Generic placeholder image

Current Physics

Editor-in-Chief

ISSN (Print): 2772-3348
ISSN (Online): 2772-3356

Research Article

Sputtering Heterogeneous Tungsten Carbide Targets by Light Ions Bombardment

Author(s): Vladimir Manukhin*

Volume 1, 2024

Published on: 11 October, 2023

Article ID: e111023222090 Pages: 8

DOI: 10.2174/0127723348263205231003062152

Price: $65

Open Access Journals Promotions 2
Abstract

Background: This paper presents a model for sputtering heterogeneous two-component materials with light ions.

Method: The model, based on two sputtering mechanisms, makes it possible to calculate the total sputtering coefficients of the target components, and it is easily transformed for the case of sputtering different types of targets. Model testing was conducted for the case of sputtering homogeneous tungsten carbide targets with ions of different energies.

Results: The results of the calculations are given in comparison with experimental data and the results of computer simulation. The comparison shows good agreement of the calculated values with the data of other authors. The proposed model was used to describe stationary (stoichiometric) sputtering of tungsten carbide targets. Using this model, the concentrations of components in the modified target layer were calculated, and the thickness of the modified layer was also estimated.

Conclusion: The method of calculating the concentration of target components in the modified layer and the thickness of this layer can be the basis of the technology of creating materials with given properties of the surface layer.

Keywords: Modified surface, light ion bombardment, layered surface, metal carbide, sputtering yield, preferential sputtering.

[1]
Behrisch, R. Sputtering by Particle Bombardment I: Physical Sputtering of Single-Element Solids; Springer: New York, 1981.
[http://dx.doi.org/10.1007/3-540-10521-2]
[2]
Behrisch, R. Sputtering by Particle Bombardment II: Sputtering of Alloys and Compounds, Electron and Neuron Sputtering, Surface Topography; Springer: New York, 1983.
[http://dx.doi.org/10.1007/3-540-12593-0]
[3]
Wiederish, H. Surface Modification and Alloying; Springer: New York, 1983.
[4]
Zhengming, L.; Shiming, W. Bipartition model of ion transport: An outline of new range theory for light ions. Phys. Rev. B Condens. Matter, 1987, 36(4), 1885-1893.
[http://dx.doi.org/10.1103/PhysRevB.36.1885] [PMID: 9943032]
[5]
Kelly, R.; Oliva, A. New estimates of the characteristic depth of sputtering and of the bombardment-induced segregation ratio. Nucl. Instrum. Methods Phys. Res. B, 1986, 13(1-3), 283-294.
[http://dx.doi.org/10.1016/0168-583X(86)90515-X]
[6]
Vicanek, M.; Rodriguez, J.J.J.; Sigmund, P. Depth of origin and angular spectrum of sputtered atoms. Nucl. Instrum. Methods Phys. Res. B, 1989, 36(2), 124-136.
[http://dx.doi.org/10.1016/0168-583X(89)90574-0]
[7]
Eckstein, W.; Biersack, J.P. Computer simulation of two-component target sputtering. Appl. Phys., A Solids Surf., 1985, 37(2), 95-108.
[http://dx.doi.org/10.1007/BF00618859]
[8]
Varga, P.; Taglauer, E. Preferential sputtering of compounds due to light ion bombardment. J. Nucl. Mater., 1982, 111-112, 726-731.
[http://dx.doi.org/10.1016/0022-3115(82)90296-3]
[9]
Taglauer, E.; Heiland, W. Changes of the surface composition of compounds due to light ion bombardment. Proc. Symp. Sputtering, 1980, 423-432.
[10]
Roth, J.; Bohdansky, J.; Eckstein, W. Angular distributions and differential sputtering yields of binary compounds as a function of angle of incidence. Nucl. Instrum. Methods Phys. Res., 1983, 218(1-3), 751-756.
[http://dx.doi.org/10.1016/0167-5087(83)91077-3]
[11]
Patterson, W.L.; Shirn, G.A. The sputtering of nickel-chromium alloys. J. Vac. Sci. Technol., 1967, 4(6), 343-346.
[http://dx.doi.org/10.1116/1.1492560]
[12]
Saiki, K.; Tanaka, H.; Tanaka, S. Surface composition change of tic and sic under hydrogen ion bombardment. J. Nuclear Mater., 1984, 128-129, 744-748.
[http://dx.doi.org/10.1016/0022-3115(84)90449-5]
[13]
Hofmann, S.; Liu, Y.; Wang, J.Y.; Kovac, J. Analytical and numerical depth resolution functions in sputter profiling. Appl. Surf. Sci., 2014, 314, 942-955.
[http://dx.doi.org/10.1016/j.apsusc.2014.06.159]
[14]
Lian, S.; Yang, H.; Terblans, J.J.; Swart, H.C.; Wang, J.; Xu, C. Preferential sputtering in quantitative sputter depth profiling of multi-element thin films. Thin Solid Films, 2021, 721, 138545.
[http://dx.doi.org/10.1016/j.tsf.2021.138545]
[15]
Berg, S.; Katardjiev, I.V. Preferential sputtering effects in thin film processing. J. Vac. Sci. Technol. A, 1999, 17(4), 1916-1925.
[http://dx.doi.org/10.1116/1.581704]
[16]
Chandrasekhar, S. Radiative Transfer; Clarendon Press: Oxford, 1950.
[17]
Manukhin, V.V. Self-sputtering of thin films (Application of the invariant immersion method). Tech. Phys., 2007, 52(8), 968-975.
[http://dx.doi.org/10.1134/S1063784207080026]
[18]
Manukhin, V.V. Sputtering binary alloys by light ions bombardment. Appl. Phys., 2018, 6, 69-73.
[19]
Manukhin, V.V. Calculation of total sputtering coefficients of layered heterogeneous structures at bombarding a target by light ions. Appl. Phys., 2016, 5, 5-9.
[20]
Manukhin, V.V. Sputtering of carbide films from the surface of the metal by helium ions bombardment. Tech. Phys., 2022, 67(11), 1500-1503.
[http://dx.doi.org/10.21883/TP.2022.11.55182.48-22]
[21]
Manukhin, V.V. Model of sputtering of binary homogeneous targets by light ions bombardment. J. Phys. Conf. Ser., 2019, 1370(1), 012039.
[http://dx.doi.org/10.1088/1742-6596/1370/1/012039]
[22]
Manukhin, V.V. Study of the dependence of light ion sputtering yields of carbon-modified surface titanium layers on their thickness. J. Phys. Conf. Ser., 2022, 2388(1), 012009.
[http://dx.doi.org/10.1088/1742-6596/2388/1/012009]
[23]
Biersack, J.P. Light ion sputtering of metals and low Z compounds as studied with the monte-carlo code trim. Fusion Technol., 1984, 6, 475-482.
[24]
Manukhin, V.V. Determination of the exponent in the power cross-section. In: Abstracts of the XXXII All-Union Conference on physics of particle interaction with crystals; Tulinov, A.F., Ed.; MSU: Moscow, 2002; p. 206.
[25]
Roth, J.; Bohdansky, J.; Martinelli, A.P. Low energy light ion sputtering of metals and carbides. Radiat. Eff., 1980, 48(1-4), 213-219.
[http://dx.doi.org/10.1080/00337578008209256]
[26]
Eckstein, W. Computer Simulation of Ion-Solid Interaction, Springer Series in Materials Science; Springer: Berlin, Heidelberg, N.Y., 1991, Vol. 10, .
[http://dx.doi.org/10.1007/978-3-642-73513-4]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy