Generic placeholder image

Current Diabetes Reviews

Editor-in-Chief

ISSN (Print): 1573-3998
ISSN (Online): 1875-6417

Review Article

Recent Updates on Nanocarriers for Drug Delivery in Posterior Segment Diseases with Emphasis on Diabetic Retinopathy

Author(s): Ravi Parashar*, Amber Vyas, Abhishek K. Sah, Narayan Hemnani, Pugazhenthan Thangaraju and Preeti K. Suresh*

Volume 20, Issue 6, 2024

Published on: 17 October, 2023

Article ID: e171023222282 Pages: 24

DOI: 10.2174/0115733998240053231009060654

Price: $65

Abstract

In recent years, various conventional formulations have been used for the treatment and/or management of ocular medical conditions. Diabetic retinopathy, a microvascular disease of the retina, remains the leading cause of visual disability in patients with diabetes. Currently, for treating diabetic retinopathy, only intraocular, intravitreal, periocular injections, and laser photocoagulation are widely used. Frequent administration of these drugs by injections may lead to serious complications, including retinal detachment and endophthalmitis. Although conventional ophthalmic formulations like eye drops, ointments, and suspensions are available globally, these formulations fail to achieve optimum drug therapeutic profile due to immediate nasolacrimal drainage, rapid tearing, and systemic tearing toxicity of the drugs. To achieve better therapeutic outcomes with prolonged release of the therapeutic agents, nano-drug delivery materials have been investigated. These nanocarriers include nanoparticles, solid lipid nanoparticles (SLN), nanostructured lipid carriers (NLC), dendrimers, nanofibers, in-situ gel, vesicular carriers, niosomes, and mucoadhesive systems, among others. The nanocarriers carry the potential benefits of site-specific delivery and controlled and sustained drug release profile. In the present article, various nanomaterials explored for treating diabetic retinopathy are reviewed.

Keywords: Diabetic retinopathy, ocular drug delivery, eye, biocompatible, nanomaterials, endophthalmitis.

[1]
Delamo E, Urtti A. Current and future ophthalmic drug delivery systemsA shift to the posterior segment. Drug Discov Today 2008; 13(3-4): 135-43.
[http://dx.doi.org/10.1016/j.drudis.2007.11.002] [PMID: 18275911]
[2]
Janoria KG, Gunda S, Boddu SHS, Mitra AK. Novel approaches to retinal drug delivery. Expert Opin Drug Deliv 2007; 4(4): 371-88.
[http://dx.doi.org/10.1517/17425247.4.4.371] [PMID: 17683251]
[3]
Sah AK, Suresh PK. Recent advances in ocular drug delivery, with special emphasis on lipid based nanocarriers. Recent Pat Nanotechnol 2015; 9(2): 94-105.
[http://dx.doi.org/10.2174/187221050902150819151841] [PMID: 27009124]
[4]
Suresh PK, Sah AK. Nanocarriers for ocular delivery for possible benefits in the treatment of anterior uveitis: Focus on current paradigms and future directions. Expert Opin Drug Deliv 2014; 11(11): 1747-68.
[http://dx.doi.org/10.1517/17425247.2014.938045] [PMID: 25007007]
[5]
Liu Y, Wu N. Progress of nanotechnology in diabetic retinopathy treatment. Int J Nanomedicine 2021; 16: 1391-403.
[http://dx.doi.org/10.2147/IJN.S294807]
[6]
Semeraro F, Cancarini A, dell’Omo R, et al. Diabetic retinopathy: Vascular and inflammatory disease. J Diabetes Res 2015; 2015: 582060.
[http://dx.doi.org/10.1155/2015/582060]
[7]
Amato R, Rossino MG, Cammalleri M, et al. Lisosan G protects the retina from neurovascular damage in experimental diabetic retinopathy. Nutrients 2018; 10(12): 1932.
[http://dx.doi.org/10.3390/nu10121932]
[8]
Comer GM, Ciulla TA. Pharmacotherapy for diabetic retinopathy. Curr Opin Ophthalmol 2004; 15(6): 508-18.
[http://dx.doi.org/10.1097/01.icu.0000143685.60479.3b] [PMID: 15523197]
[9]
Koh BMQR, Banu R, Nusinovici S, Sabanayagam C. 100 most-cited articles on diabetic retinopathy. Br J Ophthalmol 2021; 105(10): 1329-36.
[http://dx.doi.org/10.1136/bjophthalmol-2020-316609] [PMID: 32855165]
[10]
Davis MD. Diabetic Retinopathy: A clinical overview. Diabetes Care 1992; 15(12): 1844-74.
[http://dx.doi.org/10.2337/diacare.15.12.1844] [PMID: 1464242]
[11]
Scanlon P, Aldington S, Stratton I. Epidemiological issues in diabetic retinopathy. Middle East Afr J Ophthalmol 2013; 20(4): 293-300.
[http://dx.doi.org/10.4103/0974-9233.120007] [PMID: 24339678]
[12]
Fung TH, Patel B, Wilmot EG, et al. Diabetic retinopathy for the non-ophthalmologist. Clin Med 2022; 22(2): 112-6.
[http://dx.doi.org/10.7861/clinmed.2021-0792]
[13]
Ajlan RS, Silva PS, Sun JK. Vascular endothelial growth factor and diabetic retinal disease. Semin Ophthalmol 2016; 31(1-2): 40-8.
[http://dx.doi.org/10.3109/08820538.2015.1114833]
[14]
Catalani E, Silvestri F, Bongiorni S, et al. Retinal damage in a new model of hyperglycemia induced by high-sucrose diets. Pharmacol Res 2021; 166: 105488.
[http://dx.doi.org/10.1016/j.phrs.2021.105488] [PMID: 33582248]
[15]
Zhou HR, Ma XF, Lin WJ, et al. Neuroprotective role of GLP-1 analog for retinal ganglion cells via PINK1/Parkin-mediated mitophagy in diabetic retinopathy. Front Pharmacol 2021; 11: 589114.
[http://dx.doi.org/10.3389/fphar.2020.589114]
[16]
Fahmideh F, Marchesi N, Campagnoli LIM, et al. Effect of troxerutin in counteracting hyperglycemia-induced VEGF upregulation in endothelial cells: A new option to target early stages of diabetic retinopathy? Front Pharmacol 2022; 13: 951833.
[http://dx.doi.org/10.3389/fphar.2022.951833]
[17]
Wang H, Sun Y, Ma G, et al. The Relationship between Expression of Nuclear Factor I and the Progressive Occurrence of Diabetic Retinopathy. Comput Math Methods Med 2022; 2022: 1-6.
[http://dx.doi.org/10.1155/2022/1272729] [PMID: 35669369]
[18]
Liu F, Saul AB, Pichavaram P, et al. Pharmacological inhibition of spermine oxidase reduces neurodegeneration and improves retinal function in diabetic mice. J Clin Med 2020; 9(2): 340.
[http://dx.doi.org/10.3390/jcm9020340]
[19]
Ivanova E, Bianchimano P, Corona C, et al. Optogenetic stimulation of cholinergic amacrine cells improves capillary blood flow in diabetic retinopathy. Invest Ophthalmol Vis Sci 2020; 61(10): 44.
[http://dx.doi.org/10.1167/iovs.61.10.44]
[20]
Hernández C, Dal Monte M, Simó R, Casini G. Neuroprotection as a therapeutic target for diabetic retinopathy. J Diabetes Res 2016; 2016: 1-18.
[http://dx.doi.org/10.1155/2016/9508541] [PMID: 27123463]
[21]
Pusparajah P, Lee LH, Abdul Kadir K. Molecular markers of diabetic retinopathy: Potential screening tool of the future? Front Physiol 2016; 7: 200.
[http://dx.doi.org/10.3389/fphys.2016.00200]
[22]
Kim HM, Woo SJ. Ocular drug delivery to the retina: Current innovations and future perspective. Pharmaceutics 2021; 13(1): 108.
[http://dx.doi.org/10.3390/pharmaceutics13010108]
[23]
Djebli N, Khier S, Griguer F, et al. Ocular drug distribution after topical administration: Population pharmacokinetic model in rabbits. Eur J Drug Metab Pharmacokinet 2017; 42(1): 59-68.
[http://dx.doi.org/10.1007/s13318-016-0319-4]
[24]
Badhani A, Dabral P, Rana V, et al. Evaluation of cyclodextrins for enhancing corneal penetration of natamycin eye drops. J Pharm Bioallied Sci 2012; 4 (Suppl. 1): S29-30.
[http://dx.doi.org/10.4103/0975-7406.94128]
[25]
Sabermoghadam Ranjbar A, Rajabi O, Salari R, Ashraf H. Lidocaine cyclodextrin complex ophthalmic drop, a new topical anesthetic choice. Iran Red Crescent Med J 2012; 14(9): 569-73.
[PMID: 23115719]
[26]
Bhowmik M, Kumari P, Sarkar G, et al. Effect of xanthan gum and guar gum on in situ gelling ophthalmic drug delivery system based on poloxamer-407. Int J Biol Macromol 2013; 62: 117-23.
[http://dx.doi.org/10.1016/j.ijbiomac.2013.08.024] [PMID: 23988556]
[27]
Gevariya H, Patel J. Long acting betaxolol ocular inserts based on polymer composite. Curr Drug Deliv 2013; 10(4): 384-93.
[http://dx.doi.org/10.2174/1567201811310040003] [PMID: 23909665]
[28]
Li J, Wu L, Wu W, et al. A potential carrier based on liquid crystal nanoparticles for ophthalmic delivery of pilocarpine nitrate. Int J Pharm 2013; 455(1-2): 75-84.
[http://dx.doi.org/10.1016/j.ijpharm.2013.07.057] [PMID: 23916822]
[29]
Zhao X, Seah I, Xue K, et al. Antiangiogenic nanomicelles for the topical delivery of aflibercept to treat retinal neovascular disease. Adv Mater 2022; 34(25): 2108360.
[http://dx.doi.org/10.1002/adma.202108360] [PMID: 34726299]
[30]
Sadasivam R, Packirisamy G, Goswami M. Biocompatible soft hydrogel lens as topical implants for diabetic retinopathy. Mater Lett 2022; 318: 132174.
[http://dx.doi.org/10.1016/j.matlet.2022.132174]
[31]
Lorenzo-Soler L, Praphanwittaya P, Olafsdottir OB, et al. Topical noninvasive retinal drug delivery of a tyrosine kinase inhibitor: 3% cediranib maleate cyclodextrin nanoparticle eye drops in the rabbit eye. Acta Ophthalmol 2022; 100(7): 788-96.
[http://dx.doi.org/10.1111/aos.15101] [PMID: 35080812]
[32]
Varela-Fernández R, Díaz-Tomé V, Luaces-Rodríguez A, et al. Drug delivery to the posterior segment of the eye: Biopharmaceutic and pharmacokinetic considerations. Pharmaceutics 2020; 12(3): 269.
[http://dx.doi.org/10.3390/pharmaceutics12030269] [PMID: 32188045]
[33]
Ranta VP, Urtti A. Transscleral drug delivery to the posterior eye: Prospects of pharmacokinetic modeling. Adv Drug Deliv Rev 2006; 58(11): 1164-81.
[http://dx.doi.org/10.1016/j.addr.2006.07.025] [PMID: 17069929]
[34]
Nayak K, Misra M. A review on recent drug delivery systems for posterior segment of eye. Biomed Pharmacother 2018; 107: 1564-82.
[http://dx.doi.org/10.1016/j.biopha.2018.08.138] [PMID: 30257375]
[35]
Wang J, Tan J, Luo J, et al. Enhancement of scutellarin oral delivery efficacy by vitamin B12-modified amphiphilic chitosan derivatives to treat type II diabetes induced-retinopathy. J Nanobiotechnology 2017; 15(1): 18.
[http://dx.doi.org/10.1186/s12951-017-0251-z]
[36]
Zhang E, Osipova N, Sokolov M, et al. Exploring the systemic delivery of a poorly water-soluble model drug to the retina using PLGA nanoparticles. Eur J Pharm Sci 2021; 164: 105905.
[http://dx.doi.org/10.1016/j.ejps.2021.105905] [PMID: 34116175]
[37]
Zhu Y, Li J, Yu S, et al. Clinical comparative study of intravitreal injection of triamcinolone acetonide and aflibercept in the treatment of diabetic retinopathy cystoid macular edema. Emerg Med Int 2022; 2022: 1348855.
[http://dx.doi.org/10.1155/2022/1348855]
[38]
Li S, Yang Y, Zou J, Zeng J, Ding C. The efficacy and safety of intravitreal injection of Ranibizumab as pre-treatment for vitrectomy in proliferative diabetic retinopathy with vitreous hemorrhage. BMC Ophthalmol 2022; 22(1): 63.
[http://dx.doi.org/10.1186/s12886-022-02303-3] [PMID: 35139812]
[39]
Wang Q, Cai H, Xu D, et al. Pars plana vitrectomy assisted by intravitreal injection of conbercept enhances the therapeutic effect and quality of life in patients with severe proliferative diabetic retinopathy. Am J Transl Res 2022; 14(2): 1324-31.
[40]
Zimmet P, Alberti KGMM, Shaw J. Global and societal implications of the diabetes epidemic. Nature 2001; 414(6865): 782-7.
[http://dx.doi.org/10.1038/414782a] [PMID: 11742409]
[41]
Lee CM, Olk RJ. Modified grid laser photocoagulation for diffuse diabetic macular edema. Long-term visual results. Ophthalmology 1991; 98(10): 1594-602.
[http://dx.doi.org/10.1016/S0161-6420(91)32082-7] [PMID: 1961650]
[42]
Julius A, Hopper W. A non-invasive, multi-target approach to treat diabetic retinopathy. Biomed Pharmacother 2019; 109: 708-15.
[http://dx.doi.org/10.1016/j.biopha.2018.10.185] [PMID: 30551523]
[43]
Wang R, Gao Y, Liu A, Zhai G. A review of nanocarrier-mediated drug delivery systems for posterior segment eye disease: challenges analysis and recent advances. J Drug Target 2021; 29(7): 687-702.
[http://dx.doi.org/10.1080/1061186X.2021.1878366] [PMID: 33474998]
[44]
Rafiei F, Tabesh H, Farzad F. Sustained subconjunctival drug delivery systems: Current trends and future perspectives. Int Ophthalmol 2020; 40(9): 2385-401.
[http://dx.doi.org/10.1007/s10792-020-01391-8] [PMID: 32383131]
[45]
Tsai CH, Hoang LN, Lin CC, et al. Evaluation of topical and subconjunctival injection of hyaluronic acid-coated nanoparticles for drug delivery to posterior eye. Pharmaceutics 2022; 14(6): 1253.
[http://dx.doi.org/10.3390/pharmaceutics14061253] [PMID: 35745825]
[46]
Pandit J, Sultana Y, Aqil M. Chitosan coated nanoparticles for efficient delivery of bevacizumab in the posterior ocular tissues via subconjunctival administration. Carbohydr Polym 2021; 267: 118217.
[http://dx.doi.org/10.1016/j.carbpol.2021.118217] [PMID: 34119171]
[47]
Johnson CJ, Berglin L, Chrenek MA, Redmond TM, Boatright JH, Nickerson JM. Technical brief: Subretinal injection and electroporation into adult mouse eyes. Mol Vis 2008; 14: 2211-26.
[PMID: 19057658]
[48]
Peng Y, Tang L, Zhou Y. Subretinal injection: A review on the novel route of therapeutic delivery for vitreoretinal diseases. Ophthalmic Res 2017; 58(4): 217-26.
[http://dx.doi.org/10.1159/000479157] [PMID: 28858866]
[49]
Bourges JL, Bloquel C, Thomas A, et al. Intraocular implants for extended drug delivery: Therapeutic applications. Adv Drug Deliv Rev 2006; 58(11): 1182-202.
[http://dx.doi.org/10.1016/j.addr.2006.07.026] [PMID: 17107737]
[50]
Xu H, Zhang L, Gu L, et al. Subretinal delivery of AAV2-mediated human erythropoietin gene is protective and safe in experimental diabetic retinopathy. Invest Ophthalmol Vis Sci 2014; 55(3): 1519-30.
[http://dx.doi.org/10.1167/iovs.13-13155] [PMID: 24508793]
[51]
Metlapally R, Wildsoet CF. Scleral mechanisms underlying ocular growth and myopia. Prog Mol Biol Transl Sci 2015; 134: 241-8.
[http://dx.doi.org/10.1016/bs.pmbts.2015.05.005]
[52]
Fangueiro JF, Silva AM, Garcia ML, et al. Current nanotechnology approaches for the treatment and management of diabetic retinopathy. Eur J Pharm Biopharm 2015; 95(Pt B): 307-22.
[http://dx.doi.org/10.1016/j.ejpb.2014.12.023]
[53]
Ding S. Recent developments in ophthalmic drug delivery. Pharm Sci Technol Today 1998; 1(8): 328-35.
[http://dx.doi.org/10.1016/S1461-5347(98)00087-X]
[54]
Bochot A, Fattal E, Grossiord JL, Puisieux F, Couvreur P. Characterization of a new ocular delivery system based on a dispersion of liposomes in a thermosensitive gel. Int J Pharm 1998; 162(1-2): 119-27.
[http://dx.doi.org/10.1016/S0378-5173(97)00419-5]
[55]
Losa C, Calvo P, Castro E, Vila-Jato JL, Alonso MJ. Improvement of ocular penetration of amikacin sulphate by association to poly(butylcyanoacrylate) nanoparticles. J Pharm Pharmacol 2011; 43(8): 548-52.
[http://dx.doi.org/10.1111/j.2042-7158.1991.tb03534.x] [PMID: 1681069]
[56]
Taghe S, Mirzaeei S. Preparation and characterization of novel, mucoadhesive ofloxacin nanoparticles for ocular drug delivery. Braz J Pharm Sci 2019.
[57]
Di Tommaso C, Valamanesh F, Miller F, et al. A novel cyclosporin a aqueous formulation for dry eye treatment: in vitro and in vivo evaluation. Invest Ophthalmol Vis Sci 2012; 53(4): 2292-9.
[http://dx.doi.org/10.1167/iovs.11-8829] [PMID: 22427552]
[58]
Kompella UB, Amrite AC, Pacha Ravi R, et al. Nanomedicines for back of the eye drug delivery, gene delivery, and imaging. Prog Retin Eye Res 2013; 36: 172-98.
[http://dx.doi.org/10.1016/j.preteyeres.2013.04.001]
[59]
Chen H, Li Z, Zhou Z, Zhuang J. Cerium compound-loaded poly(lactic co glycolic acid) nanospheres in improving diabetic retinopathy. Sci Adv Mater 2022; 14(3): 423-9.
[http://dx.doi.org/10.1166/sam.2022.4181]
[60]
Srinivasarao DA, Sreenivasa Reddy S, Bhanuprakash Reddy G, Katti DS. Simultaneous amelioration of diabetic ocular complications in lens and retinal tissues using a non-invasive drug delivery system. Int J Pharm 2021; 608(608): 121045.
[http://dx.doi.org/10.1016/j.ijpharm.2021.121045] [PMID: 34481006]
[61]
Mahlumba P, Kumar P, du Toit LC, et al. Fabrication and characterisation of a photo-responsive, injectable nanosystem for sustained delivery of macromolecules. Int J Mol Sci 2021; 22(7): 3359.
[http://dx.doi.org/10.3390/ijms22073359]
[62]
Radwan SE, El-Kamel A, Zaki EI, et al. Hyaluronic-coated albumin nanoparticles for the non-invasive delivery of apatinib in diabetic retinopathy. Int J Nanomedicine 2021; 16: 4481-94.
[http://dx.doi.org/10.2147/IJN.S316564]
[63]
Laddha UD, Kshirsagar SJ. Formulation of PPAR-gamma agonist as surface modified PLGA nanoparticles for non-invasive treatment of diabetic retinopathy: in vitro and in vivo evidences. Heliyon 2020; 6(8): e04589.
[http://dx.doi.org/10.1016/j.heliyon.2020.e04589] [PMID: 32832706]
[64]
Qiu F, Meng T, Chen Q, et al. Fenofibrate-Loaded biodegradable nanoparticles for the treatment of experimental diabetic retinopathy and neovascular age-related macular degeneration. Mol Pharm 2019; 16(5): 1958-70.
[http://dx.doi.org/10.1021/acs.molpharmaceut.8b01319]
[65]
Zeng L, Ma W, Shi L, et al. Poly(lactic-co-glycolic acid) nanoparticle-mediated interleukin-12 delivery for the treatment of diabetic retinopathy. Int J Nanomedicine 2019; 14: 6357-69.
[http://dx.doi.org/10.2147/IJN.S214727]
[66]
Pandit J, Sultana Y, Aqil M. Chitosan-coated PLGA nanoparticles of bevacizumab as novel drug delivery to target retina: optimization, characterization, and in vitro toxicity evaluation. Artif Cells Nanomed Biotechnol 2017; 45(7): 1397-407.
[http://dx.doi.org/10.1080/21691401.2016.1243545] [PMID: 27855494]
[67]
Schneider-Futschik EK, Reyes-Ortega F. Advantages and disadvantages of using magnetic nanoparticles for the treatment of complicated ocular disorders. Pharmaceutics 2021; 13(8): 1157.
[http://dx.doi.org/10.3390/pharmaceutics13081157] [PMID: 34452117]
[68]
Bassetto M, Sen M, Poulhes F, et al. New method for efficient sirna delivery in retina explants: Reverse magnetofection. Bioconjug Chem 2021; 32(6): 1078-93.
[http://dx.doi.org/10.1021/acs.bioconjchem.1c00132] [PMID: 34081855]
[69]
Amato R, Giannaccini M, Dal Monte M, et al. Association of the somatostatin analog octreotide with magnetic nanoparticles for intraocular delivery: A possible approach for the treatment of diabetic retinopathy. Front Bioeng Biotechnol 2020; 8: 144.
[http://dx.doi.org/10.3389/fbioe.2020.00144]
[70]
Tzameret A, Ketter-Katz H, Edelshtain V, et al. In vivo MRI assessment of bioactive magnetic iron oxide/human serum albumin nanoparticle delivery into the posterior segment of the eye in a rat model of retinal degeneration. J Nanobiotechnology 2019; 17(1): 3.
[http://dx.doi.org/10.1186/s12951-018-0438-y] [PMID: 30630490]
[71]
Giannaccini M, Pedicini L, De Matienzo G, et al. Magnetic nanoparticles: A strategy to target the choroidal layer in the posterior segment of the eye. Sci Rep 2017; 7: 43092.
[http://dx.doi.org/10.1038/srep43092]
[72]
SALIMI A. Evaluation of the Effect of Naringenin Liposomal Formulation on Retinopathy in an Experimental Rabbit Model. Kafkas Univ Vet Fak Derg 2022; 28(4)
[http://dx.doi.org/10.9775/kvfd.2022.27538]
[73]
Navarro-Partida J, Altamirano-Vallejo JC, Aceves Franco LA, et al. Topical triamcinolone acetonide-loaded liposome formulation used as an adjuvant to intravitreal ranibizumab therapy for neovascular age-related macular degeneration. Pharmaceutics 2021; 13(9): 1491.
[http://dx.doi.org/10.3390/pharmaceutics13091491] [PMID: 34575567]
[74]
Anishiya chella daisy ER, Rajendran NK, Jeyaraj M, Ramu A, Rajan M. Retracted article: Retinal photoreceptors targeting SA- g -AA coated multilamellar liposomes carrier system for cytotoxicity and cellular uptake evaluation. J Liposome Res 2021; 31(2): 203-16.
[http://dx.doi.org/10.1080/08982104.2020.1768111] [PMID: 32396763]
[75]
Riemann S, Kolibabka M, Busch S, et al. Microglial activation is associated with vasoprotection in a rat model of inflammatory retinal vasoregression. Front Physiol 2021; 12: 660164.
[http://dx.doi.org/10.3389/fphys.2021.660164] [PMID: 33981252]
[76]
Li L, Lai K, Li C, et al. APRPG-modified nanoliposome loaded with miR-146a-5p inhibitor suppressed choroidal neovascularization by targeting endothelial cells. Cutan Ocul Toxicol 2020; 39(4): 354-62.
[http://dx.doi.org/10.1080/15569527.2020.1823406] [PMID: 32928013]
[77]
Asasutjarit R, Managit C, Phanaksri T, Treesuppharat W, Fuongfuchat A. Formulation development and in vitro evaluation of transferrin-conjugated liposomes as a carrier of ganciclovir targeting the retina. Int J Pharm 2020; 577: 119084.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119084] [PMID: 31988033]
[78]
Khalil M, Hashmi U, Riaz R, Rukh Abbas S. Chitosan coated liposomes (CCL) containing triamcinolone acetonide for sustained delivery: A potential topical treatment for posterior segment diseases. Int J Biol Macromol 2020; 143: 483-91.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.10.256] [PMID: 31759018]
[79]
Bogdanov P, Sampedro J, Sola-Adell C, et al. Effects of liposomal formulation of citicoline in experimental diabetes-induced retinal neurodegeneration. Int J Mol Sci 2018; 19(8): 2458.
[http://dx.doi.org/10.3390/ijms19082458]
[80]
Karumanchi DK, Skrypai Y, Thomas A, Gaillard ER. Rational design of liposomes for sustained release drug delivery of bevacizumab to treat ocular angiogenesis. J Drug Deliv Sci Technol 2018; 47: 275-82.
[http://dx.doi.org/10.1016/j.jddst.2018.07.003]
[81]
Arta A, Eriksen AZ, Melander F, et al. Endothelial protein C–targeting liposomes show enhanced uptake and improved therapeutic efficacy in human retinal endothelial cells. Invest Ophthalmol Vis Sci 2018; 59(5): 2119-32.
[http://dx.doi.org/10.1167/iovs.18-23800] [PMID: 29677376]
[82]
Bochot A, Couvreur P, Fattal E. Intravitreal administration of antisense oligonucleotides: potential of liposomal delivery. Prog Retin Eye Res 2000; 19(2): 131-47.
[http://dx.doi.org/10.1016/S1350-9462(99)00014-2] [PMID: 10674705]
[83]
Edelhauser HF, Rowe-Rendleman CL, Robinson MR, et al. Ophthalmic drug delivery systems for the treatment of retinal diseases: Basic research to clinical applications. Invest Ophthalmol Vis Sci 2010; 51(11): 5403-20.
[http://dx.doi.org/10.1167/iovs.10-5392]
[84]
Nirmal J, Radhakrishnan K, Moreno M, et al. Drug, delivery and devices for diabetic retinopathy (3Ds in DR). Expert Opin Drug Deliv 2016; 13(11): 1625-37.
[http://dx.doi.org/10.1080/17425247.2016.1188800] [PMID: 27169870]
[85]
Gupta SK, Velpandian T, Dhingra N, Jaiswal J. Intravitreal pharmacokinetics of plain and liposome-entrapped fluconazole in rabbit eyes. J Ocul Pharmacol Ther 2000; 16(6): 511-8.
[http://dx.doi.org/10.1089/jop.2000.16.511] [PMID: 11132898]
[86]
Abrishami M, Ganavati SZ, Soroush D, Rouhbakhsh M, Jaafari MR, Malaekeh-Nikouei B. Preparation, characterization, and in vivo evaluation of nanoliposomes-encapsulated bevacizumab (avastin) for intravitreal administration. Retina 2009; 29(5): 699-703.
[http://dx.doi.org/10.1097/IAE.0b013e3181a2f42a] [PMID: 19430280]
[87]
Hironaka K, Inokuchi Y, Tozuka Y, Shimazawa M, Hara H, Takeuchi H. Design and evaluation of a liposomal delivery system targeting the posterior segment of the eye. J Control Release 2009; 136(3): 247-53.
[http://dx.doi.org/10.1016/j.jconrel.2009.02.020] [PMID: 19272407]
[88]
Diebold Y, Jarrín M, Sáez V, et al. Ocular drug delivery by liposome–chitosan nanoparticle complexes (LCS-NP). Biomaterials 2007; 28(8): 1553-64.
[http://dx.doi.org/10.1016/j.biomaterials.2006.11.028] [PMID: 17169422]
[89]
Mahale NB, Thakkar PD, Mali RG, Walunj DR, Chaudhari SR. Niosomes: Novel sustained release nonionic stable vesicular systems-an overview. Adv Colloid Interface Sci 2012; 183-184: 46-54.
[http://dx.doi.org/10.1016/j.cis.2012.08.002] [PMID: 22947187]
[90]
Gala U, Chauhan H. Taste masking techniques in the pharmaceutical industry. Am Pharm Rev 2014; 17(4)
[http://dx.doi.org/10.1155/2018/6847971]
[91]
Uchegbu IF, Florence AT. Non-ionic surfactant vesicles (niosomes): Physical and pharmaceutical chemistry. Adv Colloid Interface Sci 1995; 58(1): 1-55.
[http://dx.doi.org/10.1016/0001-8686(95)00242-I]
[92]
Amoabediny G, Haghiralsadat F, Naderinezhad S, et al. Overview of preparation methods of polymeric and lipid-based (niosome, solid lipid, liposome) nanoparticles: A comprehensive review. Int J Polym Mater 2018; 67(6): 383-400.
[http://dx.doi.org/10.1080/00914037.2017.1332623]
[93]
Rinaldi F, del Favero E, Moeller J, et al. Hydrophilic silver nanoparticles loaded into niosomes: Physical–chemical characterization in view of biological applications. Nanomaterials 2019; 9(8): 1177.
[http://dx.doi.org/10.3390/nano9081177] [PMID: 31426465]
[94]
Bidram E, Esmaeili Y, Ranji-Burachaloo H, et al. A concise review on cancer treatment methods and delivery systems. J Drug Deliv Sci Technol 2019; 54: 101350.
[http://dx.doi.org/10.1016/j.jddst.2019.101350]
[95]
Uchegbu IF, Vyas SP. Non-ionic surfactant based vesicles (niosomes) in drug delivery. Int J Pharm 1998; 172(1-2): 33-70.
[http://dx.doi.org/10.1016/S0378-5173(98)00169-0]
[96]
AL Qtaish N, Gallego I, Villate- Beitia I, et al. Sphingolipid extracts enhance gene delivery of cationic lipid vesicles into retina and brain. Eur J Pharm Biopharm 2021; 169: 103-12.
[http://dx.doi.org/10.1016/j.ejpb.2021.09.011] [PMID: 34606927]
[97]
Mashal M, Attia N, Martínez-Navarrete G, et al. Gene delivery to the rat retina by non-viral vectors based on chloroquine-containing cationic niosomes. J Control Release 2019; 304: 181-90.
[http://dx.doi.org/10.1016/j.jconrel.2019.05.010] [PMID: 31071372]
[98]
Gallego I, Villate-Beitia I, Martínez-Navarrete G, et al. Non-viral vectors based on cationic niosomes and minicircle DNA technology enhance gene delivery efficiency for biomedical applications in retinal disorders. Nanomedicine 2019; 17: 308-18.
[http://dx.doi.org/10.1016/j.nano.2018.12.018] [PMID: 30790710]
[99]
Villate-Beitia I, Gallego I, Martínez-Navarrete G, et al. Polysorbate 20 non-ionic surfactant enhances retinal gene delivery efficiency of cationic niosomes after intravitreal and subretinal administration. Int J Pharm 2018; 550(1-2): 388-97.
[http://dx.doi.org/10.1016/j.ijpharm.2018.07.035] [PMID: 30009984]
[100]
Qin Y, Tian Y, Liu Y, et al. Hyaluronic acid-modified cationic niosomes for ocular gene delivery: Improving transfection efficiency in retinal pigment epithelium. J Pharm Pharmacol 2018; 70(9): 1139-51.
[http://dx.doi.org/10.1111/jphp.12940] [PMID: 29931682]
[101]
Mashal M, Attia N, Puras G, Martínez-Navarrete G, Fernández E, Pedraz JL. Retinal gene delivery enhancement by lycopene incorporation into cationic niosomes based on DOTMA and polysorbate 60. J Control Release 2017; 254: 55-64.
[http://dx.doi.org/10.1016/j.jconrel.2017.03.386] [PMID: 28347807]
[102]
Campos EJ, Campos A, Martins J, Ambrósio AF. Opening eyes to nanomedicine: Where we are, challenges and expectations on nanotherapy for diabetic retinopathy. Nanomedicine 2017; 13(6): 2101-13.
[http://dx.doi.org/10.1016/j.nano.2017.04.008] [PMID: 28428052]
[103]
Quintana A, Raczka E, Piehler L, et al. Design and function of a dendrimer-based therapeutic nanodevice targeted to tumor cells through the folate receptor. Pharm Res 2002; 19(9): 1310-6.
[http://dx.doi.org/10.1023/A:1020398624602] [PMID: 12403067]
[104]
Selvaraj K, Gowthamarajan K, Karri VVSR, Barauah UK, Ravisankar V, Jojo GM. Current treatment strategies and nanocarrier based approaches for the treatment and management of diabetic retinopathy. J Drug Target 2017; 25(5): 386-405.
[http://dx.doi.org/10.1080/1061186X.2017.1280809] [PMID: 28122462]
[105]
Cheng Y, Xu Z, Ma M, Xu T. Dendrimers as drug carriers: applications in different routes of drug administration. J Pharm Sci 2008; 97(1): 123-43.
[http://dx.doi.org/10.1002/jps.21079] [PMID: 17721949]
[106]
Esfand R, Tomalia DA. Poly(amidoamine) (PAMAM) dendrimers: from biomimicry to drug delivery and biomedical applications. Drug Discov Today 2001; 6(8): 427-36.
[http://dx.doi.org/10.1016/S1359-6446(01)01757-3] [PMID: 11301287]
[107]
Hecht S, Fréchet JMJ. Dendritic encapsulation of function: Applying nature’s site isolation principle from biomimetics to materials science. Angew Chem Int Ed 2001; 40(1): 74-91.
[http://dx.doi.org/10.1002/1521-3773(20010105)40:1<74:AID-ANIE74>3.0.CO;2-C] [PMID: 11169692]
[108]
Svenson S, Tomalia DA. Dendrimers in biomedical applications—reflections on the field. Adv Drug Deliv Rev 2012; 64: 102-15.
[http://dx.doi.org/10.1016/j.addr.2012.09.030] [PMID: 16305813]
[109]
Holden CA, Tyagi P, Thakur A, et al. Polyamidoamine dendrimer hydrogel for enhanced delivery of antiglaucoma drugs. Nanomedicine 2012; 8(5): 776-83.
[http://dx.doi.org/10.1016/j.nano.2011.08.018] [PMID: 21930109]
[110]
Vandamme TF, Brobeck L. Poly(amidoamine) dendrimers as ophthalmic vehicles for ocular delivery of pilocarpine nitrate and tropicamide. J Control Release 2005; 102(1): 23-38.
[http://dx.doi.org/10.1016/j.jconrel.2004.09.015] [PMID: 15653131]
[111]
Garden GA, Möller T. Microglia biology in health and disease. J Neuroimmune Pharmacol 2006; 1(2): 127-37.
[http://dx.doi.org/10.1007/s11481-006-9015-5] [PMID: 18040779]
[112]
Madaan K, Kumar S, Poonia N, et al. Dendrimers in drug delivery and targeting: Drug-dendrimer interactions and toxicity issues. J Pharm Bioallied Sci 2014; 6(3): 139-50.
[http://dx.doi.org/10.4103/0975-7406.130965]
[113]
Kambhampati SP, Clunies-Ross AJ, Bhutto I, et al. Systemic and intravitreal delivery of dendrimers to activated microglia/macrophage in ischemia/reperfusion mouse retina. Invest Ophthalmol Vis Sci 2015; 56(8): 4413-24.
[http://dx.doi.org/10.1167/iovs.14-16250]
[114]
Seitz R, Ohlmann A, Tamm ER. The role of Müller glia and microglia in glaucoma. Cell Tissue Res 2013; 353(2): 339-45.
[http://dx.doi.org/10.1007/s00441-013-1666-y] [PMID: 23779255]
[115]
Grigsby JG, Cardona SM, Pouw CE, et al. The role of microglia in diabetic retinopathy. J Ophthalmol 2014; 2014: 705783.
[http://dx.doi.org/10.1155/2014/705783]
[116]
Sun C, Li X, He X, Zhang Q, Tao Y. Neuroprotective effect of minocycline in a rat model of branch retinal vein occlusion. Exp Eye Res 2013; 113: 105-16.
[http://dx.doi.org/10.1016/j.exer.2013.05.018] [PMID: 23748101]
[117]
Alshammari RA, Aleanizy FS, Aldarwesh A, et al. Retinal delivery of the protein kinase C-β inhibitor ruboxistaurin using non-invasive nanoparticles of polyamidoamine dendrimers. Pharmaceutics 2022; 14(7): 1444.
[http://dx.doi.org/10.3390/pharmaceutics14071444] [PMID: 35890338]
[118]
Cho H, Kambhampati SP, Lai MJ, et al. Dendrimer-triamcinolone acetonide reduces neuroinflammation, pathological angiogenesis, and neuroretinal dysfunction in ischemic retinopathy. Adv Ther 2021; 4(2): 2000181.
[http://dx.doi.org/10.1002/adtp.202000181]
[119]
Tan G, Liu D, Zhu R, Pan H, Li J, Pan W. A core-shell nanoplatform as a nonviral vector for targeted delivery of genes to the retina. Acta Biomater 2021; 134: 605-20.
[http://dx.doi.org/10.1016/j.actbio.2021.07.053] [PMID: 34329781]
[120]
You S, Kim H, Jung H, et al. Tuning surface functionalities of sub-10 nm-sized nanocarriers to target outer retina in designing drug delivery agents for intravitreal administration. Biomaterials 2020; 255: 120188.
[http://dx.doi.org/10.1016/j.biomaterials.2020.120188] [PMID: 32652402]
[121]
Yang X, Wang L, Li L, et al. A novel dendrimer-based complex co-modified with cyclic RGD hexapeptide and penetratin for noninvasive targeting and penetration of the ocular posterior segment. Drug Deliv 2019; 26(1): 989-1001.
[http://dx.doi.org/10.1080/10717544.2019.1667455]
[122]
Dąbkowska M, Rogińska D, Kłos P, et al. Electrostatic complex of neurotrophin 4 with dendrimer nanoparticles: controlled release of protein in vitro and in vivo. Int J Nanomedicine 2019; 14: 6117-31.
[http://dx.doi.org/10.2147/IJN.S210140] [PMID: 31534337]
[123]
Ghosh S, Shang P, Terasaki H, et al. A role for βA3/A1-crystallin in type 2 EMT of RPE cells occurring in dry age-related macular degeneration. Invest Ophthalmol Vis Sci 2018; 59(4): AMD104-13.
[http://dx.doi.org/10.1167/iovs.18-24132] [PMID: 30098172]
[124]
Lancina MG III, Wang J, Williamson GS, Yang H. DenTimol as a dendrimeric timolol analogue for glaucoma therapy: Synthesis and preliminary efficacy and safety assessment. Mol Pharm 2018; 15(7): 2883-9.
[http://dx.doi.org/10.1021/acs.molpharmaceut.8b00401] [PMID: 29767982]
[125]
Seyfoddin A, Shaw J, Al-Kassas R. Solid lipid nanoparticles for ocular drug delivery. Drug Deliv 2010; 17(7): 467-89.
[http://dx.doi.org/10.3109/10717544.2010.483257] [PMID: 20491540]
[126]
de Oliveira IF, Barbosa EJ, Peters MCC, et al. Cutting-edge advances in therapy for the posterior segment of the eye: Solid lipid nanoparticles and nanostructured lipid carriers. Int J Pharm 2020; 589: 119831.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119831] [PMID: 32877729]
[127]
Puglia C, Santonocito D, Romeo G, et al. Lipid nanoparticles traverse non-corneal path to reach the posterior eye segment: in vivo evidence. Molecules 2021; 26(15): 4673.
[http://dx.doi.org/10.3390/molecules26154673]
[128]
Zhu Y, Sheng Y. RETRACTED: Sustained delivery of epalrestat to the retina using PEGylated solid lipid nanoparticles laden contact lens. Int J Pharm 2020; 587: 119688.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119688] [PMID: 32717281]
[129]
Tatke A, Dudhipala N, Janga KY, et al. In situ gel of triamcinolone acetonide-loaded solid lipid nanoparticles for improved topical ocular delivery: Tear kinetics and ocular disposition studies. Nanomaterials 2018; 9(1): 33.
[http://dx.doi.org/10.3390/nano9010033]
[130]
Azevedo de Freitas LG, Cruvinel Isaac DL. Lima Em. Retinal changes in rabbit after intravitreal injection of sunitinib encapsulated into solid lipid nanoparticles and polymeric nanocapsules. Arq Bras Oftalmol 2018; 81(5): 408-13.
[http://dx.doi.org/10.5935/0004-2749.20180079] [PMID: 30208143]
[131]
Du S, Wang H, Jiang F, Wang Y. Diabetic retinopathy analysis—effects of nanoparticle-based triamcinolone. J Nanosci Nanotechnol 2020; 20(10): 6111-5.
[http://dx.doi.org/10.1166/jnn.2020.18569] [PMID: 32384959]
[132]
Li C, Zhao G, Lu L, Du X. Effect of triamcinolone acetonide-loaded nanoparticles on diabetic retinopathy in rats. Mater Express 2020; 10(9): 1511-7.
[http://dx.doi.org/10.1166/mex.2020.1784]
[133]
Selvaraj K, Kuppusamy G, Krishnamurthy J, Mahalingam R, Singh SK, Gulati M. Repositioning of itraconazole for the management of ocular neovascularization through surface-modified nanostructured lipid carriers. Assay Drug Dev Technol 2019; 17(4): 178-90.
[http://dx.doi.org/10.1089/adt.2018.898] [PMID: 30835139]
[134]
Puglia C, Blasi P, Ostacolo C, et al. Innovative nanoparticles enhance N-palmitoylethanolamide intraocular delivery. Front Pharmacol 2018; 9: 285.
[http://dx.doi.org/10.3389/fphar.2018.00285]
[135]
Lou J, Hu W, Tian R, et al. Optimization and evaluation of a thermoresponsive ophthalmic in situ gel containing curcumin-loaded albumin nanoparticles. Int J Nanomedicine 2014; 9: 2517.
[http://dx.doi.org/10.2147/IJN.S60270]
[136]
Hsiue GH, Chang RW, Wang CH, Lee SH. Development of in situ thermosensitive drug vehicles for glaucoma therapy. Biomaterials 2003; 24(13): 2423-30.
[http://dx.doi.org/10.1016/S0142-9612(03)00035-8] [PMID: 12699680]
[137]
Jeong B, Gutowska A. Lessons from nature: Stimuli-responsive polymers and their biomedical applications. Trends Biotechnol 2002; 20(7): 305-11.
[http://dx.doi.org/10.1016/S0167-7799(02)01962-5] [PMID: 12062976]
[138]
Song L, Lin C, Wang L, Sheng HL, Zhou YF, Nie WY. Fabrication of teardrop-shaped silica particles in polyelectrolyte diluted solution through in situ sol–gel process. J Sol-Gel Sci Technol 2011; 58(3): 651-5.
[http://dx.doi.org/10.1007/s10971-011-2440-9]
[139]
Cho K, Chung TW, Kim BC, et al. Release of ciprofloxacin from poloxamer-graft-hyaluronic acid hydrogels in vitro. Int J Pharm 2003; 260(1): 83-91.
[http://dx.doi.org/10.1016/S0378-5173(03)00259-X] [PMID: 12818813]
[140]
Esteruelas G, Halbaut L, García-Torra V, et al. Development and optimization of Riluzole-loaded biodegradable nanoparticles incorporated in a mucoadhesive in situ gel for the posterior eye segment. Int J Pharm 2022; 612: 121379.
[http://dx.doi.org/10.1016/j.ijpharm.2021.121379] [PMID: 34915146]
[141]
Wu W, Cao W, Chen J, Cai Y, Dong B, Chu X. In situ liquid crystal gel as a promising strategy for improving ocular administration of Dexamethasone: Preparation, characterization, and evaluation. AAPS PharmSciTech 2021; 23(1): 36.
[http://dx.doi.org/10.1208/s12249-021-02193-6] [PMID: 34951001]
[142]
Deguchi S, Ogata F, Yamaguchi M, et al. In situ gel incorporating disulfiram nanoparticles rescues the retinal dysfunction via ATP collapse in otsuka long–evans tokushima fatty rats. Cells 2020; 9(10): 2171.
[http://dx.doi.org/10.3390/cells9102171] [PMID: 32993012]
[143]
Du M, Shen S, Liang L, et al. Evaluations of the chuanqi ophthalmic microemulsion in situ gel on dry age-related macular degeneration treatment. Evid Based Complement Alternat Med 2020; 2020: 1-14.
[http://dx.doi.org/10.1155/2020/3805967]
[144]
Sapino S, Peira E, Chirio D, et al. Thermosensitive nanocomposite hydrogels for intravitreal delivery of Cefuroxime. Nanomaterials 2019; 9(10): 1461.
[http://dx.doi.org/10.3390/nano9101461]
[145]
Chen CW, Lu DW, Yeh MK, et al. Novel RGD-lipid conjugate-modified liposomes for enhancing siRNA delivery in human retinal pigment epithelial cells. Int J Nanomedicine 2011; 6: 2567-80.
[http://dx.doi.org/10.2147/IJN.S24447]
[146]
Lee J, Goh U, Lee HJ, Kim J, Jeong M, Park JH. Effective retinal penetration of lipophilic and lipid-conjugated hydrophilic agents delivered by engineered liposomes. Mol Pharm 2017; 14(2): 423-30.
[http://dx.doi.org/10.1021/acs.molpharmaceut.6b00864] [PMID: 27936751]
[147]
Ceulemans J, Ludwig A. Recent advances on bioadhesive ocular dosage forms. Scientific reviews 2002.
[148]
Durrani AM, Farr SJ, Kellaway IW. Influence of molecular weight and formulation pH on the precorneal clearance rate of hyaluronic acid in the rabbit eye. Int J Pharm 1995; 118(2): 243-50.
[http://dx.doi.org/10.1016/0378-5173(94)00389-M]
[149]
Hornof M, Weyemberg W, Ludwig AJJCR. Ocular insert using bioadhesive polymer. J Control Release 2003; 89: 419-28.
[http://dx.doi.org/10.1016/S0168-3659(03)00135-4] [PMID: 12737844]
[150]
Meng J, Sturgis TF, Youan BB. Engineering tenofovir loaded chitosan nanoparticles to maximize microbicide mucoadhesion. Eur J Pharm Sci 2011; 44(1-2): 57-67.
[http://dx.doi.org/10.1016/j.ejps.2011.06.007]
[151]
Thanou M, Verhoef JC, Junginger HE. Oral drug absorption enhancement by chitosan and its derivatives. Adv Drug Deliv Rev 2001; 52(2): 117-26.
[http://dx.doi.org/10.1016/S0169-409X(01)00231-9] [PMID: 11718935]
[152]
Khin SY, Soe HMSH, Chansriniyom C, et al. Development of fenofibrate/randomly methylated β-cyclodextrin-loaded Eudragit® RL 100 nanoparticles for ocular delivery. Molecules 2022; 27(15): 4755.
[http://dx.doi.org/10.3390/molecules27154755] [PMID: 35897940]
[153]
Ricci F, Racaniello GF, Lopedota A, et al. Chitosan/sulfobutylether-β-cyclodextrin based nanoparticles coated with thiolated hyaluronic acid for indomethacin ophthalmic delivery. Int J Pharm 2022; 622: 121905.
[http://dx.doi.org/10.1016/j.ijpharm.2022.121905] [PMID: 35697201]
[154]
Zoratto N, Forcina L, Matassa R, et al. Hyaluronan-cholesterol nanogels for the enhancement of the ocular delivery of therapeutics. Pharmaceutics 1781; 13(11): 1781.
[http://dx.doi.org/10.3390/pharmaceutics13111781]
[155]
Wang Y, Zhou L, Fang L, Cao F. Multifunctional carboxymethyl chitosan derivatives-layered double hydroxide hybrid nanocomposites for efficient drug delivery to the posterior segment of the eye. Acta Biomater 2020; 104: 104-14.
[http://dx.doi.org/10.1016/j.actbio.2020.01.008] [PMID: 31931169]
[156]
Chen S, Jia H, Cui X, et al. Characterization of stimuli-responsive and cross-linked nanohydrogels for applications in ophthalmiatrics therapy. Appl Nanosci 2020; 10(9): 3465-75.
[http://dx.doi.org/10.1007/s13204-020-01450-7]
[157]
Di Prima G, Saladino S, Bongiovì F, et al. Novel inulin-based mucoadhesive micelles loaded with corticosteroids as potential transcorneal permeation enhancers. Eur J Pharm Biopharm 2017; 117: 385-99.
[http://dx.doi.org/10.1016/j.ejpb.2017.05.005] [PMID: 28512019]
[158]
Guo C, Li M, Qi X, et al. Intranasal delivery of nanomicelle curcumin promotes corneal epithelial wound healing in streptozotocin-induced diabetic mice. Sci Rep 2016; 6: 29753.
[http://dx.doi.org/10.1038/srep29753]
[159]
Singh P, Verma N. A review on impact of nanomicelle for ocular drug delivery system. Int J Pharm Sci Res 2018; 9(4): 1397-404.
[160]
Vaishya RD, Khurana V, Patel S, et al. Controlled ocular drug delivery with nanomicelles. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2014; 6(5): 422-37.
[http://dx.doi.org/10.1002/wnan.1272]
[161]
Trivedi R, Kompella UB. Nanomicellar formulations for sustained drug delivery: Strategies and underlying principles. Nanomedicine 2010; 5(3): 485-505.
[http://dx.doi.org/10.2217/nnm.10.10]
[162]
Vadlapudi AD, Mitra AK. Nanomicelles: An emerging platform for drug delivery to the eye. Ther Deliv 2013; 4(1): 1-3.
[http://dx.doi.org/10.4155/tde.12.122]
[163]
Cholkar K, Patel A, Vadlapudi AD, et al. Novel nanomicellar formulation approaches for anterior and posterior segment ocular drug delivery. Recent Pat Nanomed 2012; 2(2): 82-95.
[http://dx.doi.org/10.2174/1877912311202020082]
[164]
Velagaleti P, Anglade E, Khan I, et al. Topical delivery of hydrophobic drugs using a novel mixed nanomicellar technology to treat diseases of the anterior and posterior segments of the eye. Drug Deliv Technol 2010; 10(4): 42-7.
[165]
S L J. Gupta N V. Diabetic retinopathy: An inclusive review on current treatment and management approaches. Asian J Pharm Clin Res 2018; 11(11): 54.
[http://dx.doi.org/10.22159/ajpcr.2018.v11i11.26949]
[166]
Rangel-Yagui CO, Pessoa A Jr, Tavares LC. Micellar solubilization of drugs. J Pharm Pharm Sci 2005; 8(2): 147-65.
[PMID: 16124926]
[167]
Gothwal A, Khan I, Gupta U. Polymeric micelles: Recent advancements in the delivery of anticancer drugs. Pharm Res 2016; 33(1): 18-39.
[http://dx.doi.org/10.1007/s11095-015-1784-1] [PMID: 26381278]
[168]
Klibanov AL, Maruyama K, Torchilin VP, Huang L. Amphipathic polyethyleneglycols effectively prolong the circulation time of liposomes. FEBS Lett 1990; 268(1): 235-7.
[http://dx.doi.org/10.1016/0014-5793(90)81016-H] [PMID: 2384160]
[169]
Mandal A, Bisht R, Rupenthal ID, et al. Polymeric micelles for ocular drug delivery: From structural frameworks to recent preclinical studies. J Control Release 2017; 248: 96-116.
[http://dx.doi.org/10.1016/j.jconrel.2017.01.012]
[170]
Li J, Li Z, Zhou T, et al. Positively charged micelles based on a triblock copolymer demonstrate enhanced corneal penetration. Int J Nanomedicine 2015; 10: 6027-37.
[http://dx.doi.org/10.2147/IJN.S90347]
[171]
Luo L, Tam J, Maysinger D, Eisenberg A. Cellular internalization of Poly(ethylene oxide)- b -poly(ε-caprolactone) Diblock Copolymer Micelles. Bioconjug Chem 2002; 13(6): 1259-65.
[http://dx.doi.org/10.1021/bc025524y] [PMID: 12440861]
[172]
Allen C, Yu Y, Eisenberg A, Maysinger D. Cellular internalization of PCL20-b-PEO44 block copolymer micelles. Biochim Biophys Acta Biomembr 1999; 1421(1): 32-8.
[http://dx.doi.org/10.1016/S0005-2736(99)00108-X] [PMID: 10561469]
[173]
Savić R, Luo L, Eisenberg A, Maysinger D. Micellar nanocontainers distribute to defined cytoplasmic organelles. Science 2003; 300(5619): 615-8.
[http://dx.doi.org/10.1126/science.1078192] [PMID: 12714738]
[174]
Liu S, Jones L, Gu FX. Nanomaterials for ocular drug delivery. Macromol Biosci 2012; 12(5): 608-20.
[http://dx.doi.org/10.1002/mabi.201100419] [PMID: 22508445]
[175]
Di Tommaso C, Bourges JL, Valamanesh F, et al. Novel micelle carriers for cyclosporin A topical ocular delivery: in vivo cornea penetration, ocular distribution and efficacy studies. Eur J Pharm Biopharm 2012; 81(2): 257-64.
[http://dx.doi.org/10.1016/j.ejpb.2012.02.014] [PMID: 22445900]
[176]
Ponnusamy C, Sugumaran A, Krishnaswami V, et al. Development and evaluation of polyvinylpyrrolidone K90 and poloxamer 407 self-assembled nanomicelles: Enhanced topical ocular delivery of artemisinin 2021; 13(18): 3038.
[http://dx.doi.org/10.3390/polym13183038]
[177]
Rassu G, Pavan B, Mandracchia D, et al. Polymeric nanomicelles based on inulin D α-tocopherol succinate for the treatment of diabetic retinopathy. J Drug Deliv Sci Technol 2021; 61: 102286.
[http://dx.doi.org/10.1016/j.jddst.2020.102286]
[178]
Gote V, Mandal A, Alshamrani M, et al. Self-assembling tacrolimus nanomicelles for retinal drug delivery. Pharmaceutics 2020; 12(11): 1072.
[http://dx.doi.org/10.3390/pharmaceutics12111072]
[179]
Nagaraj R, Stack T, Yi S, et al. High density display of an anti-angiogenic peptide on micelle surfaces enhances their inhibition of αvβ3 integrin-mediated neovascularization in vitro. Nanomaterials 2020; 10(3): 581.
[http://dx.doi.org/10.3390/nano10030581] [PMID: 32235802]
[180]
Bongiovì F, Fiorica C, Palumbo FS, Di Prima G, Giammona G, Pitarresi G. Imatinib-loaded micelles of hyaluronic acid derivatives for potential treatment of neovascular ocular diseases. Mol Pharm 2018; 15(11): 5031-45.
[http://dx.doi.org/10.1021/acs.molpharmaceut.8b00620] [PMID: 30248267]
[181]
Sadeghi MS, Alavi S, Haeri A, et al. Tacrolimus phospholipid based nanomicelles as a potential local delivery system for corneal neovascularization therapy. International Pharmacy Acta 2018; 1(2): 198-207.
[http://dx.doi.org/10.22037/ipa.v1i2.21531]
[182]
Mandal A, Cholkar K, Khurana V, et al. Topical formulation of self-assembled antiviral prodrug nanomicelles for targeted retinal delivery. Mol Pharm 2017; 14(6): 2056-69.
[http://dx.doi.org/10.1021/acs.molpharmaceut.7b00128] [PMID: 28471177]
[183]
Simonazzi A, Cid AG, Villegas M, et al. Nanotechnology applications in drug controlled release Drug targeting and stimuli sensitive drug delivery systems. Elsevier 2018; pp. 81-116.
[http://dx.doi.org/10.1016/B978-0-12-813689-8.00003-3]
[184]
Peters MCC, Santos Neto E, Monteiro LM, et al. Advances in ophthalmic preparation: The role of drug nanocrystals and lipid-based nanosystems. J Drug Target 2020; 28(3): 259-70.
[http://dx.doi.org/10.1080/1061186X.2019.1663858] [PMID: 31491352]
[185]
Ganta S, Talekar M, Singh A, Coleman TP, Amiji MM. Nanoemulsions in translational research-opportunities and challenges in targeted cancer therapy. AAPS PharmSciTech 2014; 15(3): 694-708.
[http://dx.doi.org/10.1208/s12249-014-0088-9] [PMID: 24510526]
[186]
John M, Gacche RN. Nano-formulations for ophthalmic treatments. Archives of Pharmacy and Pharmaceutical Sciences 2017.
[http://dx.doi.org/10.29328/journal.hps.1001005]
[187]
Qamar Z, Qizilbash FF, Iqubal MK, et al. Nano-based drug delivery system: Recent strategies for the treatment of ocular disease and future perspective. Recent Pat Drug Deliv Formul 2019; 13(4): 246-54.
[http://dx.doi.org/10.2174/1872211314666191224115211]
[188]
Alany RG, Rades T, Nicoll J, Tucker IG, Davies NM. W/O microemulsions for ocular delivery: Evaluation of ocular irritation and precorneal retention. J Control Release 2006; 111(1-2): 145-52.
[http://dx.doi.org/10.1016/j.jconrel.2005.11.020] [PMID: 16426694]
[189]
Zhang T, Jiao X, Peng X, et al. Non-invasive drug delivery systems mediated by nanocarriers and molecular dynamics simulation for posterior eye disease therapeutics: Virtual screening, construction and comparison. J Mol Liq 2022; 363: 119805.
[http://dx.doi.org/10.1016/j.molliq.2022.119805]
[190]
Zhang H, Dong W, Long C, Li Q. Mechanism of propofol-lidocaine hydrochloride nano-emulsion on retinal ganglion cytopathic effect in diabetic rats. J Biomater Tissue Eng 2022; 12(1): 36-44.
[http://dx.doi.org/10.1166/jbt.2022.2868]
[191]
Huang L, Liang W, Zhou K, et al. Therapeutic effects of fenofibrate nano-emulsion eye drops on retinal vascular leakage and neovascularization. Biology 2021; 10(12): 1328.
[http://dx.doi.org/10.3390/biology10121328]
[192]
Nayak K, Misra M. Triamcinolone acetonide-loaded PEGylated microemulsion for the posterior segment of eye. ACS Omega 2020; 5(14): 7928-39.
[http://dx.doi.org/10.1021/acsomega.9b04244]
[193]
Taskar P, Adelli G, Patil A, et al. Analog derivatization of cannabidiol for improved ocular permeation. J Ocul Pharmacol Ther 2019; 35(5): 301-10.
[http://dx.doi.org/10.1089/jop.2018.0141] [PMID: 30998110]
[194]
Said AM, Zaki RG, Salah Eldin RA, et al. Efficacy of Intravitreal injection of 2-Methoxyestradiol in regression of neovascularization of a retinopathy of prematurity rat model. BMC Ophthalmol 2017; 17(1): 38.
[http://dx.doi.org/10.1186/s12886-017-0433-3]
[195]
Kaur IP, Kakkar S. Nanotherapy for posterior eye diseases. J Control Release 2014; 193: 100-12.
[http://dx.doi.org/10.1016/j.jconrel.2014.05.031] [PMID: 24862316]
[196]
Jaiswal M, Dudhe R, Sharma PK. Nanoemulsion: An advanced mode of drug delivery system. 3 Biotech 2015; 5(2): 123-7.
[http://dx.doi.org/10.1007/s13205-014-0214-0]
[197]
Sahoo S, Dilnawaz F, Krishnakumar S. Nanotechnology in ocular drug delivery. Drug Discov Today 2008; 13(3-4): 144-51.
[http://dx.doi.org/10.1016/j.drudis.2007.10.021] [PMID: 18275912]
[198]
Patel RB, Patel MR, Thakore SD, et al. Nanoemulsion as a valuable nanostructure platform for pharmaceutical drug delivery Nano-and Microscale Drug Delivery Systems. Elsevier 2017; pp. 321-41.
[http://dx.doi.org/10.1016/B978-0-323-52727-9.00017-0]
[199]
Dogra A, Kaur K, Ali J, Baboota S, Narang RS, Narang JK. Nanoformulations for ocular delivery of drugs-a patent perspective. Recent Pat Drug Deliv Formul 2020; 13(4): 255-72.
[http://dx.doi.org/10.2174/1872211314666200127101149] [PMID: 31985387]
[200]
Ako-Adounvo AM, Nagarwal RC, Oliveira L, et al. Recent patents on ophthalmic nanoformulations and therapeutic implications. Recent Pat Drug Deliv Formul 2014; 8(3): 193-201.
[http://dx.doi.org/10.2174/1872211308666140926112000]
[201]
Gao L, Liu G, Ma J, Wang X, Zhou L, Li X. Drug nanocrystals: in vivo performances. J Control Release 2012; 160(3): 418-30.
[http://dx.doi.org/10.1016/j.jconrel.2012.03.013] [PMID: 22465393]
[202]
Patravale VB, Date AA, Kulkarni RM. Nanosuspensions: A promising drug delivery strategy. J Pharm Pharmacol 2010; 56(7): 827-40.
[http://dx.doi.org/10.1211/0022357023691] [PMID: 15233860]
[203]
Wu Y, Vora LK, Mishra D, et al. Nanosuspension-loaded dissolving bilayer microneedles for hydrophobic drug delivery to the posterior segment of the eye. Biomaterials Advances 2022; 137: 212767.
[http://dx.doi.org/10.1016/j.bioadv.2022.212767] [PMID: 35929230]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy