Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Review Article

Antiviral Effects and Mechanisms of Green Tea Catechins on Influenza: A Perception on Combating Symptoms from COVID-19

Author(s): Gene Chi Wai Man*, Xu Zheng, Sze Wan Hung, Loucia Kit Ying Chan, Tao Zhang, Xiaoyan Chen, Kai On Chu, Ian Chung Yuen Huen, Darren Wang Yip Lui, Alfred Ding Wong and Chi Chiu Wang

Volume 24, Issue 1, 2024

Published on: 10 October, 2023

Page: [60 - 73] Pages: 14

DOI: 10.2174/0115680266251803230925075508

Price: $65

Open Access Journals Promotions 2
Abstract

Over the centuries, influenza and its associated epidemics have been a serious public health problem. Although vaccination and medications (such as neuraminidase inhibitors) are the mainstay of pharmacological approaches to prevent and treat influenza, however, frequent mutations in the influenza genome often result in treatment failure and resistance to standard medications which limit their effectiveness. In recent years, green tea catechins have been evaluated as potential anti-influenza agents. Herein, in this review, we highlighted the effects and mechanisms underlying the inhibitory effects of epigallocatechin 3-gallate (EGCG), the most abundant ingredient in green tea, against different influenza viral infections, and their clinical benefits toward prevention and treatment. In addition, as the severe acute respiratory syndrome coronavirus 2 (SARSCoV- 2) causes the outbreak of COVID-19 pandemic, our review also delineates the current perspective on SARS-CoV-2 and future insights as to the potential application of EGCG on suppressing the flu-like symptoms caused by COVID-19.

Keywords: Green tea, EGCG, Anti-viral, Influenza, COVID-19, Natural product.

Graphical Abstract
[1]
Krammer, F.; Smith, G.J.D.; Fouchier, R.A.M.; Peiris, M.; Kedzierska, K.; Doherty, P.C.; Palese, P.; Shaw, M.L.; Treanor, J.; Webster, R.G.; García-Sastre, A. Influenza. Nat. Rev. Dis. Primers, 2018, 4(1), 3.
[http://dx.doi.org/10.1038/s41572-018-0002-y] [PMID: 29955068]
[2]
Somes, M.P.; Turner, R.M.; Dwyer, L.J.; Newall, A.T. Estimating the annual attack rate of seasonal influenza among unvaccinated individuals: A systematic review and meta-analysis. Vaccine, 2018, 36(23), 3199-3207.
[http://dx.doi.org/10.1016/j.vaccine.2018.04.063] [PMID: 29716771]
[3]
Fodor, E. The RNA polymerase of influenza A virus: Mechanisms of viral transcription and replication. Acta Virol., 2013, 57(2), 113-122.
[http://dx.doi.org/10.4149/av_2013_02_113] [PMID: 23600869]
[4]
Cai, Y.; Zhang, J.; Xiao, T.; Peng, H.; Sterling, S.M.; Walsh, R.M., Jr; Rawson, S.; Rits-Volloch, S.; Chen, B. Distinct conformational states of SARS-CoV-2 spike protein. Science, 2020, 369(6511), 1586-1592.
[http://dx.doi.org/10.1126/science.abd4251] [PMID: 32694201]
[5]
Saberi, A.; Gulyaeva, A.A.; Brubacher, J.L.; Newmark, P.A.; Gorbalenya, A.E. A planarian nidovirus expands the limits of RNA genome size. PLoS Pathog., 2018, 14(11), e1007314.
[http://dx.doi.org/10.1371/journal.ppat.1007314] [PMID: 30383829]
[6]
Kung, Y.A.; Lee, K.M.; Chiang, H.J.; Huang, S.Y.; Wu, C.J.; Shih, S.R. Molecular virology of SARS-CoV-2 and related coronaviruses. Microbiol. Mol. Biol. Rev., 2022, 86(2), e00026-21.
[http://dx.doi.org/10.1128/mmbr.00026-21] [PMID: 35343760]
[7]
Dean, N. Tracking COVID-19 infections: Time for change. Nature, 2022, 602(7896), 185.
[http://dx.doi.org/10.1038/d41586-022-00336-8] [PMID: 35136224]
[8]
Kola, L.; Kumar, M.; Kohrt, B.A.; Fatodu, T.; Olayemi, B.A.; Adefolarin, A.O. Strengthening public mental health during and after the acute phase of the COVID-19 pandemic. Lancet, 2022, 399(10338), 1851-1852.
[http://dx.doi.org/10.1016/S0140-6736(22)00523-2] [PMID: 35339230]
[9]
Campion, J.; Javed, A.; Lund, C.; Sartorius, N.; Saxena, S.; Marmot, M.; Allan, J.; Udomratn, P. Public mental health: required actions to address implementation failure in the context of COVID-19. Lancet Psychiatry, 2022, 9(2), 169-182.
[http://dx.doi.org/10.1016/S2215-0366(21)00199-1] [PMID: 35065723]
[10]
Sandmann, F.G.; van Leeuwen, E.; Bernard-Stoecklin, S.; Casado, I.; Castilla, J.; Domegan, L.; Gherasim, A.; Hooiveld, M.; Kislaya, I.; Larrauri, A.; Levy-Bruhl, D.; Machado, A.; Marques, D.F.P.; Martínez-Baz, I.; Mazagatos, C.; McMenamin, J.; Meijer, A.; Murray, J.L.K.; Nunes, B.; O’Donnell, J.; Reynolds, A.; Thorrington, D.; Pebody, R.; Baguelin, M. Health and economic impact of seasonal influenza mass vaccination strategies in European settings: A mathematical modelling and cost-effectiveness analysis. Vaccine, 2022, 40(9), 1306-1315.
[http://dx.doi.org/10.1016/j.vaccine.2022.01.015] [PMID: 35109968]
[11]
Putri, W.C.W.S.; Muscatello, D.J.; Stockwell, M.S.; Newall, A.T. Economic burden of seasonal influenza in the United States. Vaccine, 2018, 36(27), 3960-3966.
[http://dx.doi.org/10.1016/j.vaccine.2018.05.057] [PMID: 29801998]
[12]
Telenti, A.; Hodcroft, E.B.; Robertson, D.L. The evolution and biology of SARS-CoV-2 Variants. Cold Spring Harb. Perspect. Med., 2022, 12(5), a041390.
[http://dx.doi.org/10.1101/cshperspect.a041390] [PMID: 35444005]
[13]
Petrova, V.N.; Russell, C.A. The evolution of seasonal influenza viruses. Nat. Rev. Microbiol., 2018, 16(1), 47-60.
[http://dx.doi.org/10.1038/nrmicro.2017.118] [PMID: 29081496]
[14]
Chen, D.; Wan, S.B.; Yang, H.; Yuan, J.; Chan, T.H.; Dou, Q.P. EGCG, green tea polyphenols and their synthetic analogs and prodrugs for human cancer prevention and treatment. Adv. Clin. Chem., 2011, 53, 155-177.
[http://dx.doi.org/10.1016/B978-0-12-385855-9.00007-2] [PMID: 21404918]
[15]
Wang, Y.; Kan, Z.; Thompson, H.J.; Ling, T.; Ho, C.T.; Li, D.; Wan, X. Impact of six typical processing methods on the chemical composition of tea leaves using a single camellia sinensis cultivar, longjing 43. J. Agric. Food Chem., 2019, 67(19), 5423-5436.
[http://dx.doi.org/10.1021/acs.jafc.8b05140] [PMID: 30403138]
[16]
Kochman, J.; Jakubczyk, K.; Antoniewicz, J.; Mruk, H.; Janda, K. Health Benefits and Chemical Composition of Matcha Green Tea: A Review. Molecules, 2020, 26(1), 85.
[http://dx.doi.org/10.3390/molecules26010085] [PMID: 33375458]
[17]
Chacko, S.M.; Thambi, P.T.; Kuttan, R.; Nishigaki, I. Beneficial effects of green tea: A literature review. Chin. Med., 2010, 5(1), 13.
[http://dx.doi.org/10.1186/1749-8546-5-13] [PMID: 20370896]
[18]
Park, M.; Yamada, H.; Matsushita, K.; Kaji, S.; Goto, T.; Okada, Y.; Kosuge, K.; Kitagawa, T. Green tea consumption is inversely associated with the incidence of influenza infection among schoolchildren in a tea plantation area of Japan. J. Nutr., 2011, 141(10), 1862-1870.
[http://dx.doi.org/10.3945/jn.110.137547] [PMID: 21832025]
[19]
Weber, J.M.; Ruzindana-Umunyana, A.; Imbeault, L.; Sircar, S. Inhibition of adenovirus infection and adenain by green tea catechins. Antiviral Res., 2003, 58(2), 167-173.
[http://dx.doi.org/10.1016/S0166-3542(02)00212-7] [PMID: 12742577]
[20]
Miura, Y.; Chiba, T.; Miura, S.; Tomita, I.; Umegaki, K.; Ikeda, M.; Tomita, T. Green tea polyphenols (flavan 3-ols) prevent oxidative modification of low density lipoproteins: an ex-vivo study in humans. J. Nutr. Biochem., 2000, 11(4), 216-222.
[http://dx.doi.org/10.1016/S0955-2863(00)00068-1] [PMID: 10827344]
[21]
Singh, B.N.; Shankar, S.; Srivastava, R.K. Green tea catechin, epigallocatechin-3-gallate (EGCG): Mechanisms, perspectives and clinical applications. Biochem. Pharmacol., 2011, 82(12), 1807-1821.
[http://dx.doi.org/10.1016/j.bcp.2011.07.093] [PMID: 21827739]
[22]
Ide, K.; Yamada, H.; Kawasaki, Y. Effect of gargling with tea and ingredients of tea on the prevention of influenza infection: a meta-analysis. BMC Public Health, 2016, 16(1), 396.
[http://dx.doi.org/10.1186/s12889-016-3083-0] [PMID: 27175786]
[23]
Rawangkan, A.; Kengkla, K.; Kanchanasurakit, S.; Duangjai, A.; Saokaew, S. Anti-influenza with green tea catechins: A systematic review and meta-analysis. Molecules, 2021, 26(13), 4014.
[http://dx.doi.org/10.3390/molecules26134014] [PMID: 34209247]
[24]
Oxford, J.S.; Lambkin, R.; Guralnik, M.; Rosenbloom, R.A.; Petteruti, M.P.; DiGian, K.; LeFante, C. in vivo prophylactic activity of QR-435 against H3N2 influenza virus infection. Am. J. Ther., 2007, 14(5), 462-468.
[http://dx.doi.org/10.1097/MJT.0b013e3180a7206e] [PMID: 17890936]
[25]
Song, J.M.; Park, K.D.; Lee, K.H.; Byun, Y.H.; Park, J.H.; Kim, S.H.; Kim, J.H.; Seong, B.L. Biological evaluation of anti-influenza viral activity of semi-synthetic catechin derivatives. Antiviral Res., 2007, 76(2), 178-185.
[http://dx.doi.org/10.1016/j.antiviral.2007.07.001] [PMID: 17709148]
[26]
Oxford, J.S.; Lambkin, R.; Guralnik, M.; Rosenbloom, R.A.; Petteruti, M.P.; DiGian, K.; LeFante, C. Preclinical in vitro activity of QR-435 against influenza A virus as a virucide and in paper masks for prevention of viral transmission. Am. J. Ther., 2007, 14(5), 455-461.
[http://dx.doi.org/10.1097/MJT.0b013e3180a6f9c2] [PMID: 17890935]
[27]
Smee, D.F.; Hurst, B.L.; Wong, M.H. Effects of TheraMax on influenza virus infections in cell culture and in mice. Antivir. Chem. Chemother., 2011, 21(6), 231-237.
[http://dx.doi.org/10.3851/IMP1744] [PMID: 21730370]
[28]
Song, J.M.; Lee, K.H.; Seong, B.L. Antiviral effect of catechins in green tea on influenza virus. Antiviral Res., 2005, 68(2), 66-74.
[http://dx.doi.org/10.1016/j.antiviral.2005.06.010] [PMID: 16137775]
[29]
Mou, Q.; Jiang, Y.; Zhu, L.; Zhu, Z.; Ren, T. EGCG induces β-defensin 3 against influenza A virus H1N1 by the MAPK signaling pathway. Exp. Ther. Med., 2020, 20(4), 3017-3024.
[http://dx.doi.org/10.3892/etm.2020.9047] [PMID: 32855668]
[30]
Green, R.H. Inhibition of multiplication of influenza virus by extracts of tea. Exp. Biol. Med., 1949, 71(1), 84-85.
[http://dx.doi.org/10.3181/00379727-71-17089P] [PMID: 18151487]
[31]
Nakayama, M.; Suzuki, K.; Toda, M.; Okubo, S.; Hara, Y.; Shimamura, T. Inhibition of the infectivity of influenza virus by tea polyphenols. Antiviral Res., 1993, 21(4), 289-299.
[http://dx.doi.org/10.1016/0166-3542(93)90008-7] [PMID: 8215301]
[32]
Imanishi, N.; Tuji, Y.; Katada, Y.; Maruhashi, M.; Konosu, S.; Mantani, N.; Terasawa, K.; Ochiai, H. Additional inhibitory effect of tea extract on the growth of influenza A and B viruses in MDCK cells. Microbiol. Immunol., 2002, 46(7), 491-494.
[http://dx.doi.org/10.1111/j.1348-0421.2002.tb02724.x] [PMID: 12222936]
[33]
Colpitts, C.C.; Schang, L.M. A small molecule inhibits virion attachment to heparan sulfate- or sialic acid-containing glycans. J. Virol., 2014, 88(14), 7806-7817.
[http://dx.doi.org/10.1128/JVI.00896-14] [PMID: 24789779]
[34]
De Clercq, E. Antiviral agents active against influenza A viruses. Nat. Rev. Drug Discov., 2006, 5(12), 1015-1025.
[http://dx.doi.org/10.1038/nrd2175] [PMID: 17139286]
[35]
Greber, U.F.; Singh, I.; Helenius, A. Mechanisms of virus uncoating. Trends Microbiol., 1994, 2(2), 52-56.
[http://dx.doi.org/10.1016/0966-842X(94)90126-0] [PMID: 8162442]
[36]
Welsch, S.; Müller, B.; Kräusslich, H.G. More than one door Budding of enveloped viruses through cellular membranes. FEBS Lett., 2007, 581(11), 2089-2097.
[http://dx.doi.org/10.1016/j.febslet.2007.03.060] [PMID: 17434167]
[37]
Shaw, M.L. The next wave of influenza drugs. ACS Infect. Dis., 2017, 3(10), 691-694.
[http://dx.doi.org/10.1021/acsinfecdis.7b00142] [PMID: 28892353]
[38]
Moscona, A. Neuraminidase inhibitors for influenza. N. Engl. J. Med., 2005, 353(13), 1363-1373.
[http://dx.doi.org/10.1056/NEJMra050740] [PMID: 16192481]
[39]
Matrosovich, M.N.; Matrosovich, T.Y.; Gray, T.; Roberts, N.A.; Klenk, H.D. Neuraminidase is important for the initiation of influenza virus infection in human airway epithelium. J. Virol., 2004, 78(22), 12665-12667.
[http://dx.doi.org/10.1128/JVI.78.22.12665-12667.2004] [PMID: 15507653]
[40]
Kuzuhara, T.; Iwai, Y.; Takahashi, H.; Hatakeyama, D.; Echigo, N. Green tea catechins inhibit the endonuclease activity of influenza A virus RNA polymerase. PLoS Curr., 2009, 1, RRN1052.
[http://dx.doi.org/10.1371/currents.RRN1052] [PMID: 20025206]
[41]
Ling, J.; Wei, F.; Li, N.; Li, J.; Chen, L.; Liu, Y.; Luo, F.; Xiong, H.; Hou, W.; Yang, Z. Amelioration of influenza virus-induced reactive oxygen species formation by epigallocatechin gallate derived from green tea. Acta Pharmacol. Sin., 2012, 33(12), 1533-1541.
[http://dx.doi.org/10.1038/aps.2012.80] [PMID: 22941291]
[42]
Yang, Z.F.; Bai, L.P.; Huang, W.; Li, X.Z.; Zhao, S.S.; Zhong, N.S.; Jiang, Z.H. Comparison of in vitro antiviral activity of tea polyphenols against influenza A and B viruses and structure–activity relationship analysis. Fitoterapia, 2014, 93, 47-53.
[http://dx.doi.org/10.1016/j.fitote.2013.12.011] [PMID: 24370660]
[43]
Furuta, T.; Hirooka, Y.; Abe, A.; Sugata, Y.; Ueda, M.; Murakami, K.; Suzuki, T.; Tanaka, K.; Kan, T. Concise synthesis of dideoxy-epigallocatechin gallate (DO-EGCG) and evaluation of its anti-influenza virus activity. Bioorg. Med. Chem. Lett., 2007, 17(11), 3095-3098.
[http://dx.doi.org/10.1016/j.bmcl.2007.03.041] [PMID: 17420124]
[44]
Mori, S.; Miyake, S.; Kobe, T.; Nakaya, T.; Fuller, S.D.; Kato, N.; Kaihatsu, K. Enhanced anti-influenza A virus activity of (−)-epigallocatechin-3-O-gallate fatty acid monoester derivatives: Effect of alkyl chain length. Bioorg. Med. Chem. Lett., 2008, 18(14), 4249-4252.
[http://dx.doi.org/10.1016/j.bmcl.2008.02.020] [PMID: 18547804]
[45]
Gangehei, L.; Ali, M.; Zhang, W.; Chen, Z.; Wakame, K.; Haidari, M. Oligonol a low molecular weight polyphenol of lychee fruit extract inhibits proliferation of influenza virus by blocking reactive oxygen species-dependent ERK phosphorylation. Phytomedicine, 2010, 17(13), 1047-1056.
[http://dx.doi.org/10.1016/j.phymed.2010.03.016] [PMID: 20554190]
[46]
Dong, R.; Wang, D.; Wang, X.; Zhang, K.; Chen, P.; Yang, C.S.; Zhang, J. Epigallocatechin-3-gallate enhances key enzymatic activities of hepatic thioredoxin and glutathione systems in selenium-optimal mice but activates hepatic Nrf2 responses in selenium-deficient mice. Redox Biol., 2016, 10, 221-232.
[http://dx.doi.org/10.1016/j.redox.2016.10.009] [PMID: 27810737]
[47]
Na, H.K.; Surh, Y.J. Modulation of Nrf2-mediated antioxidant and detoxifying enzyme induction by the green tea polyphenol EGCG. Food Chem. Toxicol., 2008, 46(4), 1271-1278.
[http://dx.doi.org/10.1016/j.fct.2007.10.006] [PMID: 18082923]
[48]
Na, H.K.; Kim, E.H.; Jung, J.H.; Lee, H.H.; Hyun, J.W.; Surh, Y.J. (−)-Epigallocatechin gallate induces Nrf2-mediated antioxidant enzyme expression via activation of PI3K and ERK in human mammary epithelial cells. Arch. Biochem. Biophys., 2008, 476(2), 171-177.
[http://dx.doi.org/10.1016/j.abb.2008.04.003] [PMID: 18424257]
[49]
Mendonca, P.; Soliman, K.F.A. Flavonoids activation of the transcription factor nrf2 as a hypothesis approach for the prevention and modulation of sars-cov-2 infection severity. Antioxidants, 2020, 9(8), 659.
[http://dx.doi.org/10.3390/antiox9080659] [PMID: 32722164]
[50]
Miao, W.; Hu, L.; Scrivens, P.J.; Batist, G. Transcriptional regulation of NF-E2 p45-related factor (NRF2) expression by the aryl hydrocarbon receptor-xenobiotic response element signaling pathway: direct cross-talk between phase I and II drug-metabolizing enzymes. J. Biol. Chem., 2005, 280(21), 20340-20348.
[http://dx.doi.org/10.1074/jbc.M412081200] [PMID: 15790560]
[51]
Kesic, M.J.; Simmons, S.O.; Bauer, R.; Jaspers, I. Nrf2 expression modifies influenza A entry and replication in nasal epithelial cells. Free Radic. Biol. Med., 2011, 51(2), 444-453.
[http://dx.doi.org/10.1016/j.freeradbiomed.2011.04.027] [PMID: 21549835]
[52]
Sang, S.; Lambert, J.D.; Hong, J.; Tian, S.; Lee, M.J.; Stark, R.E.; Ho, C.T.; Yang, C.S. Synthesis and structure identification of thiol conjugates of (-)-epigallocatechin gallate and their urinary levels in mice. Chem. Res. Toxicol., 2005, 18(11), 1762-1769.
[http://dx.doi.org/10.1021/tx050151l] [PMID: 16300386]
[53]
Alam, M.; Ali, S.; Ashraf, G.M.; Bilgrami, A.L.; Yadav, D.K.; Hassan, M.I. Epigallocatechin 3-gallate: From green tea to cancer therapeutics. Food Chem., 2022, 379, 132135.
[http://dx.doi.org/10.1016/j.foodchem.2022.132135] [PMID: 35063850]
[54]
Shih, L.J.; Chen, T.F.; Lin, C.K.; Liu, H.S.; Kao, Y.H. Green tea (−)-epigallocatechin gallate inhibits the growth of human villous trophoblasts via the ERK, p38, AMP-activated protein kinase, and protein kinase B pathways. Am. J. Physiol. Cell Physiol., 2016, 311(2), C308-C321.
[http://dx.doi.org/10.1152/ajpcell.00003.2016] [PMID: 27147558]
[55]
Sharifi-Rad, M.; Pezzani, R.; Redaelli, M.; Zorzan, M.; Imran, M.; Ahmed Khalil, A.; Salehi, B.; Sharopov, F.; Cho, W.C.; Sharifi-Rad, J. Preclinical pharmacological activities of epigallocatechin-3-gallate in signaling pathways: An update on cancer. Molecules, 2020, 25(3), 467.
[http://dx.doi.org/10.3390/molecules25030467] [PMID: 31979082]
[56]
Zhu, J.; Ou, L.; Zhou, Y.; Yang, Z.; Bie, M. (-)-Epigallocatechin-3-gallate induces interferon-λ2 expression to anti-influenza A virus in human bronchial epithelial cells (BEAS-2B) through p38 MAPK signaling pathway. J. Thorac. Dis., 2020, 12(3), 989-997.
[http://dx.doi.org/10.21037/jtd.2020.03.20] [PMID: 32274168]
[57]
Kim, S.; Kim, M.J.; Kim, C.H.; Kang, J.W.; Shin, H.K.; Kim, D.Y.; Won, T.B.; Han, D.H.; Rhee, C.S.; Yoon, J.H.; Kim, H.J. The superiority of IFN-λ as a therapeutic candidate to control acute influenza viral lung infection. Am. J. Respir. Cell Mol. Biol., 2017, 56(2), 202-212.
[http://dx.doi.org/10.1165/rcmb.2016-0174OC] [PMID: 27632156]
[58]
Jiang, Y.; Yang, D.; Li, W.; Wang, B.; Jiang, Z.; Li, M. Antiviral activity of recombinant mouse β-defensin 3 against Influenza a Virus in vitro and in vivo. Antivir. Chem. Chemother., 2012, 22(6), 255-262.
[http://dx.doi.org/10.3851/IMP2077] [PMID: 22345365]
[59]
Bedford, T.; Riley, S.; Barr, I.G.; Broor, S.; Chadha, M.; Cox, N.J.; Daniels, R.S.; Gunasekaran, C.P.; Hurt, A.C.; Kelso, A.; Klimov, A.; Lewis, N.S.; Li, X.; McCauley, J.W.; Odagiri, T.; Potdar, V.; Rambaut, A.; Shu, Y.; Skepner, E.; Smith, D.J.; Suchard, M.A.; Tashiro, M.; Wang, D.; Xu, X.; Lemey, P.; Russell, C.A. Global circulation patterns of seasonal influenza viruses vary with antigenic drift. Nature, 2015, 523(7559), 217-220.
[http://dx.doi.org/10.1038/nature14460] [PMID: 26053121]
[60]
Ide, K.; Kawasaki, Y.; Kawakami, K.; Yamada, H. Anti-influenza virus effects of catechins: A molecular and clinical review. Curr. Med. Chem., 2016, 23(42), 4773-4783.
[http://dx.doi.org/10.2174/0929867324666161123091010] [PMID: 27881069]
[61]
Furushima, D.; Nishimura, T.; Takuma, N.; Iketani, R.; Mizuno, T.; Matsui, Y.; Yamaguchi, T.; Nakashima, Y.; Yamamoto, S.; Hibi, M.; Yamada, H. Prevention of acute upper respiratory infections by consumption of catechins in healthcare workers: A randomized, placebo-controlled trial. Nutrients, 2019, 12(1), 4.
[http://dx.doi.org/10.3390/nu12010004] [PMID: 31861349]
[62]
Ide, K.; Yamada, H.; Matsushita, K.; Ito, M.; Nojiri, K.; Toyoizumi, K.; Matsumoto, K.; Sameshima, Y. Effects of green tea gargling on the prevention of influenza infection in high school students: A randomized controlled study. PLoS One, 2014, 9(5), e96373.
[http://dx.doi.org/10.1371/journal.pone.0096373] [PMID: 24836780]
[63]
Toyoizumi, K.; Yamada, H.; Matsumoto, K.; Sameshima, Y. Gargling with green tea for influenza prophylaxis: A pilot clinical study. Rinsho yakuri/Japanese Journal of Clinical Pharmacology and Therapeutics, 2013, 44(6), 459-461.
[http://dx.doi.org/10.3999/jscpt.44.459]
[64]
Matsumoto, K.; Yamada, H.; Takuma, N.; Niino, H.; Sagesaka, Y.M. Effects of green tea catechins and theanine on preventing influenza infection among healthcare workers: A randomized controlled trial. BMC Complement. Altern. Med., 2011, 11(1), 15.
[http://dx.doi.org/10.1186/1472-6882-11-15] [PMID: 21338496]
[65]
Yamada, H.; Daimon, T.; Matsuda, K.; Yoshida, M.; Takuma, N.; Hara, Y. A randomized controlled study on the effects of gargling with tea catechin extracts on the prevention of influenza infection in healthy adults. Rinsho yakuri/Japanese Journal of Clinical Pharmacology and Therapeutics, 2007, 38(5), 323-330.
[http://dx.doi.org/10.3999/jscpt.38.323]
[66]
Rowe, C.A.; Nantz, M.P.; Bukowski, J.F.; Percival, S.S. Specific formulation of Camellia sinensis prevents cold and flu symptoms and enhances gamma,delta T cell function: A randomized, double-blind, placebo-controlled study. J. Am. Coll. Nutr., 2007, 26(5), 445-452.
[http://dx.doi.org/10.1080/07315724.2007.10719634] [PMID: 17914132]
[67]
Yamada, H.; Takuma, N.; Daimon, T.; Hara, Y. Gargling with tea catechin extracts for the prevention of influenza infection in elderly nursing home residents: A prospective clinical study. J. Altern. Complement. Med., 2006, 12(7), 669-672.
[http://dx.doi.org/10.1089/acm.2006.12.669] [PMID: 16970537]
[68]
Eccles, R. Understanding the symptoms of the common cold and influenza. Lancet Infect. Dis., 2005, 5(11), 718-725.
[http://dx.doi.org/10.1016/S1473-3099(05)70270-X] [PMID: 16253889]
[69]
Satomura, K.; Kitamura, T.; Kawamura, T.; Shimbo, T.; Watanabe, M.; Kamei, M.; Takano, Y.; Tamakoshi, A. Prevention of upper respiratory tract infections by gargling: A randomized trial. Am. J. Prev. Med., 2005, 29(4), 302-307.
[http://dx.doi.org/10.1016/j.amepre.2005.06.013] [PMID: 16242593]
[70]
Salamanna, F.; Maglio, M.; Landini, M.P.; Fini, M. Body localization of ACE-2: on the trail of the keyhole of SARS-CoV-2. Front. Med., 2020, 7, 594495.
[http://dx.doi.org/10.3389/fmed.2020.594495] [PMID: 33344479]
[71]
Beyerstedt, S.; Casaro, E.B.; Rangel, É.B. COVID-19: Angiotensin-converting enzyme 2 (ACE2) expression and tissue susceptibility to SARS-CoV-2 infection. Eur. J. Clin. Microbiol. Infect. Dis., 2021, 40(5), 905-919.
[http://dx.doi.org/10.1007/s10096-020-04138-6] [PMID: 33389262]
[72]
Heyman, S.N.; Kinaneh, S.; Abassi, Z. The duplicitous nature of ACE2 in COVID-19 disease. EBioMedicine, 2021, 67, 103356.
[http://dx.doi.org/10.1016/j.ebiom.2021.103356] [PMID: 33910120]
[73]
Harrison, A.G.; Lin, T.; Wang, P. Mechanisms of SARS-CoV-2 transmission and pathogenesis. Trends Immunol., 2020, 41(12), 1100-1115.
[http://dx.doi.org/10.1016/j.it.2020.10.004] [PMID: 33132005]
[74]
He, J.; Hu, L.; Huang, X.; Wang, C.; Zhang, Z.; Wang, Y.; Zhang, D.; Ye, W. Potential of coronavirus 3C-like protease inhibitors for the development of new anti-SARS-CoV-2 drugs: Insights from structures of protease and inhibitors. Int. J. Antimicrob. Agents, 2020, 56(2), 106055.
[http://dx.doi.org/10.1016/j.ijantimicag.2020.106055] [PMID: 32534187]
[75]
Yin, J.; Li, C.; Ye, C.; Ruan, Z.; Liang, Y.; Li, Y.; Wu, J.; Luo, Z. Advances in the development of therapeutic strategies against COVID-19 and perspectives in the drug design for emerging SARS-CoV-2 variants. Comput. Struct. Biotechnol. J., 2022, 20, 824-837.
[http://dx.doi.org/10.1016/j.csbj.2022.01.026] [PMID: 35126885]
[76]
Schrörs, B.; Riesgo-Ferreiro, P.; Sorn, P.; Gudimella, R.; Bukur, T.; Rösler, T.; Löwer, M.; Sahin, U. Large-scale analysis of SARS-CoV-2 spike-glycoprotein mutants demonstrates the need for continuous screening of virus isolates. PLoS One, 2021, 16(9), e0249254.
[http://dx.doi.org/10.1371/journal.pone.0249254] [PMID: 34570776]
[77]
Park, R.; Jang, M.; Park, Y.I.; Park, Y.; Jung, W.; Park, J.; Park, J. Epigallocatechin gallate (EGCG), a green tea polyphenol, reduces coronavirus replication in a mouse model. Viruses, 2021, 13(12), 2533.
[http://dx.doi.org/10.3390/v13122533] [PMID: 34960802]
[78]
Jang, M.; Park, Y.I.; Cha, Y.E.; Park, R.; Namkoong, S.; Lee, J.I.; Park, J. Tea polyphenols EGCG and theaflavin inhibit the activity of SARS-CoV-2 3CL-Protease in vitro. Evid. Based Complement. Alternat. Med., 2020, 2020, 1-7.
[http://dx.doi.org/10.1155/2020/5630838] [PMID: 32963564]
[79]
Jang, M.; Park, R.; Park, Y.I.; Cha, Y.E.; Yamamoto, A.; Lee, J.I.; Park, J. EGCG, a green tea polyphenol, inhibits human coronavirus replication in vitro. Biochem. Biophys. Res. Commun., 2021, 547, 23-28.
[http://dx.doi.org/10.1016/j.bbrc.2021.02.016] [PMID: 33588235]
[80]
Nishimura, H.; Okamoto, M.; Dapat, I.; Katsumi, M.; Oshitani, H. Inactivation of SARS-CoV-2 by Catechins from Green Tea. Jpn. J. Infect. Dis., 2021, 74(5), 421-423.
[http://dx.doi.org/10.7883/yoken.JJID.2020.902] [PMID: 33518628]
[81]
Zhao, M.; Yu, Y.; Sun, L.M.; Xing, J.Q.; Li, T.; Zhu, Y.; Wang, M.; Yu, Y.; Xue, W.; Xia, T.; Cai, H.; Han, Q.Y.; Yin, X.; Li, W.H.; Li, A.L.; Cui, J.; Yuan, Z.; Zhang, R.; Zhou, T.; Zhang, X.M.; Li, T. GCG inhibits SARS-CoV-2 replication by disrupting the liquid phase condensation of its nucleocapsid protein. Nat. Commun., 2021, 12(1), 2114.
[http://dx.doi.org/10.1038/s41467-021-22297-8] [PMID: 33837182]
[82]
Mhatre, S.; Srivastava, T.; Naik, S.; Patravale, V. Antiviral activity of green tea and black tea polyphenols in prophylaxis and treatment of COVID-19: A review. Phytomedicine, 2020, 153286
[http://dx.doi.org/10.1016/j.phymed.2020.153286] [PMID: 32741697]
[83]
Park, J.; Park, R.; Jang, M.; Park, Y.I. Therapeutic potential of EGCG, a green tea polyphenol, for treatment of coronavirus diseases. Life, 2021, 11(3), 197.
[http://dx.doi.org/10.3390/life11030197] [PMID: 33806274]
[84]
Tallei, T.E.; Fatimawali; Niode, N.J.; Idroes, R.; Zidan, B.M.R.M.; Mitra, S.; Celik, I.; Nainu, F.; Ağagündüz, D.; Emran, T.B.; Capasso, R. A comprehensive review of the potential use of green tea polyphenols in the management of COVID-19. Evid. Based Complement. Alternat. Med., 2021, 2021, 1-13.
[http://dx.doi.org/10.1155/2021/7170736] [PMID: 34899956]
[85]
Wang, Y.Q.; Li, Q.S.; Zheng, X.Q.; Lu, J.L.; Liang, Y.R. Antiviral effects of green tea EGCG and its potential application against COVID-19. Molecules, 2021, 26(13), 3962.
[http://dx.doi.org/10.3390/molecules26133962] [PMID: 34209485]
[86]
Kicker, E.; Tittel, G.; Schaller, T.; Pferschy-Wenzig, E.M.; Zatloukal, K.; Bauer, R. SARS-CoV-2 neutralizing activity of polyphenols in a special green tea extract preparation. Phytomedicine, 2022, 98, 153970.
[http://dx.doi.org/10.1016/j.phymed.2022.153970] [PMID: 35144138]
[87]
Liu, J.; Bodnar, B.H.; Meng, F.; Khan, A.I.; Wang, X.; Saribas, S.; Wang, T.; Lohani, S.C.; Wang, P.; Wei, Z.; Luo, J.; Zhou, L.; Wu, J.; Luo, G.; Li, Q.; Hu, W.; Ho, W. Epigallocatechin gallate from green tea effectively blocks infection of SARS-CoV-2 and new variants by inhibiting spike binding to ACE2 receptor. Cell Biosci., 2021, 11(1), 168.
[http://dx.doi.org/10.1186/s13578-021-00680-8] [PMID: 34461999]
[88]
Tsvetkov, V.; Varizhuk, A.; Kozlovskaya, L.; Shtro, A.; Lebedeva, O.; Komissarov, A.; Vedekhina, T.; Manuvera, V.; Zubkova, O.; Eremeev, A.; Shustova, E.; Pozmogova, G.; Lioznov, D.; Ishmukhametov, A.; Lazarev, V.; Lagarkova, M. EGCG as an anti-SARS-CoV-2 agent: Preventive versus therapeutic potential against original and mutant virus. Biochimie, 2021, 191, 27-32.
[http://dx.doi.org/10.1016/j.biochi.2021.08.003] [PMID: 34389380]
[89]
Naqvi, A.A.T.; Fatima, K.; Mohammad, T.; Fatima, U.; Singh, I.K.; Singh, A.; Atif, S.M.; Hariprasad, G.; Hasan, G.M.; Hassan, M.I. Insights into SARS-CoV-2 genome, structure, evolution, pathogenesis and therapies: Structural genomics approach. Biochim. Biophys. Acta Mol. Basis Dis., 2020, 1866(10), 165878.
[http://dx.doi.org/10.1016/j.bbadis.2020.165878] [PMID: 32544429]
[90]
Hu, B.; Guo, H.; Zhou, P.; Shi, Z.L. Characteristics of SARS-CoV-2 and COVID-19. Nat. Rev. Microbiol., 2021, 19(3), 141-154.
[http://dx.doi.org/10.1038/s41579-020-00459-7] [PMID: 33024307]
[91]
Shaik, F.B.; Swarnalatha, K.; Mohan, M.C.; Thomas, A.; Chikati, R.; Sandeep, G.; Maddu, N. Novel antiviral effects of chloroquine, hydroxychloroquine, and green tea catechins against SARS CoV-2 main protease (Mpro) and 3C-like protease for COVID-19 treatment. Clinical Nutrition Open Science, 2022, 42, 62-72.
[http://dx.doi.org/10.1016/j.nutos.2021.12.004] [PMID: 35106518]
[92]
Cuadrado, A.; Pajares, M.; Benito, C.; Jiménez-Villegas, J.; Escoll, M.; Fernández-Ginés, R.; Garcia Yagüe, A.J.; Lastra, D.; Manda, G.; Rojo, A.I.; Dinkova-Kostova, A.T. Can activation of NRF2 Be a strategy against COVID-19? Trends Pharmacol. Sci., 2020, 41(9), 598-610.
[http://dx.doi.org/10.1016/j.tips.2020.07.003] [PMID: 32711925]
[93]
Olagnier, D.; Farahani, E.; Thyrsted, J.; Blay-Cadanet, J.; Herengt, A.; Idorn, M.; Hait, A.; Hernaez, B.; Knudsen, A.; Iversen, M.B.; Schilling, M.; Jørgensen, S.E.; Thomsen, M.; Reinert, L.S.; Lappe, M.; Hoang, H.D.; Gilchrist, V.H.; Hansen, A.L.; Ottosen, R.; Nielsen, C.G.; Møller, C.; van der Horst, D.; Peri, S.; Balachandran, S.; Huang, J.; Jakobsen, M.; Svenningsen, E.B.; Poulsen, T.B.; Bartsch, L.; Thielke, A.L.; Luo, Y.; Alain, T.; Rehwinkel, J.; Alcamí, A.; Hiscott, J.; Mogensen, T.H.; Paludan, S.R.; Holm, C.K. SARS-CoV2-mediated suppression of NRF2-signaling reveals potent antiviral and anti-inflammatory activity of 4-octyl-itaconate and dimethyl fumarate. Nat. Commun., 2020, 11(1), 4938.
[http://dx.doi.org/10.1038/s41467-020-18764-3] [PMID: 33009401]
[94]
Bousquet, J.; Cristol, J.P.; Czarlewski, W.; Anto, J.M.; Martineau, A.; Haahtela, T.; Fonseca, S.C.; Iaccarino, G.; Blain, H.; Fiocchi, A.; Canonica, G.W.; Fonseca, J.A.; Vidal, A.; Choi, H.J.; Kim, H.J.; Le Moing, V.; Reynes, J.; Sheikh, A.; Akdis, C.A.; Zuberbier, T. Nrf2-interacting nutrients and COVID-19: time for research to develop adaptation strategies. Clin. Transl. Allergy, 2020, 10(1), 58.
[http://dx.doi.org/10.1186/s13601-020-00362-7] [PMID: 33292691]
[95]
Merad, M.; Martin, J.C. Pathological inflammation in patients with COVID-19: a key role for monocytes and macrophages. Nat. Rev. Immunol., 2020, 20(6), 355-362.
[http://dx.doi.org/10.1038/s41577-020-0331-4] [PMID: 32376901]
[96]
Wu, C.; Chen, X.; Cai, Y.; Xia, J.; Zhou, X.; Xu, S.; Huang, H.; Zhang, L.; Zhou, X.; Du, C.; Zhang, Y.; Song, J.; Wang, S.; Chao, Y.; Yang, Z.; Xu, J.; Zhou, X.; Chen, D.; Xiong, W.; Xu, L.; Zhou, F.; Jiang, J.; Bai, C.; Zheng, J.; Song, Y. 2019 Pneumonia in Wuhan, China. JAMA Intern. Med., 2020, 180(7), 934-943.
[http://dx.doi.org/10.1001/jamainternmed.2020.0994] [PMID: 32167524]
[97]
Varga, Z.; Flammer, A.J.; Steiger, P.; Haberecker, M.; Andermatt, R.; Zinkernagel, A.S.; Mehra, M.R.; Schuepbach, R.A.; Ruschitzka, F.; Moch, H. Endothelial cell infection and endotheliitis in COVID-19. Lancet, 2020, 395(10234), 1417-1418.
[http://dx.doi.org/10.1016/S0140-6736(20)30937-5] [PMID: 32325026]
[98]
Huang, C.; Wang, Y.; Li, X.; Ren, L.; Zhao, J.; Hu, Y.; Zhang, L.; Fan, G.; Xu, J.; Gu, X.; Cheng, Z.; Yu, T.; Xia, J.; Wei, Y.; Wu, W.; Xie, X.; Yin, W.; Li, H.; Liu, M.; Xiao, Y.; Gao, H.; Guo, L.; Xie, J.; Wang, G.; Jiang, R.; Gao, Z.; Jin, Q.; Wang, J.; Cao, B. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet, 2020, 395(10223), 497-506.
[http://dx.doi.org/10.1016/S0140-6736(20)30183-5] [PMID: 31986264]
[99]
Chen, G.; Wu, D.; Guo, W.; Cao, Y.; Huang, D.; Wang, H.; Wang, T.; Zhang, X.; Chen, H.; Yu, H.; Zhang, X.; Zhang, M.; Wu, S.; Song, J.; Chen, T.; Han, M.; Li, S.; Luo, X.; Zhao, J.; Ning, Q. Clinical and immunological features of severe and moderate coronavirus disease 2019. J. Clin. Invest., 2020, 130(5), 2620-2629.
[http://dx.doi.org/10.1172/JCI137244] [PMID: 32217835]
[100]
Zhang, W.; Zhao, Y.; Zhang, F.; Wang, Q.; Li, T.; Liu, Z.; Wang, J.; Qin, Y.; Zhang, X.; Yan, X.; Zeng, X.; Zhang, S. The use of anti-inflammatory drugs in the treatment of people with severe coronavirus disease 2019 (COVID-19): The perspectives of clinical immunologists from China. Clin. Immunol., 2020, 214, 108393.
[http://dx.doi.org/10.1016/j.clim.2020.108393] [PMID: 32222466]
[101]
Mehta, P.; McAuley, D.F.; Brown, M.; Sanchez, E.; Tattersall, R.S.; Manson, J.J. COVID-19: Consider cytokine storm syndromes and immunosuppression. Lancet, 2020, 395(10229), 1033-1034.
[http://dx.doi.org/10.1016/S0140-6736(20)30628-0] [PMID: 32192578]
[102]
Alam, W.; Bizri, A.R. Efficacy of tocilizumab in COVID-19: A review of the current evidence. Sci. Prog., 2021, 104(3)
[http://dx.doi.org/10.1177/00368504211030372] [PMID: 34236264]
[103]
Jorgensen, S.C.J.; Lapinsky, S.E. Tocilizumab for coronavirus disease 2019 in pregnancy and lactation: A narrative review. Clin. Microbiol. Infect., 2021.
[http://dx.doi.org/10.1016/j.cmi.2021.08.016] [PMID: 34438068]
[104]
Kulanthaivel, S.; Kaliberdenko, V.B.; Balasundaram, K.; Shterenshis, M.V.; Scarpellini, E.; Abenavoli, L. Tocilizumab in SARS-CoV-2 Patients with the Syndrome of Cytokine Storm: A Narrative Review. Rev. Recent Clin. Trials, 2021, 16(2), 138-145.
[http://dx.doi.org/10.2174/18761038MTA55OTgh5] [PMID: 32940187]
[105]
Pelaia, C.; Calabrese, C.; Garofalo, E.; Bruni, A.; Vatrella, A.; Pelaia, G. Therapeutic role of tocilizumab in SARS-CoV-2-Induced Cytokine Storm: Rationale and current evidence. Int. J. Mol. Sci., 2021, 22(6), 3059.
[http://dx.doi.org/10.3390/ijms22063059] [PMID: 33802761]
[106]
Roumier, M.; Paule, R.; Vallée, A.; Rohmer, J.; Ballester, M.; Brun, A.L.; Cerf, C.; Chabi, M.L.; Chinet, T.; Colombier, M.A.; Farfour, E.; Fourn, E.; Géri, G.; Khau, D.; Marroun, I.; Ponsoye, M.; Roux, A.; Salvator, H.; Schoindre, Y.; Si Larbi, A.G.; Tchérakian, C.; Vasse, M.; Verrat, A.; Zuber, B.; Couderc, L.J.; Kahn, J.E.; Groh, M.; Ackermann, F.; Foch, C-S.G. Tocilizumab for severe worsening COVID-19 Pneumonia: A propensity score analysis. J. Clin. Immunol., 2021, 41(2), 303-314.
[http://dx.doi.org/10.1007/s10875-020-00911-6] [PMID: 33188624]
[107]
Snow, T.A.C.; Saleem, N.; Ambler, G.; Nastouli, E.; Singer, M.; Arulkumaran, N. Tocilizumab in COVID-19: A meta-analysis, trial sequential analysis, and meta-regression of randomized-controlled trials. Intensive Care Med., 2021, 47(6), 641-652.
[http://dx.doi.org/10.1007/s00134-021-06416-z] [PMID: 34019122]
[108]
Lee, S.Y.; Jung, Y.O.; Ryu, J.G.; Oh, H.J.; Son, H.J.; Lee, S.H.; Kwon, J.E.; Kim, E.K.; Park, M.K.; Park, S.H.; Kim, H.Y.; Cho, M.L. Epigallocatechin-3-gallate ameliorates autoimmune arthritis by reciprocal regulation of T helper-17 regulatory T cells and inhibition of osteoclastogenesis by inhibiting STAT3 signaling. J. Leukoc. Biol., 2016, 100(3), 559-568.
[http://dx.doi.org/10.1189/jlb.3A0514-261RR] [PMID: 26957211]
[109]
Ning, W.; Wang, S.; Dong, X.; Liu, D.; Fu, L.; Jin, R.; Xu, A. Epigallocatechin-3-gallate (EGCG) suppresses the trafficking of lymphocytes to epidermal melanocytes via inhibition of JAK2: Its implication for vitiligo treatment. Biol. Pharm. Bull., 2015, 38(11), 1700-1706.
[http://dx.doi.org/10.1248/bpb.b15-00331] [PMID: 26345342]
[110]
Singh, A.K.; Umar, S.; Riegsecker, S.; Chourasia, M.; Ahmed, S. Regulation of transforming growth factor β-activated kinase activation by epigallocatechin-3-gallate in rheumatoid arthritis synovial fibroblasts: Suppression of K 63 -Linked autoubiquitination of tumor necrosis factor receptor-associated factor 6. Arthritis Rheumatol., 2016, 68(2), 347-358.
[http://dx.doi.org/10.1002/art.39447] [PMID: 26473505]
[111]
Shin, J.A.; Oh, S.; Jeong, J.M. The potential of BEN815 as an anti-inflammatory, antiviral and antioxidant agent for the treatment of COVID-19. Phytomedicine Plus, 2021, 1(4), 100058.
[http://dx.doi.org/10.1016/j.phyplu.2021.100058] [PMID: 35403084]
[112]
Guo, Q.; Zhao, B.; Li, M.; Shen, S.; Xin, W. Studies on protective mechanisms of four components of green tea polyphenols against lipid peroxidation in synaptosomes. Biochim. Biophys. Acta Lipids Lipid Metab., 1996, 1304(3), 210-222.
[http://dx.doi.org/10.1016/S0005-2760(96)00122-1] [PMID: 8982267]
[113]
Huang, Y.J.; Wang, K.L.; Chen, H.Y.; Chiang, Y.F.; Hsia, S.M. Protective effects of epigallocatechin gallate (EGCG) on endometrial, breast, and ovarian cancers. Biomolecules, 2020, 10(11), 1481.
[http://dx.doi.org/10.3390/biom10111481] [PMID: 33113766]
[114]
Schönrich, G.; Raftery, M.J.; Samstag, Y. Devilishly radical network in COVID-19: Oxidative stress, neutrophil extracellular traps (NETs), and T cell suppression. Adv. Biol. Regul., 2020, 77, 100741.
[http://dx.doi.org/10.1016/j.jbior.2020.100741] [PMID: 32773102]
[115]
Laforge, M.; Elbim, C.; Frère, C.; Hémadi, M.; Massaad, C.; Nuss, P.; Benoliel, J.J.; Becker, C. Tissue damage from neutrophil-induced oxidative stress in COVID-19. Nat. Rev. Immunol., 2020, 20(9), 515-516.
[http://dx.doi.org/10.1038/s41577-020-0407-1] [PMID: 32728221]
[116]
Shi, Z.; Puyo, C.A. N-Acetylcysteine to Combat COVID-19: An evidence review. Ther. Clin. Risk Manag., 2020, 16, 1047-1055.
[http://dx.doi.org/10.2147/TCRM.S273700] [PMID: 33177829]
[117]
Sandilands, E.A.; Bateman, D.N. Adverse reactions associated with acetylcysteine. Clin. Toxicol., 2009, 47(2), 81-88.
[http://dx.doi.org/10.1080/15563650802665587] [PMID: 19280424]
[118]
Ungarala, R.; Munikumar, M.; Sinha, S.N.; Kumar, D.; Sunder, R.S.; Challa, S. Assessment of Antioxidant, Immunomodulatory Activity of Oxidised Epigallocatechin-3-Gallate (Green Tea Polyphenol) and Its Action on the Main Protease of SARS-CoV-2—An in vitro and in silico Approach. Antioxidants, 2022, 11(2), 294.
[http://dx.doi.org/10.3390/antiox11020294] [PMID: 35204178]
[119]
Nanri, A.; Yamamoto, S.; Konishi, M.; Ohmagari, N.; Mizoue, T. Green tea consumption and SARS-CoV-2 infection among staff of a referral hospital in Japan. Clinical Nutrition Open Science, 2022, 42, 1-5.
[http://dx.doi.org/10.1016/j.nutos.2022.01.002] [PMID: 35039809]
[120]
Mahmoodi, S.; Yousefi, M.; Sadeghi, O.; Mahmoodabadi, A.; Sadriirani, M.; Hosseinzade, Z.; Jahanbakhsh, A.; Panahande, S.B.; Saeedinejad, Z.; Malekzadeh, J.M.; Naghmachi, M.; Pourmahmoudi, A. Green tea intake and its effect on laboratory parameters and disease symptoms in hospitalised patients with Covid 19: A structured protocol for a randomized controlled trial. Trials, 2021, 22(1), 514.
[http://dx.doi.org/10.1186/s13063-021-05462-8] [PMID: 34344427]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy