Research Article

2-苯基丙烯腈衍生物微管蛋白抑制剂的合成及选择性抗癌活性评价

卷 31, 期 15, 2024

发表于: 16 October, 2023

页: [2090 - 2106] 页: 17

弟呕挨: 10.2174/0109298673263854231009063053

open access plus

conference banner
摘要

目的:合成13个系列的新型2-苯基丙烯腈衍生物,对其进行体内体外抗肿瘤活性评价,获得新型微管蛋白抑制剂。 方法:采用Knoevenagel缩合法合成13系2-苯基丙烯腈衍生物,采用MTT法测定其抗增殖活性。流式细胞仪检测细胞周期和凋亡情况。使用24孔Boyden室进行定量细胞迁移。Western blotting检测蛋白表达。采用人β-微管蛋白(Human β-tubulin, TUBB)酶联免疫吸附测定试剂盒测定微管组装的体外动力学。分子对接由Discovery Studio (DS) 2017客户端在线工具完成。 结果:化合物1g2a对HCT116细胞(IC50 = 5.9 nM)和BEL-7402细胞(IC50 = 7.8 nM)具有较强的抑制活性。化合物1g2a比包括紫杉醇在内的所有阳性对照药物具有更好的选择性抗增殖活性和特异性。化合物1g2a通过在细胞周期的G2/M期阻滞HCT116和BEL-7402细胞的增殖,抑制HCT116和BEL-7402细胞的迁移和细胞集落的形成。化合物1g2a对HCT116和BEL-7402细胞具有良好的微管蛋白聚合抑制活性。分子对接分析结果表明,1g2a可能抑制微管蛋白发挥抗癌作用。 结论:化合物1g2a在体内和体外均具有良好的抗肿瘤活性,具有进一步开发成为对正常组织毒性小的高效抗肿瘤药物的潜力。

关键词: 2-苯基丙烯腈,选择性毒性作用,细胞周期阻滞,细胞凋亡,异种移植模型,微管蛋白抑制剂。

[1]
You, L.; Lv, Z.; Li, C.; Ye, W.; Zhou, Y.; Jin, J.; Han, Q. Worldwide cancer statistics of adolescents and young adults in 2019: A systematic analysis of the Global Burden of Disease Study 2019. ESMO Open, 2021, 6(5), 100255.
[http://dx.doi.org/10.1016/j.esmoop.2021.100255] [PMID: 34481330]
[2]
Ma, J.; Li, J.; Tian, Y.S. Synthesis and bioactivity evaluation of 2,3-diaryl acrylonitrile derivatives as potential anticancer agents. Bioorg. Med. Chem. Lett., 2017, 27(1), 81-85.
[http://dx.doi.org/10.1016/j.bmcl.2016.11.025] [PMID: 27887843]
[3]
Hashem, S.; Ali, T.A.; Akhtar, S.; Nisar, S.; Sageena, G.; Ali, S.; Al-Mannai, S.; Therachiyil, L.; Mir, R.; Elfaki, I.; Mir, M.M.; Jamal, F.; Masoodi, T.; Uddin, S.; Singh, M.; Haris, M.; Macha, M.; Bhat, A.A. Targeting cancer signaling pathways by natural products: Exploring promising anti-cancer agents. Biomed. Pharmacother., 2022, 150, 113054.
[http://dx.doi.org/10.1016/j.biopha.2022.113054] [PMID: 35658225]
[4]
Giacomini, E.; Rupiani, S.; Guidotti, L.; Recanatini, M.; Roberti, M. The use of stilbene scaffold in medicinal chemistry and multi- target drug design. Curr. Med. Chem., 2016, 23(23), 2439-2489.
[http://dx.doi.org/10.2174/0929867323666160517121629] [PMID: 27183980]
[5]
De Filippis, B.; Ammazzalorso, A.; Fantacuzzi, M.; Giampietro, L.; Maccallini, C.; Amoroso, R. Anticancer activity of stilbene-based derivatives. ChemMedChem, 2017, 12(8), 558-570.
[http://dx.doi.org/10.1002/cmdc.201700045] [PMID: 28266812]
[6]
Mikstacka, R.; Stefański, T.; Różański, J. Tubulin-interactive stilbene derivatives as anticancer agents. Cell. Mol. Biol. Lett., 2013, 18(3), 368-397.
[http://dx.doi.org/10.2478/s11658-013-0094-z] [PMID: 23818224]
[7]
Mustafa, M.; Anwar, S.; Elgamal, F.; Ahmed, E.R.; Aly, O.M. Potent combretastatin A-4 analogs containing 1,2,4-triazole: Synthesis, antiproliferative, anti-tubulin activity, and docking study. Eur. J. Med. Chem., 2019, 183, 111697.
[http://dx.doi.org/10.1016/j.ejmech.2019.111697] [PMID: 31536891]
[8]
Fu, D.J.; Yang, J.J.; Li, P.; Hou, Y.H.; Huang, S.N.; Tippin, M.A.; Pham, V.; Song, L.; Zi, X.; Xue, W.L.; Zhang, L.R.; Zhang, S.Y. Bioactive heterocycles containing a 3,4,5-trimethoxyphenyl fragment exerting potent antiproliferative activity through microtubule destabilization. Eur. J. Med. Chem., 2018, 157, 50-61.
[http://dx.doi.org/10.1016/j.ejmech.2018.07.060] [PMID: 30075402]
[9]
Checchi, P.M.; Nettles, J.H.; Zhou, J.; Snyder, J.P.; Joshi, H.C. Microtubule-interacting drugs for cancer treatment. Trends Pharmacol. Sci., 2003, 24(7), 361-365.
[http://dx.doi.org/10.1016/S0165-6147(03)00161-5] [PMID: 12871669]
[10]
Liang, T.; Lu, L.; Song, X.; Qi, J.; Wang, J. Combination of microtubule targeting agents with other antineoplastics for cancer treatment. Biochim. Biophys. Acta Rev. Cancer, 2022, 1877(5), 188777.
[http://dx.doi.org/10.1016/j.bbcan.2022.188777] [PMID: 35963551]
[11]
Zheng, S.; Zhong, Q.; Mottamal, M.; Zhang, Q.; Zhang, C.; LeMelle, E.; McFerrin, H.; Wang, G. Design, synthesis, and biological evaluation of novel pyridine-bridged analogues of combretastatin-A4 as anticancer agents. J. Med. Chem., 2014, 57(8), 3369-3381.
[http://dx.doi.org/10.1021/jm500002k] [PMID: 24669888]
[12]
Metzler, M.; Neumann, H.G. Epoxidation of the stilbene double bond, a major pathway in aminostilbene metabolism. Xenobiotica, 1977, 7(3), 117-132.
[http://dx.doi.org/10.3109/00498257709036244] [PMID: 848044]
[13]
Brown, A.W.; Fisher, M.; Tozer, G.M.; Kanthou, C.; Harrity, J.P.A. Sydnone cycloaddition route to pyrazole-based analogs of combretastatin A4. J. Med. Chem., 2016, 59(20), 9473-9488.
[http://dx.doi.org/10.1021/acs.jmedchem.6b01128] [PMID: 27690431]
[14]
Carr, M.; Greene, L.M.; Knox, A.J.S.; Lloyd, D.G.; Zisterer, D.M.; Meegan, M.J. Lead identification of conformationally restricted β-lactam type combretastatin analogues: Synthesis, antiproliferative activity and tubulin targeting effects. Eur. J. Med. Chem., 2010, 45(12), 5752-5766.
[http://dx.doi.org/10.1016/j.ejmech.2010.09.033] [PMID: 20933304]
[15]
Chaudhary, V.; Venghateri, J.B.; Dhaked, H.P.S.; Bhoyar, A.S.; Guchhait, S.K.; Panda, D. Novel combretastatin-2-aminoimidazole analogues as potent tubulin assembly inhibitors: Exploration of unique pharmacophoric impact of bridging skeleton and aryl moiety. J. Med. Chem., 2016, 59(7), 3439-3451.
[http://dx.doi.org/10.1021/acs.jmedchem.6b00101] [PMID: 26938120]
[16]
Mustafa, M.; Abdelhamid, D.; Abdelhafez, E.M.N.; Ibrahim, M.A.A.; Gamal-Eldeen, A.M.; Aly, O.M. Synthesis, antiproliferative, anti-tubulin activity, and docking study of new 1,2,4-triazoles as potential combretastatin analogues. Eur. J. Med. Chem., 2017, 141, 293-305.
[http://dx.doi.org/10.1016/j.ejmech.2017.09.063] [PMID: 29031074]
[17]
Sun, J.; Chen, L.; Liu, C.; Wang, Z.; Zuo, D.; Pan, J.; Qi, H.; Bao, K.; Wu, Y.; Zhang, W. Synthesis and biological evaluations of 1,2-diaryl pyrroles as analogues of combretastatin A-4. Chem. Biol. Drug Des., 2015, 86(6), 1541-1547.
[http://dx.doi.org/10.1111/cbdd.12617] [PMID: 26202587]
[18]
Tsyganov, D.V.; Khrustalev, V.N.; Konyushkin, L.D.; Raihstat, M.M.; Firgang, S.I.; Semenov, R.V.; Kiselyov, A.S.; Semenova, M.N.; Semenov, V.V. 3-(5-)-amino-o-diarylisoxazoles: Regioselective synthesis and antitubulin activity. Eur. J. Med. Chem., 2014, 73, 112-125.
[http://dx.doi.org/10.1016/j.ejmech.2013.12.006] [PMID: 24388833]
[19]
Li, J.J.; Ma, J.; Xin, Y.B.; Quan, Z.S.; Tian, Y.S. Synthesis and pharmacological evaluation of 2,3-diphenyl acrylonitriles-bearing halogen as selective anticancer agents. Chem. Biol. Drug Des., 2018, 92(2), 1419-1428.
[http://dx.doi.org/10.1111/cbdd.13180] [PMID: 29516624]
[20]
Xin, Y.B.; Li, J.J.; Zhang, H.J.; Ma, J.; Liu, X.; Gong, G.H.; Tian, Y.S. Synthesis and characterisation of ( Z )-styrylbenzene derivatives as potential selective anticancer agents. J. Enzyme Inhib. Med. Chem., 2018, 33(1), 1554-1564.
[http://dx.doi.org/10.1080/14756366.2018.1513925] [PMID: 30244610]
[21]
Göker, H.; Karaaslan, C.; Püsküllü, M.O.; Yildiz, S.; Duydu, Y.; Üstündağ, A.; Yalcin, C.Ö. Synthesis and in vitro activity of polyhalogenated 2-phenylbenzimidazoles as a new class of anti-MRSA and anti-VRE agents. Chem. Biol. Drug Des., 2016, 87(1), 57-68.
[http://dx.doi.org/10.1111/cbdd.12623] [PMID: 26221778]
[22]
Ma, L.; Lu, Y.; Li, Y.; Yang, Z.; Mao, Y.; Wang, Y.; Man, S. A novel halogenated adenosine analog 5′-BrDA displays potent toxicity against colon cancer cells in vivo and in vitro. Toxicol. Appl. Pharmacol., 2022, 436, 115857.
[http://dx.doi.org/10.1016/j.taap.2021.115857] [PMID: 34979143]
[23]
Mukherjee, A.; Ghosh, S.; Ghosh, S.; Mahato, S.; Pal, M.; Sen, S.K.; Majee, A.; Singh, B. Molecular recognition of synthesized halogenated chalcone by calf thymus DNA through multispectroscopic studies and analysis the anti-cancer, anti-bacterial activity of the compounds. J. Mol. Liq., 2021, 337, 116504.
[http://dx.doi.org/10.1016/j.molliq.2021.116504]
[24]
Wan, D.; Yang, J.; McReynolds, C.B.; Barnych, B.; Wagner, K.M.; Morisseau, C.; Hwang, S.H.; Sun, J.; Blöcher, R.; Hammock, B.D. In vitro and in vivo metabolism of a potent inhibitor of soluble epoxide hydrolase, 1-(1-propionylpiperidin-4-yl)-3-(4-(trifluoromethoxy)phenyl)urea. Front. Pharmacol., 2019, 10, 464.
[http://dx.doi.org/10.3389/fphar.2019.00464] [PMID: 31143115]
[25]
Wu, M.J.; Wu, D.M.; Chen, J.B.; Zhao, J.F.; Gong, L.; Gong, Y.X.; Li, Y.; Yang, X.D.; Zhang, H. Synthesis and anti-proliferative activity of allogibberic acid derivatives containing 1,2,3-triazole pharmacophore. Bioorg. Med. Chem. Lett., 2018, 28(14), 2543-2549.
[http://dx.doi.org/10.1016/j.bmcl.2018.05.038] [PMID: 29884535]
[26]
Shen, Q.K.; Deng, H.; Wang, S.B.; Tian, Y.S.; Quan, Z.S. Synthesis, and evaluation of in vitro and in vivo anticancer activity of 14-substituted oridonin analogs: A novel and potent cell cycle arrest and apoptosis inducer through the p53-MDM2 pathway. Eur. J. Med. Chem., 2019, 173, 15-31.
[http://dx.doi.org/10.1016/j.ejmech.2019.04.005] [PMID: 30981113]
[27]
Arshad, F.; Khan, M.F.; Akhtar, W.; Alam, M.M.; Nainwal, L.M.; Kaushik, S.K.; Akhter, M.; Parvez, S.; Hasan, S.M.; Shaquiquzzaman, M. Revealing quinquennial anticancer journey of morpholine: A SAR based review. Eur. J. Med. Chem., 2019, 167, 324-356.
[http://dx.doi.org/10.1016/j.ejmech.2019.02.015] [PMID: 30776694]
[28]
Goel, P.; Alam, O.; Naim, M.J.; Nawaz, F.; Iqbal, M.; Alam, M.I. Recent advancement of piperidine moiety in treatment of cancer : A review. Eur. J. Med. Chem., 2018, 157, 480-502.
[http://dx.doi.org/10.1016/j.ejmech.2018.08.017] [PMID: 30114660]
[29]
Gul, H.I.; Yamali, C.; Sakagami, H.; Angeli, A.; Leitans, J.; Kazaks, A.; Tars, K.; Ozgun, D.O.; Supuran, C.T. New anticancer drug candidates sulfonamides as selective hCA IX or hCA XII inhibitors. Bioorg. Chem., 2018, 77, 411-419.
[http://dx.doi.org/10.1016/j.bioorg.2018.01.021] [PMID: 29427856]
[30]
Kassem, A.F.; Nassar, I.F.; Abdel-Aal, M.T.; Awad, H.M.; El-Sayed, W.A. Synthesis and anticancer activity of new ((Furan-2-yl)-1,3,4-thiadiazolyl)-1,3,4-oxadiazole acyclic sugar derivatives. Chem. Pharm. Bull., 2019, 67(8), 888-895.
[http://dx.doi.org/10.1248/cpb.c19-00280] [PMID: 31366838]
[31]
Makar, S.; Saha, T.; Singh, S.K. Naphthalene, a versatile platform in medicinal chemistry: Sky-high perspective. Eur. J. Med. Chem., 2019, 161, 252-276.
[http://dx.doi.org/10.1016/j.ejmech.2018.10.018] [PMID: 30366253]
[32]
Zulfiqar, S.; Haroon, M.; Baig, M.W.; Tariq, M.; Ahmad, Z.; Tahir, M.N.; Akhtar, T. Synthesis, crystal structure, anti-cancer, anti-inflammatory anti-oxidant and quantum chemical studies of 4-(pyrrolidine-2,5-dione-1-yl)phenol. J. Mol. Struct., 2021, 1224, 129267.
[http://dx.doi.org/10.1016/j.molstruc.2020.129267]
[33]
Joshi, G.; Singh, P.K.; Negi, A.; Rana, A.; Singh, S.; Kumar, R. Growth factors mediated cell signalling in prostate cancer progression: Implications in discovery of anti-prostate cancer agents. Chem. Biol. Interact., 2015, 240, 120-133.
[http://dx.doi.org/10.1016/j.cbi.2015.08.009] [PMID: 26297992]
[34]
Clarke, P.R.; Allan, L.A. Cell-cycle control in the face of damage : A matter of life or death. Trends Cell Biol., 2009, 19(3), 89-98.
[http://dx.doi.org/10.1016/j.tcb.2008.12.003] [PMID: 19168356]
[35]
Tian, Y.S.; Kim, H.J.; Kim, H.M. Rho-associated kinase (ROCK) inhibition reverses low cell activity on hydrophobic surfaces. Biochem. Biophys. Res. Commun., 2009, 386(3), 499-503.
[http://dx.doi.org/10.1016/j.bbrc.2009.06.087] [PMID: 19545543]
[36]
Kamal, A.; Ashraf, M.; Basha, S.T.; Ali Hussaini, S.M.; Singh, S.; Vishnuvardhan, M.V.P.S.; Kiran, B.; Sridhar, B. Design, synthesis and antiproliferative activity of the new conjugates of E7010 and resveratrol as tubulin polymerization inhibitors. Org. Biomol. Chem., 2016, 14(4), 1382-1394.
[http://dx.doi.org/10.1039/C5OB02022K] [PMID: 26676480]
[37]
Chen, X.; Zhang, B.; Yuan, X.; Yang, F.; Liu, J.; Zhao, H.; Liu, L.; Wang, Y.; Wang, Z.; Zheng, Q. Isoliquiritigenin-induced differentiation in mouse melanoma B16F0 cell line. Oxid. Med. Cell. Longev., 2012, 2012, 1-11.
[http://dx.doi.org/10.1155/2012/534934] [PMID: 23304254]
[38]
Liu, Y.N.; Wang, J.J.; Ji, Y.T.; Zhao, G.D.; Tang, L.Q.; Zhang, C.M.; Guo, X.L.; Liu, Z.P. Design, synthesis, and biological evaluation of 1-methyl-1,4-dihydroindeno[1,2- c ]pyrazole analogues as potential anticancer agents targeting tubulin colchicine binding site. J. Med. Chem., 2016, 59(11), 5341-5355.
[http://dx.doi.org/10.1021/acs.jmedchem.6b00071] [PMID: 27172319]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy