dx.doi.org/10.1016/j.cell.2012.01.035] [PMID: 22424233]
[20]
Tau, G.Z.; Peterson, B.S. Normal development of brain circuits. Neuropsychopharmacology, 2010, 35(1), 147-168.
[http://dx.doi.org/10.1038/npp.2009.115] [PMID: 19794405]
[21]
Roca-Saavedra, P.; Mendez-Vilabrille, V.; Miranda, J.M.; Nebot, C.; Cardelle-Cobas, A.; Franco, C.M.; Cepeda, A. Food additives, contaminants and other minor components: Effects on human gut microbiota—a review. J. Physiol. Biochem., 2018, 74(1), 69-83.
[http://dx.doi.org/10.1007/s13105-017-0564-2] [PMID: 28488210]
[22]
Rodríguez, J.M.; Murphy, K.; Stanton, C.; Ross, R.P.; Kober, O.I.; Juge, N.; Avershina, E.; Rudi, K.; Narbad, A.; Jenmalm, M.C.; Marchesi, J.R.; Collado, M.C. The composition of the gut microbiota throughout life, with an emphasis on early life. Microb. Ecol. Health Dis., 2015, 26, 26050.
[PMID: 25651996]
[23]
Jakobsson, H.E.; Abrahamsson, T.R.; Jenmalm, M.C.; Harris, K.; Quince, C.; Jernberg, C.; Björkstén, B.; Engstrand, L.; Andersson, A.F. Decreased gut microbiota diversity, delayed Bacteroidetes colonisation and reduced Th1 responses in infants delivered by Caesarean section. Gut, 2014, 63(4), 559-566.
[http://dx.doi.org/10.1136/gutjnl-2012-303249] [PMID: 23926244]
[24]
El Aidy, S.; Dinan, T.G.; Cryan, J.F. Gut microbiota: The conductor in the orchestra of immune-neuroendocrine communication. Clin. Ther., 2015, 37(5), 954-967.
[http://dx.doi.org/10.1016/j.clinthera.2015.03.002] [PMID: 25846319]
[25]
Clarke, G.; Cryan, J.F.; Dinan, T.G.; Quigley, E.M. Review article: Probiotics for the treatment of irritable bowel syndrome - focus on lactic acid bacteria. Aliment. Pharmacol. Ther., 2012, 35(4), 403-413.
[http://dx.doi.org/10.1111/j.1365-2036.2011.04965.x] [PMID: 22225517]
[26]
Collins, S.M.; Bercik, P. Intestinal bacteria influence brain activity in healthy humans. Nat. Rev. Gastroenterol. Hepatol., 2013, 10(6), 326-327.
[http://dx.doi.org/10.1038/nrgastro.2013.76] [PMID: 23648940]
[27]
De Palma, G.; Collins, S.M.; Bercik, P.; Verdu, E.F. The microbiota-gut-brain axis in gastrointestinal disorders: Stressed bugs, stressed brain or both? J. Physiol., 2014, 592(14), 2989-2997.
[http://dx.doi.org/10.1113/jphysiol.2014.273995] [PMID: 24756641]
[28]
Collins, S.M.; Surette, M.; Bercik, P. The interplay between the intestinal microbiota and the brain. Nat. Rev. Microbiol., 2012, 10(11), 735-742.
[http://dx.doi.org/10.1038/nrmicro2876] [PMID: 23000955]
[29]
Bravo, J.A.; Forsythe, P.; Chew, M.V.; Escaravage, E.; Savignac, H.M.; Dinan, T.G.; Bienenstock, J.; Cryan, J.F. Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proc. Natl. Acad. Sci., 2011, 108(38), 16050-16055.
[http://dx.doi.org/10.1073/pnas.1102999108] [PMID: 21876150]
[30]
Svensson, E.; Horváth-Puhó, E.; Thomsen, R.W.; Djurhuus, J.C.; Pedersen, L.; Borghammer, P.; Sørensen, H.T. Vagotomy and subsequent risk of Parkinson’s disease. Ann. Neurol., 2015, 78(4), 522-529.
[http://dx.doi.org/10.1002/ana.24448] [PMID: 26031848]
[31]
Bercik, P.; Park, A.J.; Sinclair, D.; Khoshdel, A.; Lu, J.; Huang, X.; Deng, Y.; Blennerhassett, P.A.; Fahnestock, M.; Moine, D.; Berger, B.; Huizinga, J.D.; Kunze, W.; McLean, P.G.; Bergonzelli, G.E.; Collins, S.M.; Verdu, E.F. The anxiolytic effect of Bifidobacterium longum NCC3001 involves vagal pathways for gut-brain communication. Neurogastroenterol. Motil., 2011, 23(12), 1132-1139.
[http://dx.doi.org/10.1111/j.1365-2982.2011.01796.x] [PMID: 21988661]
[32]
El Aidy, S.; Dinan, T.G.; Cryan, J.F. Immune modulation of the brain-gut-microbe axis. Front. Microbiol., 2014, 5, 146.
[http://dx.doi.org/10.3389/fmicb.2014.00146] [PMID: 24778631]
[33]
Sherwin, E.; Rea, K.; Dinan, T.G.; Cryan, J.F. A gut (microbiome) feeling about the brain. Curr. Opin. Gastroenterol., 2016, 32(2), 96-102.
[http://dx.doi.org/10.1097/MOG.0000000000000244] [PMID: 26760398]
[34]
Xu, D.; Gao, J.; Gillilland, M., III; Wu, X.; Song, I.; Kao, J.Y.; Owyang, C. Rifaximin alters intestinal bacteria and prevents stress-induced gut inflammation and visceral hyperalgesia in rats. Gastroenterology, 2014, 146(2), 484-496.e4.
[http://dx.doi.org/10.1053/j.gastro.2013.10.026] [PMID: 24161699]
[35]
Dedovic, K.; Ngiam, J. The cortisol awakening response and major depression: examining the evidence. Neuropsychiatr. Dis. Treat., 2015, 11, 1181-1189.
[http://dx.doi.org/10.2147/NDT.S62289] [PMID: 25999722]
[36]
Osborne, D.M.; Pearson-Leary, J.; McNay, E.C. The neuroenergetics of stress hormones in the hippocampus and implications for memory. Front. Neurosci., 2015, 9, 164.
[http://dx.doi.org/10.3389/fnins.2015.00164] [PMID: 25999811]
[37]
Chichlowski, M.; Rudolph, C. Visceral pain and gastrointestinal microbiome. J. Neurogastroenterol. Motil., 2015, 21(2), 172-181.
[http://dx.doi.org/10.5056/jnm15025] [PMID: 25829337]
[38]
Smith, C.J.; Emge, J.R.; Berzins, K.; Lung, L.; Khamishon, R.; Shah, P.; Rodrigues, D.M.; Sousa, A.J.; Reardon, C.; Sherman, P.M.; Barrett, K.E.; Gareau, M.G. Probiotics normalize the gut-brain-microbiota axis in immunodeficient mice. Am. J. Physiol. Gastrointest. Liver Physiol., 2014, 307(8), G793-G802.
[http://dx.doi.org/10.1152/ajpgi.00238.2014] [PMID: 25190473]
[39]
Savignac, H.M.; Kiely, B.; Dinan, T.G.; Cryan, J.F. Bifidobacteria exert strain-specific effects on stress-related behavior and physiology in BALB/c mice. Neurogastroenterol. Motil., 2014, 26(11), 1615-1627.
[http://dx.doi.org/10.1111/nmo.12427] [PMID: 25251188]
[40]
Messaoudi, M.; Lalonde, R.; Violle, N.; Javelot, H.; Desor, D.; Nejdi, A.; Bisson, J.F.; Rougeot, C.; Pichelin, M.; Cazaubiel, M.; Cazaubiel, J.M. Assessment of psychotropic-like properties of a probiotic formulation (Lactobacillus helveticus R0052 and Bifidobacterium longum R0175) in rats and human subjects. Br. J. Nutr., 2011, 105(5), 755-764.
[http://dx.doi.org/10.1017/S0007114510004319] [PMID: 20974015]
[41]
Savignac, H.M.; Tramullas, M.; Kiely, B.; Dinan, T.G.; Cryan, J.F. Bifidobacteria modulate cognitive processes in an anxious mouse strain. Behav. Brain Res., 2015, 287, 59-72.
[http://dx.doi.org/10.1016/j.bbr.2015.02.044] [PMID: 25794930]
[42]
D’Mello, C.; Ronaghan, N.; Zaheer, R.; Dicay, M.; Le, T.; MacNaughton, W.K.; Surrette, M.G.; Swain, M.G. Probiotics improve inflammation-associated sickness behavior by altering communication between the peripheral immune system and the brain. J. Neurosci., 2015, 35(30), 10821-10830.
[http://dx.doi.org/10.1523/JNEUROSCI.0575-15.2015] [PMID: 26224864]
[43]
Thomas, B.H.; Ciliska, D.; Dobbins, M.; Micucci, S. A process for systematically reviewing the literature: Providing the research evidence for public health nursing interventions. Worldviews Evid. Based Nurs., 2004, 1(3), 176-184.
[http://dx.doi.org/10.1111/j.1524-475X.2004.04006.x] [PMID: 17163895]
[44]
Ohland, C.L.; Kish, L.; Bell, H.; Thiesen, A.; Hotte, N.; Pankiv, E.; Madsen, K.L. Effects of Lactobacillus helveticus on murine behavior are dependent on diet and genotype and correlate with alterations in the gut microbiome. Psychoneuroendocrinology, 2013, 38(9), 1738-1747.
[http://dx.doi.org/10.1016/j.psyneuen.2013.02.008] [PMID: 23566632]
[45]
Davari, S.; Talaei, S.A.; Alaei, H.; salami, M. Probiotics treatment improves diabetes-induced impairment of synaptic activity and cognitive function: Behavioral and electrophysiological proofs for microbiome–gut–brain axis. Neuroscience, 2013, 240, 287-296.
[http://dx.doi.org/10.1016/j.neuroscience.2013.02.055] [PMID: 23500100]
[46]
Lyte, M. Microbial endocrinology in the microbiome-gut-brain axis: How bacterial production and utilization of neurochemicals influence behavior. PLoS Pathog., 2013, 9(11), e1003726.
[http://dx.doi.org/10.1371/journal.ppat.1003726] [PMID: 24244158]
[47]
Lyte, M. Microbial endocrinology and the microbiota-gut-brain axis. Adv. Exp. Med. Biol., 2014, 817, 3-24.
[http://dx.doi.org/10.1007/978-1-4939-0897-4_1] [PMID: 24997027]
[48]
Holzer, P.; Farzi, A. Neuropeptides and the microbiota-gut-brain axis. In: Microbial Endocrinology: The Microbiota-Gut-Brain Axis in Health and Disease; Springer: New York, USA, 2014; pp. 195-219.
[http://dx.doi.org/10.1007/978-1-4939-0897-4_9]
[49]
del Zoppo, G.J.; Mabuchi, T. Cerebral microvessel responses to focal ischemia. J. Cereb. Blood Flow Metab., 2003, 23(8), 879-894.
[http://dx.doi.org/10.1097/01.WCB.0000078322.96027.78] [PMID: 12902832]
[50]
Braniste, V.; Al-Asmakh, M.; Kowal, C.; Anuar, F.; Abbaspour, A.; Tóth, M.; Korecka, A.; Bakocevic, N.; Ng, L.G.; Kundu, P.; Gulyás, B.; Halldin, C.; Hultenby, K.; Nilsson, H.; Hebert, H.; Volpe, B.T.; Diamond, B.; Pettersson, S. The gut microbiota influences blood-brain barrier permeability in mice. Sci. Transl. Med., 2014, 6(263), 263ra158.
[http://dx.doi.org/10.1126/scitranslmed.3009759] [PMID: 25411471]
[51]
den Besten, G.; van Eunen, K.; Groen, A.K.; Venema, K.; Reijngoud, D.J.; Bakker, B.M. The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J. Lipid Res., 2013, 54(9), 2325-2340.
[http://dx.doi.org/10.1194/jlr.R036012] [PMID: 23821742]
[52]
Minamiyama, M.; Katsuno, M.; Adachi, H.; Waza, M.; Sang, C.; Kobayashi, Y.; Tanaka, F.; Doyu, M.; Inukai, A.; Sobue, G. Sodium butyrate ameliorates phenotypic expression in a transgenic mouse model of spinal and bulbar muscular atrophy. Hum. Mol. Genet., 2004, 13(11), 1183-1192.
[http://dx.doi.org/10.1093/hmg/ddh131] [PMID: 15102712]
[53]
Canfora, E.E.; Jocken, J.W.; Blaak, E.E. Short-chain fatty acids in control of body weight and insulin sensitivity. Nat. Rev. Endocrinol., 2015, 11(10), 577-591.
[http://dx.doi.org/10.1038/nrendo.2015.128] [PMID: 26260141]
[54]
Slominski, A.; Semak, I.; Pisarchik, A.; Sweatman, T.; Szczesniewski, A.; Wortsman, J. Conversion of L -tryptophan to serotonin and melatonin in human melanoma cells. FEBS Lett., 2002, 511(1-3), 102-106.
[http://dx.doi.org/10.1016/S0014-5793(01)03319-1] [PMID: 11821057]
[55]
Alexander, K.S.; Pocivavsek, A.; Wu, H.Q.; Pershing, M.L.; Schwarcz, R.; Bruno, J.P. Early developmental elevations of brain kynurenic acid impair cognitive flexibility in adults: Reversal with galantamine. Neuroscience, 2013, 238, 19-28.
[http://dx.doi.org/10.1016/j.neuroscience.2013.01.063] [PMID: 23395862]
[56]
Khalil, O.S.; Pisar, M.; Forrest, C.M.; Vincenten, M.C.J.; Darlington, L.G.; Stone, T.W. Prenatal inhibition of the kynurenine pathway leads to structural changes in the hippocampus of adult rat offspring. Eur. J. Neurosci., 2014, 39(10), 1558-1571.
[http://dx.doi.org/10.1111/ejn.12535] [PMID: 24646396]
[57]
Cryan, J.F.; Dinan, T.G. Mind-altering microorganisms: The impact of the gut microbiota on brain and behaviour. Nat. Rev. Neurosci., 2012, 13(10), 701-712.
[http://dx.doi.org/10.1038/nrn3346] [PMID: 22968153]
[58]
Mayer, E.A.; Knight, R.; Mazmanian, S.K.; Cryan, J.F.; Tillisch, K. Gut microbes and the brain: Paradigm shift in neuroscience. J. Neurosci., 2014, 34(46), 15490-15496.
[http://dx.doi.org/10.1523/JNEUROSCI.3299-14.2014] [PMID: 25392516]
[59]
Luczynski, P.; McVey Neufeld, K.A.; Oriach, C.S.; Clarke, G.; Dinan, T.G.; Cryan, J.F. Growing up in a bubble: Using germ-free animals to assess the influence of the gut microbiota on brain and behavior. Int. J. Neuropsychopharmacol., 2016, 19(8), pyw020.
[http://dx.doi.org/10.1093/ijnp/pyw020] [PMID: 26912607]
[60]
Tarr, A.J.; Galley, J.D.; Fisher, S.E.; Chichlowski, M.; Berg, B.M.; Bailey, M.T. The prebiotics 3′Sialyllactose and 6′Sialyllactose diminish stressor-induced anxiety-like behavior and colonic microbiota alterations: Evidence for effects on the gut–brain axis. Brain Behav. Immun., 2015, 50, 166-177.
[http://dx.doi.org/10.1016/j.bbi.2015.06.025] [PMID: 26144888]
[61]
Buffington, S.A.; Di Prisco, G.V.; Auchtung, T.A.; Ajami, N.J.; Petrosino, J.F.; Costa-Mattioli, M. Microbial reconstitution reverses maternal diet-induced social and synaptic deficits in offspring. Cell, 2016, 165(7), 1762-1775.
[http://dx.doi.org/10.1016/j.cell.2016.06.001] [PMID: 27315483]
[62]
Dinan, T.G.; Cryan, J.; Shanahan, F.; Keeling, P.W.N.; Quigley, E.M.M. IBS: An epigenetic perspective. Nat. Rev. Gastroenterol. Hepatol., 2010, 7(8), 465-471.
[http://dx.doi.org/10.1038/nrgastro.2010.99] [PMID: 20585338]
[63]
Sampson, T.R.; Debelius, J.W.; Thron, T.; Janssen, S.; Shastri, G.G.; Ilhan, Z.E.; Challis, C.; Schretter, C.E.; Rocha, S.; Gradinaru, V.; Chesselet, M.F.; Keshavarzian, A.; Shannon, K.M.; Krajmalnik-Brown, R.; Wittung-Stafshede, P.; Knight, R.; Mazmanian, S.K. Gut microbiota regulate motor deficits and neuroinflammation in a model of parkinson’s disease. Cell, 2016, 167(6), 1469-1480.e12.
[http://dx.doi.org/10.1016/j.cell.2016.11.018] [PMID: 27912057]
[64]
Park, S.H.; Videlock, E.J.; Shih, W.; Presson, A.P.; Mayer, E.A.; Chang, L. Adverse childhood experiences are associated with irritable bowel syndrome and gastrointestinal symptom severity. Neurogastroenterol. Motil., 2016, 28(8), 1252-1260.
[http://dx.doi.org/10.1111/nmo.12826] [PMID: 27061107]
[65]
Mazurak, N.; Broelz, E.; Storr, M.; Enck, P. Probiotic therapy of the irritable bowel syndrome: Why is the evidence still poor and what can be done about it? J. Neurogastroenterol. Motil., 2015, 21(4), 471-485.
[http://dx.doi.org/10.5056/jnm15071] [PMID: 26351253]
[66]
Ford, A.C.; Quigley, E.M.M.; Lacy, B.E.; Lembo, A.J.; Saito, Y.A.; Schiller, L.R.; Soffer, E.E.; Spiegel, B.M.R.; Moayyedi, P. Efficacy of prebiotics, probiotics, and synbiotics in irritable bowel syndrome and chronic idiopathic constipation: Systematic review and meta-analysis. Am. J. Gastroenterol., 2014, 109(10), 1547-1561.
[http://dx.doi.org/10.1038/ajg.2014.202] [PMID: 25070051]
[67]
Whorwell, P.J.; Altringer, L.; Morel, J.; Bond, Y.; Charbonneau, D.; O’Mahony, L.; Kiely, B.; Shanahan, F.; Quigley, E.M.M. Efficacy of an encapsulated probiotic Bifidobacterium infantis 35624 in women with irritable bowel syndrome. Am. J. Gastroenterol., 2006, 101(7), 1581-1590.
[http://dx.doi.org/10.1111/j.1572-0241.2006.00734.x] [PMID: 16863564]
[68]
O’Mahony, L.; McCarthy, J.; Kelly, P.; Hurley, G.; Luo, F.; Chen, K.; O’Sullivan, G.C.; Kiely, B.; Collins, J.K.; Shanahan, F.; Quigley, E.M.M. Lactobacillus and bifidobacterium in irritable bowel syndrome: Symptom responses and relationship to cytokine profiles. Gastroenterology, 2005, 128(3), 541-551.
[http://dx.doi.org/10.1053/j.gastro.2004.11.050] [PMID: 15765388]
[69]
De Palma, G.; Blennerhassett, P.; Lu, J.; Deng, Y.; Park, A.J.; Green, W.; Denou, E.; Silva, M.A.; Santacruz, A.; Sanz, Y.; Surette, M.G.; Verdu, E.F.; Collins, S.M.; Bercik, P. Microbiota and host determinants of behavioural phenotype in maternally separated mice. Nat. Commun., 2015, 6(1), 7735.
[http://dx.doi.org/10.1038/ncomms8735] [PMID: 26218677]
[70]
Takada, M.; Nishida, K.; Kataoka-Kato, A.; Gondo, Y.; Ishikawa, H.; Suda, K.; Kawai, M.; Hoshi, R.; Watanabe, O.; Igarashi, T.; Kuwano, Y.; Miyazaki, K.; Rokutan, K. Probiotic Lactobacillus casei strain Shirota relieves stress‐associated symptoms by modulating the gut–brain interaction in human and animal models. Neurogastroenterol. Motil., 2016, 28(7), 1027-1036.
[http://dx.doi.org/10.1111/nmo.12804] [PMID: 26896291]
[71]
Schrezenmeir, J.; de Vrese, M. Probiotics, prebiotics, and synbiotics—approaching a definition. Am. J. Clin. Nutr., 2001, 73(S2), 361s-364s.
[http://dx.doi.org/10.1093/ajcn/73.2.361s] [PMID: 11157342]
[72]
Dinan, T.G.; Stilling, R.M.; Stanton, C.; Cryan, J.F. Collective unconscious: How gut microbes shape human behavior. J. Psychiatr. Res., 2015, 63, 1-9.
[http://dx.doi.org/10.1016/j.jpsychires.2015.02.021] [PMID: 25772005]
[73]
Erdman, S.E.; Poutahidis, T. Probiotic ‘glow of health’: It’s more than skin deep. Benef. Microbes, 2014, 5(2), 109-119.
[http://dx.doi.org/10.3920/BM2013.0042] [PMID: 24675231]
[74]
Tomova, A.; Husarova, V.; Lakatosova, S.; Bakos, J.; Vlkova, B.; Babinska, K.; Ostatnikova, D. Gastrointestinal microbiota in children with autism in Slovakia. Physiol. Behav., 2015, 138, 179-187.
[http://dx.doi.org/10.1016/j.physbeh.2014.10.033] [PMID: 25446201]
[75]
Kelly, J.R.; Kennedy, P.J.; Cryan, J.F.; Dinan, T.G.; Clarke, G.; Hyland, N.P. Breaking down the barriers: The gut microbiome, intestinal permeability and stress-related psychiatric disorders. Front. Cell. Neurosci., 2015, 9, 392.
[http://dx.doi.org/10.3389/fncel.2015.00392] [PMID: 26528128]
[76]
Rizek, P.; Kumar, N.; Jog, M.S. An update on the diagnosis and treatment of Parkinson disease. CMAJ, 2016, 188(16), 1157-1165.
[http://dx.doi.org/10.1503/cmaj.151179] [PMID: 27221269]
[77]
Park, H.; Lee, J.Y.; Shin, C.M.; Kim, J.M.; Kim, T.J.; Kim, J.W. Characterization of gastrointestinal disorders in patients with parkinsonian syndromes. Parkinsonism Relat. Disord., 2015, 21(5), 455-460.
[http://dx.doi.org/10.1016/j.parkreldis.2015.02.005] [PMID: 25726518]
[78]
Felice, V.D.; Quigley, E.M.; Sullivan, A.M.; O’Keeffe, G.W.; O’Mahony, S.M. Microbiota-gut-brain signalling in Parkinson’s disease: Implications for non-motor symptoms. Parkinsonism Relat. Disord., 2016, 27, 1-8.
[http://dx.doi.org/10.1016/j.parkreldis.2016.03.012] [PMID: 27013171]
[79]
Health and nutritional properties of probiotics in food including powder milk with live lactic acid bacteria; World Health Organization: Córdoba, Argentina, 2001.
[80]
Hansen, R.; Scott, K.P.; Khan, S.; Martin, J.C.; Berry, S.H.; Stevenson, M.; Okpapi, A.; Munro, M.J.; Hold, G.L. First-pass meconium samples from healthy term vaginally-delivered neonates: An analysis of the microbiota. PLoS One, 2015, 10(7), e0133320.
[http://dx.doi.org/10.1371/journal.pone.0133320] [PMID: 26218283]
[81]
Al-muzafar, H.M.; Amin, K.A. Probiotic mixture improves fatty liver disease by virtue of its action on lipid profiles, leptin, and inflammatory biomarkers. BMC Complement. Altern. Med., 2017, 17(1), 43.
[http://dx.doi.org/10.1186/s12906-016-1540-z] [PMID: 28086768]
[82]
West, C.E.; Jenmalm, M.C.; Kozyrskyj, A.L.; Prescott, S.L. Probiotics for treatment and primary prevention of allergic diseases and asthma: Looking back and moving forward. Expert Rev. Clin. Immunol., 2016, 12(6), 625-639.
[http://dx.doi.org/10.1586/1744666X.2016.1147955] [PMID: 26821735]
[83]
Rayes, N.; Seehofer, D.; Hansen, S.; Boucsein, K.; Müller, A.R.; Serke, S.; Bengmark, S.; Neuhaus, P. Early enteral supply of lactobacillus and fiber versus selective bowel decontamination: A controlled trial in liver transplant recipients. Transplantation, 2002, 74(1), 123-127.
[http://dx.doi.org/10.1097/00007890-200207150-00021] [PMID: 12134110]
[84]
Salami, M. Interplay of good bacteria and central nervous system: Cognitive aspects and mechanistic considerations. Front. Neurosci., 2021, 15, 613120-, 15, 613120.
[http://dx.doi.org/10.3389/fnins.2021.613120] [PMID: 33642976]
[85]
Ivanov, I.I.; Honda, K. Intestinal commensal microbes as immune modulators. Cell Host Microbe, 2012, 12(4), 496-508.
[http://dx.doi.org/10.1016/j.chom.2012.09.009] [PMID: 23084918]
[86]
Culligan, E.P.; Hill, C.; Sleator, R.D. Probiotics and gastrointestinal disease: Successes, problems and future prospects. Gut Pathog., 2009, 1(1), 19.
[http://dx.doi.org/10.1186/1757-4749-1-19] [PMID: 19930635]
[87]
Liu, J.; Sun, J.; Wang, F.; Yu, X.; Ling, Z.; Li, H.; Zhang, H.; Jin, J.; Chen, W.; Pang, M.; Yu, J.; He, Y.; Xu, J. Neuroprotective effects of Clostridium butyricum against vascular dementia in mice via metabolic butyrate. BioMed Res. Int., 2015, 2015, 1-12.
[http://dx.doi.org/10.1155/2015/412946] [PMID: 26523278]
[88]
Undseth, R.; Jakobsdottir, G.; Nyman, M.; Berstad, A.; Valeur, J. Low serum levels of short-chain fatty acids after lactulose ingestion may indicate impaired colonic fermentation in patients with irritable bowel syndrome. Clin. Exp. Gastroenterol., 2015, 8, 303-308.
[PMID: 26664152]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy