Generic placeholder image

Current Drug Discovery Technologies

Editor-in-Chief

ISSN (Print): 1570-1638
ISSN (Online): 1875-6220

Review Article

Drug Repositioning: A Monetary Stratagem to Discover a New Application of Drugs

Author(s): Ankur Rohilla and Seema Rohilla*

Volume 21, Issue 1, 2024

Published on: 10 October, 2023

Article ID: e101023222023 Pages: 19

DOI: 10.2174/0115701638253929230922115127

Price: $65

Abstract

Drug repurposing, also referred to as drug repositioning or drug reprofiling, is a scientific approach to the detection of any new application for an already approved or investigational drug. It is a useful policy for the invention and development of new pharmacological or therapeutic applications of different drugs. The strategy has been known to offer numerous advantages over developing a completely novel drug for certain problems. Drug repurposing has numerous methodologies that can be categorized as target-oriented, drug-oriented, and problem-oriented. The choice of the methodology of drug repurposing relies on the accessible information about the drug molecule and like pharmacokinetic, pharmacological, physicochemical, and toxicological profile of the drug. In addition, molecular docking studies and other computer-aided methods have been known to show application in drug repurposing. The variation in dosage for original target diseases and novel diseases presents a challenge for researchers of drug repurposing in present times. The present review critically discusses the drugs repurposed for cancer, covid-19, Alzheimer’s, and other diseases, strategies, and challenges of drug repurposing. Moreover, regulatory perspectives related to different countries like the United States (US), Europe, and India have been delineated in the present review.

Keywords: Drug repurposing, drug repositioning, COVID-19, cancer, alzheimer’s disease, molecular docking.

Graphical Abstract
[1]
Krishnamurthy N, Grimshaw AA, Axson SA, Choe SH, Miller JE. Drug repurposing: A systematic review on root causes, barriers and facilitators. BMC Health Serv Res 2022; 22(1): 970.
[http://dx.doi.org/10.1186/s12913-022-08272-z] [PMID: 35906687]
[2]
Lei ZN, Wu ZX, Dong S, et al. Chloroquine and hydroxychloroquine in the treatment of malaria and repurposing in treating COVID-19. Pharmacol Ther 2020; 216: 107672.
[http://dx.doi.org/10.1016/j.pharmthera.2020.107672] [PMID: 32910933]
[3]
Singh AK, Singh A, Shaikh A, Singh R, Misra A. Chloroquine and hydroxychloroquine in the treatment of COVID-19 with or without diabetes: A systematic search and a narrative review with a special reference to India and other developing countries. Diabetes Metab Syndr 2020; 14(3): 241-6.
[http://dx.doi.org/10.1016/j.dsx.2020.03.011] [PMID: 32247211]
[4]
Jourdan JP, Bureau R, Rochais C, Dallemagne P. Drug repositioning: A brief overview. J Pharm Pharmacol 2020; 72(9): 1145-51.
[http://dx.doi.org/10.1111/jphp.13273] [PMID: 32301512]
[5]
Low ZY, Farouk IA, Lal SK. Drug repositioning: New approaches and future prospects for life-debilitating diseases and the COVID-19 pandemic outbreak. Viruses 2020; 12(9): 1058.
[http://dx.doi.org/10.3390/v12091058] [PMID: 32972027]
[6]
Mohs RC, Greig NH. Drug discovery and development: Role of basic biological research. Alzheimers Dement 2017; 3(4): 651-7.
[http://dx.doi.org/10.1016/j.trci.2017.10.005]
[7]
Aggarwal S, Verma SS, Aggarwal S, Gupta SC. Drug repurposing for breast cancer therapy: Old weapon for new battle. Semin Cancer Biol 2021; 68: 8-20.
[http://dx.doi.org/10.1016/j.semcancer.2019.09.012] [PMID: 31550502]
[8]
Pantziarka P, Bouche G, Meheus L, Sukhatme V, Sukhatme VP, Vikas P. The repurposing drugs in oncology (ReDO) project. Ecancermedicalscience 2014; 8: 442.
[http://dx.doi.org/10.3332/ecancer.2014.485] [PMID: 25075216]
[9]
Deotarse PP, Jain AS, Baile MB, et al. Drug repositioning: A review. Int J Pharma Res Rev 2015; 4: 51-8.
[10]
Cha Y, Erez T, Reynolds IJ, et al. Drug repurposing from the perspective of pharmaceutical companies. Br J Pharmacol 2018; 175(2): 168-80.
[http://dx.doi.org/10.1111/bph.13798] [PMID: 28369768]
[11]
Hughes JP, Rees S, Kalindjian SB, Philpott KL. Principles of early drug discovery. Br J Pharmacol 2011; 162(6): 1239-49.
[http://dx.doi.org/10.1111/j.1476-5381.2010.01127.x] [PMID: 21091654]
[12]
Pushpakom S, Iorio F, Eyers PA, et al. Drug repurposing: Progress, challenges and recommendations. Nat Rev Drug Discov 2019; 18(1): 41-58.
[http://dx.doi.org/10.1038/nrd.2018.168] [PMID: 30310233]
[13]
Roy S, Dhaneshwar S, Bhasin B. Drug repurposing: An emerging tool for drug reuse, recycling and discovery. Curr Drug Res Rev 2021; 13(2): 101-19.
[http://dx.doi.org/10.2174/2589977513666210211163711] [PMID: 33573567]
[14]
Kasznicki J, Sliwinska A, Drzewoski J. Metformin in cancer prevention and therapy. Ann Transl Med 2014; 2(6): 57.
[http://dx.doi.org/10.3978/j.issn.2305-5839.2014.06.01] [PMID: 25333032]
[15]
Hernandez JJ, Pryszlak M, Smith L, et al. Giving drugs a second chance: Overcoming regulatory and financial hurdles in repurposing approved drugs as cancer therapeutics. Front Oncol 2017; 7: 273.
[http://dx.doi.org/10.3389/fonc.2017.00273] [PMID: 29184849]
[16]
Arnum PV. Drug repurposing and repositioning: Making new out of old. 2022. Available from: https://www.dcatvci.org/features/drug-repurposing-and-repositioning-making-new-out-of-old/ (Accessed on Oct. 25, 2022)
[17]
Sales Junior PA, Molina I, Fonseca Murta SM, et al. Experimental and clinical treatment of chagas disease: A review. Am J Trop Med Hyg 2017; 97(5): 1289-303.
[http://dx.doi.org/10.4269/ajtmh.16-0761] [PMID: 29016289]
[18]
Jin G, Wong STC. Toward better drug repositioning: Prioritizing and integrating existing methods into efficient pipelines. Drug Discov Today 2014; 19(5): 637-44.
[http://dx.doi.org/10.1016/j.drudis.2013.11.005] [PMID: 24239728]
[19]
Goldstein DJ, Lu Y, Detke MJ, Hudson J, Iyengar S, Demitrack MA. Effects of duloxetine on painful physical symptoms associated with depression. Psychosomatics 2004; 45(1): 17-28.
[http://dx.doi.org/10.1176/appi.psy.45.1.17] [PMID: 14709757]
[20]
Chae YK, Arya A, Malecek MK, et al. Repurposing metformin for cancer treatment: Current clinical studies. Oncotarget 2016; 7(26): 40767-80.
[http://dx.doi.org/10.18632/oncotarget.8194] [PMID: 27004404]
[21]
Ferreira LG, Andricopulo AD. Drug repositioning approaches to parasitic diseases: A medicinal chemistry perspective. Drug Discov Today 2016; 21(10): 1699-710.
[http://dx.doi.org/10.1016/j.drudis.2016.06.021] [PMID: 27365271]
[22]
Gavas S, Quazi S, Karpiński TM. Nanoparticles for cancer therapy: Current progress and challenges. Nanoscale Res Lett 2021; 16(1): 173.
[http://dx.doi.org/10.1186/s11671-021-03628-6] [PMID: 34866166]
[23]
Rodrigues R, Duarte D, Vale N. Drug repurposing in cancer therapy: Influence of patient’s genetic background in breast cancer treatment. Int J Mol Sci 2022; 23(8): 4280.
[http://dx.doi.org/10.3390/ijms23084280] [PMID: 35457144]
[24]
Masuda T, Tsuruda Y, Matsumoto Y, Uchida H, Nakayama KI, Mimori K. Drug repositioning in cancer: The current situation in Japan. Cancer Sci 2020; 111(4): 1039-46.
[http://dx.doi.org/10.1111/cas.14318] [PMID: 31957175]
[25]
De Lellis L, Veschi S, Tinari N, et al. Drug repurposing, an attractive strategy in pancreatic cancer treatment: Preclinical and clinical updates. Cancers 2021; 13(16): 3946.
[http://dx.doi.org/10.3390/cancers13163946] [PMID: 34439102]
[26]
Burr NE, Hull MA, Subramanian V. Does aspirin or non-aspirin non-steroidal anti-inflammatory drug use prevent colorectal cancer in inflammatory bowel disease? World J Gastroenterol 2016; 22(13): 3679-86.
[http://dx.doi.org/10.3748/wjg.v22.i13.3679] [PMID: 27053860]
[27]
Alimova IN, Liu B, Fan Z, et al. Metformin inhibits breast cancer cell growth, colony formation and induces cell cycle arrest in vitro. Cell Cycle 2009; 8(6): 909-15.
[http://dx.doi.org/10.4161/cc.8.6.7933] [PMID: 19221498]
[28]
Nair V, Sreevalsan S, Basha R, et al. Mechanism of metformin-dependent inhibition of mammalian target of rapamycin (mTOR) and Ras activity in pancreatic cancer: Role of specificity protein (Sp) transcription factors. J Biol Chem 2014; 289(40): 27692-701.
[http://dx.doi.org/10.1074/jbc.M114.592576] [PMID: 25143389]
[29]
Shiiba M, Yamagami H, Yamamoto A, et al. Mefenamic acid enhances anticancer drug sensitivity via inhibition of aldo-keto reductase 1C enzyme activity. Oncol Rep 2017; 37(4): 2025-32.
[http://dx.doi.org/10.3892/or.2017.5480] [PMID: 28259989]
[30]
Partecke LI, Käding A, Trung DN, et al. Subdiaphragmatic vagotomy promotes tumor growth and reduces survival via TNFα in a murine pancreatic cancer model. Oncotarget 2017; 8(14): 22501-12.
[http://dx.doi.org/10.18632/oncotarget.15019] [PMID: 28160574]
[31]
Li M, Xu H. Fear stress enhanced xenograft pancreatic tumor growth through activating epithelial-mesenchymal transition. Pancreatology 2019; 19(2): 377-82.
[http://dx.doi.org/10.1016/j.pan.2019.01.002] [PMID: 30733163]
[32]
Liu CC, Wu CL, Yeh IC, Wu SN, Sze CI, Gean PW. Cilostazol eliminates radiation-resistant glioblastoma by re-evoking big conductance calcium-activated potassium channel activity. Am J Cancer Res 2021; 11(4): 1148-69.
[PMID: 33948351]
[33]
Moore BJR, Islam B, Ward S, et al. Repurposing of tranilast for potential neuropathic pain treatment by inhibition of sepiapterin reductase in the BH4 pathway. ACS Omega 2019; 4(7): 11960-72.
[http://dx.doi.org/10.1021/acsomega.9b01228] [PMID: 31460307]
[34]
Nakashima T, Nagano S, Setoguchi T, et al. Tranilast enhances the effect of anticancer agents in osteosarcoma. Oncol Rep 2019; 42(1): 176-88.
[http://dx.doi.org/10.3892/or.2019.7150] [PMID: 31059083]
[35]
Zhuang J, Liu X, Yang Y, Zhang Y, Guan G. Sulfasalazine, a potent suppressor of gastric cancer proliferation and metastasis by inhibition of xCT: Conventional drug in new use. J Cell Mol Med 2021; 25(12): 5372-80.
[http://dx.doi.org/10.1111/jcmm.16548] [PMID: 33988296]
[36]
Labay E, Mauceri HJ, Efimova EV, et al. Repurposing cephalosporin antibiotics as pro-senescent radiosensitizers. Oncotarget 2016; 7(23): 33919-33.
[http://dx.doi.org/10.18632/oncotarget.8984] [PMID: 27129153]
[37]
Lian X, Wang G, Zhou H, Zheng Z, Fu Y, Cai L. Anticancer properties of fenofibrate: A repurposing use. J Cancer 2018; 9(9): 1527-37.
[http://dx.doi.org/10.7150/jca.24488] [PMID: 29760790]
[38]
Sheard JJ, Southam AD, MacKay HL, et al. Combined bezafibrate, medroxyprogesterone acetate and valproic acid treatment inhibits osteosarcoma cell growth without adversely affecting normal mesenchymal stem cells. Biosci Rep 2021; 41(1): BSR20202505.
[http://dx.doi.org/10.1042/BSR20202505] [PMID: 33289496]
[39]
Sukhatme V, Bouche G, Meheus L, Sukhatme VP, Pantziarka P. Repurposing Drugs in Oncology (ReDO)-nitroglycerin as an anti-cancer agent. Ecancermedicalscience 2015; 9: 568.
[http://dx.doi.org/10.3332/ecancer.2015.568] [PMID: 26435741]
[40]
Reymen BJT, van Gisbergen MW, Even AJG, et al. Nitroglycerin as a radiosensitizer in non-small cell lung cancer: Results of a prospec-tive imaging-based phase II trial. Clin Transl Radiat Oncol 2020; 21: 49-55.
[http://dx.doi.org/10.1016/j.ctro.2019.12.002] [PMID: 32021913]
[41]
Shinoda S, Kaino S, Amano S, et al. Deferasirox, an oral iron chelator, with gemcitabine synergistically inhibits pancreatic cancer cell growth in vitro and in vivo. Oncotarget 2018; 9(47): 28434-44.
[http://dx.doi.org/10.18632/oncotarget.25421] [PMID: 29983871]
[42]
Boulos JC, Saeed MEM, Chatterjee M, et al. Repurposing of the ALK inhibitor crizotinib for acute leukemia and multiple myeloma cells. Pharmaceuticals 2021; 14(11): 1126.
[http://dx.doi.org/10.3390/ph14111126] [PMID: 34832908]
[43]
Souchek JJ, Davis AL, Hill TK, et al. Combination treatment with orlistat-containing nanoparticles and taxanes is synergistic and enhanc-es microtubule stability in taxane-resistant prostate cancer cells. Mol Cancer Ther 2017; 16(9): 1819-30.
[http://dx.doi.org/10.1158/1535-7163.MCT-17-0013] [PMID: 28615298]
[44]
Wang F, Liu W, Ning J, et al. Simvastatin suppresses proliferation and migration in non-small cell lung cancer via pyroptosis. Int J Biol Sci 2018; 14(4): 406-17.
[http://dx.doi.org/10.7150/ijbs.23542] [PMID: 29725262]
[45]
Amin F, Fathi F, Reiner Ž, Banach M, Sahebkar A. The role of statins in lung cancer. Arch Med Sci 2021; 18(1): 141-52.
[http://dx.doi.org/10.5114/aoms/123225] [PMID: 35154535]
[46]
Rios Perez MV, Roife D, Dai B, et al. Antineoplastic effects of auranofin in human pancreatic adenocarcinoma preclinical models. Sur Open Sci 2019; 1(2): 56-63.
[http://dx.doi.org/10.1016/j.sopen.2019.05.004] [PMID: 33981979]
[47]
Onodera T, Momose I, Adachi H, et al. Human pancreatic cancer cells under nutrient deprivation are vulnerable to redox system inhibi-tion. J Biol Chem 2020; 295(49): 16678-90.
[http://dx.doi.org/10.1074/jbc.RA120.013893] [PMID: 32978257]
[48]
Jandaghi P, Najafabadi HS, Bauer AS, et al. Expression of DRD2 is increased in human pancreatic ductal adenocarcinoma and inhibitors slow tumor growth in mice. Gastroenterology 2016; 151(6): 1218-31.
[http://dx.doi.org/10.1053/j.gastro.2016.08.040] [PMID: 27578530]
[49]
Dandawate P, Kaushik G, Ghosh C, et al. Diphenylbutylpiperidine antipsychotic drugs inhibit prolactin receptor signaling to reduce growth of pancreatic ductal adenocarcinoma in mice. Gastroenterology 2020; 158(5): 1433-1449.e27.
[http://dx.doi.org/10.1053/j.gastro.2019.11.279] [PMID: 31786131]
[50]
Ranjan A, German N, Mikelis C, Srivenugopal K, Srivastava SK. Penfluridol induces endoplasmic reticulum stress leading to autophagy in pancreatic cancer. Tumour Biol 2017; 39(6)
[http://dx.doi.org/10.1177/1010428317705517] [PMID: 28618969]
[51]
Florio R, Veschi S, di Giacomo V, et al. The benzimidazole-based anthelmintic parbendazole: A repurposed drug candidate that syner-gizes with gemcitabine in pancreatic cancer. Cancers 2019; 11(12): 2042.
[http://dx.doi.org/10.3390/cancers11122042] [PMID: 31861153]
[52]
Cong J, Wang Y, Zhang X, et al. A novel chemoradiation targeting stem and nonstem pancreatic cancer cells by repurposing disulfiram. Cancer Lett 2017; 409: 9-19.
[http://dx.doi.org/10.1016/j.canlet.2017.08.028] [PMID: 28864067]
[53]
Zhang X, Hu P, Ding SY, et al. Induction of autophagy-dependent apoptosis in cancer cells through activation of ER stress: An uncov-ered anti-cancer mechanism by anti-alcoholism drug disulfiram. Am J Cancer Res 2019; 9(6): 1266-81.
[PMID: 31285958]
[54]
Dijk SN, Protasoni M, Elpidorou M, Kroon AM, Taanman JW. Mitochondria as target to inhibit proliferation and induce apoptosis of cancer cells: The effects of doxycycline and gemcitabine. Sci Rep 2020; 10(1): 4363.
[http://dx.doi.org/10.1038/s41598-020-61381-9] [PMID: 32152409]
[55]
Liu H, Tao H, Wang H, et al. Doxycycline inhibits cancer stem cell-like properties via PAR1/FAK/PI3K/AKT pathway in pancreatic cancer. Front Oncol 2021; 10: 619317.
[http://dx.doi.org/10.3389/fonc.2020.619317] [PMID: 33643917]
[56]
Hecht M, Harrer T, Körber V, et al. Cytotoxic effect of Efavirenz in BxPC-3 pancreatic cancer cells is based on oxidative stress and is synergistic with ionizing radiation. Oncol Lett 2018; 15(2): 1728-36.
[http://dx.doi.org/10.3892/ol.2017.7523] [PMID: 29434868]
[57]
Veschi S, De Lellis L, Florio R, et al. Effects of repurposed drug candidates nitroxoline and nelfinavir as single agents or in combination with erlotinib in pancreatic cancer cells. J Exp Clin Cancer Res 2018; 37(1): 236.
[http://dx.doi.org/10.1186/s13046-018-0904-2] [PMID: 30241558]
[58]
Batchu R, Gruzdyn O, Bryant C, et al. Ritonavir-mediated induction of apoptosis in pancreatic cancer occurs via the RB/E2F-1 and AKT pathways. Pharmaceuticals 2014; 7(1): 46-57.
[http://dx.doi.org/10.3390/ph7010046] [PMID: 24451403]
[59]
Endo S, Nakata K, Ohuchida K, et al. Autophagy is required for activation of pancreatic stellate cells, associated with pancreatic cancer progression and promotes growth of pancreatic tumors in mice. Gastroenterology 2017; 152(6): 1492-1506.e24.
[http://dx.doi.org/10.1053/j.gastro.2017.01.010] [PMID: 28126348]
[60]
Bryant KL, Stalnecker CA, Zeitouni D, et al. Combination of ERK and autophagy inhibition as a treatment approach for pancreatic cancer. Nat Med 2019; 25(4): 628-40.
[http://dx.doi.org/10.1038/s41591-019-0368-8] [PMID: 30833752]
[61]
Yamamoto K, Venida A, Yano J, et al. Autophagy promotes immune evasion of pancreatic cancer by degrading MHC-I. Nature 2020; 581(7806): 100-5.
[http://dx.doi.org/10.1038/s41586-020-2229-5] [PMID: 32376951]
[62]
Jiang F, Xing HS, Chen WY, et al. Itraconazole inhibits proliferation of pancreatic cancer cells through activation of Bak‐1. J Cell Biochem 2019; 120(3): 4333-41.
[http://dx.doi.org/10.1002/jcb.27719] [PMID: 30260036]
[63]
Chen K, Cheng L, Qian W, et al. Itraconazole inhibits invasion and migration of pancreatic cancer cells by suppressing TGF-β/SMAD2/3 signaling. Oncol Rep 2018; 39(4): 1573-82.
[http://dx.doi.org/10.3892/or.2014.3012] [PMID: 29484419]
[64]
Li Y, Tang Y, Chen S, et al. Sequential therapy for pancreatic cancer by losartan- and gemcitabine-loaded magnetic mesoporous spheres. RSC Adv 2019; 9(34): 19690-8.
[http://dx.doi.org/10.1039/C9RA02180A] [PMID: 35519380]
[65]
Veschi S, Ronci M, Lanuti P, et al. Integrative proteomic and functional analyses provide novel insights into the action of the repurposed drug candidate nitroxoline in AsPC-1 cells. Sci Rep 2020; 10(1): 2574.
[http://dx.doi.org/10.1038/s41598-020-59492-4] [PMID: 32054977]
[66]
Ramachandran S, Srivastava SK. Repurposing pimavanserin, an anti-parkinson drug for pancreatic cancer therapy. Mol Ther Oncolytics 2020; 19: 19-32.
[http://dx.doi.org/10.1016/j.omto.2020.08.019] [PMID: 33024816]
[67]
Usugi E, Ishii K, Hirokawa Y, et al. Antifibrotic agent pirfenidone suppresses proliferation of human pancreatic cancer cells by inducing G0/G1 cell cycle arrest. Pharmacology 2019; 103(5-6): 250-6.
[http://dx.doi.org/10.1159/000496831] [PMID: 30731453]
[68]
Gao F, Wu J, Niu S, et al. Biodegradable, pH-sensitive hollow mesoporous organosilica nanoparticle (hmon) with controlled release of pirfenidone and ultrasound-target-microbubble-destruction (UTMD) for pancreatic cancer treatment. Theranostics 2019; 9(20): 6002-18.
[http://dx.doi.org/10.7150/thno.36135] [PMID: 31534533]
[69]
Xavier CPR, Castro I, Caires HR, et al. Chitinase 3-like-1 and fibronectin in the cargo of extracellular vesicles shed by human macrophages influence pancreatic cancer cellular response to gemcitabine. Cancer Lett 2021; 501: 210-23.
[http://dx.doi.org/10.1016/j.canlet.2020.11.013] [PMID: 33212158]
[70]
Lee L, Ito T, Jensen RT. Everolimus in the treatment of neuroendocrine tumors: Efficacy, side-effects, resistance, and factors affecting its place in the treatment sequence. Expert Opin Pharmacother 2018; 19(8): 909-28.
[http://dx.doi.org/10.1080/14656566.2018.1476492] [PMID: 29757017]
[71]
Sahoo BM, Ravi Kumar BVV, Sruti J, Mahapatra MK, Banik BK, Borah P. Drug repurposing strategy (DRS): Emerging approach to identify potential therapeutics for treatment of novel coronavirus infection. Front Mol Biosci 2021; 8: 628144.
[http://dx.doi.org/10.3389/fmolb.2021.628144] [PMID: 33718434]
[72]
Khataniar A, Pathak U, Rajkhowa S, Jha AN. A comprehensive review of drug repurposing strategies against known drug targets of COVID-19. COVID 2022; 2(2): 148-67.
[http://dx.doi.org/10.3390/covid2020011]
[73]
Beck BR, Shin B, Choi Y, Park S, Kang K. Predicting commercially available antiviral drugs that may act on the novel coronavirus (SARS-CoV-2) through a drug-target interaction deep learning model. Comput Struct Biotechnol J 2020; 18: 784-90.
[http://dx.doi.org/10.1016/j.csbj.2020.03.025] [PMID: 32280433]
[74]
Peele KA, Kumar V, Parate S, Srirama K, Lee KW, Venkateswarulu TC. Insilico drug repurposing using FDA approved drugs against Membrane protein of SARS-CoV-2. J Pharm Sci 2021; 110(6): 2346-54.
[http://dx.doi.org/10.1016/j.xphs.2021.03.004] [PMID: 33684397]
[75]
Li Z, Li X, Huang YY, et al. Identify potent SARS-CoV-2 main protease inhibitors via accelerated free energy perturbation-based virtual screening of existing drugs. Proc Natl Acad Sci 2020; 117(44): 27381-7.
[http://dx.doi.org/10.1073/pnas.2010470117] [PMID: 33051297]
[76]
Das G, Das T, Chowdhury N, Chatterjee D, Bagchi A, Ghosh Z. Repurposed drugs and nutraceuticals targeting envelope protein: A possible therapeutic strategy against COVID-19. Genomics 2021; 113(1): 1129-40.
[http://dx.doi.org/10.1016/j.ygeno.2020.11.009] [PMID: 33189776]
[77]
Hu X, Zhou Z, Li F, et al. The study of antiviral drugs targeting SARS-CoV-2 nucleocapsid and spike proteins through large-scale compound repurposing. Heliyon 2021; 7(3): e06387.
[http://dx.doi.org/10.1016/j.heliyon.2021.e06387] [PMID: 33688584]
[78]
Faria SHDM, Teleschi JG. Computational search for drug repurposing to identify potential inhibitors against SARS-COV-2 using molecular docking, QTAIM and IQA methods in viral spike protein – human ACE2 interface. J Mol Struct 2021; 1232: 130076.
[http://dx.doi.org/10.1016/j.molstruc.2021.130076] [PMID: 33583954]
[79]
Abbas M. Potential role of nanoparticles in treating the accumulation of amyloid-beta peptide in alzheimer’s patients. Polymers 2021; 13(7): 1051.
[http://dx.doi.org/10.3390/polym13071051] [PMID: 33801619]
[80]
Khan NH, Mir M, Ngowi EE, et al. Nanomedicine: A promising way to manage alzheimer’s disease. Front Bioeng Biotechnol 2021; 9: 630055.
[http://dx.doi.org/10.3389/fbioe.2021.630055] [PMID: 33996777]
[81]
Corbett A, Pickett J, Burns A, et al. Drug repositioning for Alzheimer’s disease. Nat Rev Drug Discov 2012; 11(11): 833-46.
[http://dx.doi.org/10.1038/nrd3869] [PMID: 23123941]
[82]
Das AKK, Sharma D, Sharma L. Drug repurposing strategy for treating Alzheimer’s disease. Alzheimers Dement 2021; 17(S9): e058503.
[http://dx.doi.org/10.1002/alz.058503]
[83]
Lai SW, Hwang BF, Kuo YH, Liu CS, Liao KF. Allopurinol use and the risk of dementia: A meta-analysis of case–control studies. Medicine 2022; 101(26): e29827.
[http://dx.doi.org/10.1097/MD.0000000000029827] [PMID: 35777042]
[84]
Kondo T, Banno H, Okunomiya T, et al. Repurposing bromocriptine for Aβ metabolism in Alzheimer’s disease (REBRAnD) study: Randomised placebo-controlled double-blind comparative trial and open-label extension trial to investigate the safety and efficacy of bromocriptine in Alzheimer’s disease with presenilin 1 (PSEN1) mutations. BMJ Open 2021; 11(6): e051343.
[http://dx.doi.org/10.1136/bmjopen-2021-051343] [PMID: 34193504]
[85]
Maier F, Spottke A, Bach JP, et al. Bupropion for the treatment of apathy in alzheimer disease: A randomized clinical trial. JAMA Netw Open 2020; 3(5): e206027.
[http://dx.doi.org/10.1001/jamanetworkopen.2020.6027] [PMID: 32463470]
[86]
Henderson VW, Ala T, Sainani KL, et al. Raloxifene for women with Alzheimer disease. Neurology 2015; 85(22): 1937-44.
[http://dx.doi.org/10.1212/WNL.0000000000002171] [PMID: 26537053]
[87]
Ballard C, Aarsland D, Cummings J, et al. Drug repositioning and repurposing for Alzheimer disease. Nat Rev Neurol 2020; 16(12): 661-73.
[http://dx.doi.org/10.1038/s41582-020-0397-4] [PMID: 32939050]
[88]
Bauzon J, Lee G, Cummings J. Repurposed agents in the Alzheimer’s disease drug development pipeline. Alzheimers Res Ther 2020; 12(1): 98.
[http://dx.doi.org/10.1186/s13195-020-00662-x] [PMID: 32807237]
[89]
Mucke HAM. The case of galantamine: Repurposing and late blooming of a cholinergic drug. Future Sci OA 2015; 1(4): fso.15.73.
[http://dx.doi.org/10.4155/fso.15.73] [PMID: 28031923]
[90]
Pantziarka P, Verbaanderd C, Sukhatme V, et al. ReDO_DB: The repurposing drugs in oncology database. Ecancermedicalscience 2018; 12: 886.
[http://dx.doi.org/10.3332/ecancer.2018.886] [PMID: 30679953]
[91]
Crosby NJ, Deane K, Clarke CE. Amantadine in Parkinson’s disease. Cochrane Libr 2003; 2010(1): CD003468.
[http://dx.doi.org/10.1002/14651858.CD003468] [PMID: 12535476]
[92]
Geller D, McCarthy K, Mancuso E, Gendron C, Geller D. Atomoxetine for the treatment of attention-deficit/hyperactivity disorder in children and adolescents: A review. Neuropsychiatr Dis Treat 2009; 5: 215-26.
[http://dx.doi.org/10.2147/NDT.S3896] [PMID: 19557116]
[93]
Wilkes S. The use of bupropion SR in cigarette smoking cessation. Int J Chron Obstruct Pulmon Dis 2008; 3(1): 45-53.
[http://dx.doi.org/10.2147/COPD.S1121] [PMID: 18488428]
[94]
Thomas SD, Jha NK, Sadek B, Ojha S. Repurposing dimethyl fumarate for cardiovascular diseases: Pharmacological effects, molecular mechanisms, and therapeutic promise. Pharmaceuticals 2022; 15(5): 497.
[http://dx.doi.org/10.3390/ph15050497] [PMID: 35631325]
[95]
Wright A, Vandenberg C. Duloxetine in the treatment of generalized anxiety disorder. Int J Gen Med 2009; 2: 153-62.
[PMID: 20360899]
[96]
Wiffen PJ, Derry S, Bell RF, et al. Gabapentin for chronic neuropathic pain in adults. Cochrane Libr 2017; 2020(2): CD007938.
[http://dx.doi.org/10.1002/14651858.CD007938.pub4] [PMID: 28597471]
[97]
Fujita M, Tamano R, Yoneda S, et al. Ibudilast produces anti-allodynic effects at the persistent phase of peripheral or central neuropathic pain in rats: Different inhibitory mechanism on spinal microglia from minocycline and propentofylline. Eur J Pharmacol 2018; 833: 263-74.
[http://dx.doi.org/10.1016/j.ejphar.2018.06.009] [PMID: 29886243]
[98]
Lopez-Olivo MA, Siddhanamatha HR, Shea B, Tugwell P, Wells GA, Suarez-Almazor ME. Methotrexate for treating rheumatoid arthritis. Cochrane Libr 2014; 2014(6): CD000957.
[http://dx.doi.org/10.1002/14651858] [PMID: 24916606]
[99]
English C, Rey JA, Rufin C. Milnacipran (Savella), a treatment option for fibromyalgia. P T 2010; 35(5): 261-6.
[100]
Morgan FH, Laufgraben MJ. Mifepristone for management of Cushing’s syndrome. Pharmacotherapy 2013; 33(3): 319-29.
[http://dx.doi.org/10.1002/phar.1202] [PMID: 23436494]
[101]
Suchonwanit P, Thammarucha S, Leerunyakul K. Minoxidil and its use in hair disorders: A review. Drug Des Devel Ther 2019; 13: 2777-86.
[http://dx.doi.org/10.2147/DDDT.S214907] [PMID: 31496654]
[102]
Linde K, Rossnagel K. Propranolol for migraine prophylaxis. Cochrane Libr 2017; 2(2): CD003225.
[http://dx.doi.org/10.1002/14651858.CD003225.pub3] [PMID: 28212466]
[103]
Kushida CA. Ropinirole for the treatment of restless legs syndrome. Neuropsychiatr Dis Treat 2006; 2(4): 407-19.
[http://dx.doi.org/10.2147/nedt.2006.2.4.407] [PMID: 19412490]
[104]
Ghofrani HA, Osterloh IH, Grimminger F. Sildenafil: From angina to erectile dysfunction to pulmonary hypertension and beyond. Nat Rev Drug Discov 2006; 5(8): 689-702.
[http://dx.doi.org/10.1038/nrd2030] [PMID: 16883306]
[105]
Dudley JT, Sirota M, Shenoy M, et al. Computational repositioning of the anticonvulsant topiramate for inflammatory bowel disease. Sci Transl Med 2011; 3(96): 96ra76.
[http://dx.doi.org/10.1126/scitranslmed.3002648] [PMID: 21849664]
[106]
Cipriani A, Reid K, Young AH, Macritchie K, Geddes J. Valproic acid, valproate and divalproex in the maintenance treatment of bipolar disorder. Cochrane Libr 2013; 2013(10): CD003196.
[http://dx.doi.org/10.1002/14651858.CD003196.pub2] [PMID: 24132760]
[107]
Tsherniak A, Vazquez F, Montgomery PG, et al. Defining a cancer dependency map. Cell 2017; 170(3): 564-576.e16.
[http://dx.doi.org/10.1016/j.cell.2017.06.010] [PMID: 28753430]
[108]
Mule S, Singh A, Greish K, Sahebkar A, Kesharwani P, Shukla R. Drug repurposing strategies and key challenges for COVID-19 management. J Drug Target 2022; 30(4): 413-29.
[http://dx.doi.org/10.1080/1061186X.2021.2013852] [PMID: 34854327]
[109]
Ng YL, Salim CK, Chu JJH. Drug repurposing for COVID-19: Approaches, challenges and promising candidates. Pharmacol Ther 2021; 228: 107930.
[http://dx.doi.org/10.1016/j.pharmthera.2021.107930] [PMID: 34174275]
[110]
Sultana J, Crisafulli S, Gabbay F, Lynn E, Shakir S, Trifirò G. Challenges for drug repurposing in the COVID-19 Pandemic Era. Front Pharmacol 2020; 11: 588654.
[http://dx.doi.org/10.3389/fphar.2020.588654] [PMID: 33240091]
[111]
Sonehara K, Okada Y. Genomics-driven drug discovery based on disease-susceptibility genes. Inflamm Regen 2021; 41(1): 8.
[http://dx.doi.org/10.1186/s41232-021-00158-7] [PMID: 33691789]
[112]
Naylor S, Schonfeld JM. Therapeutic drug repurposing, repositioning and rescue part I: Overview. 2022. Available from: https://www.ddw-online.com/therapeutic-drug-repurposing-repositioning-and-rescue-part-i-overview-1463-201412/ (Accessed on: Nov.15, 2022)
[113]
Sharma PP, Bansal M, Sethi A, et al. Computational methods directed towards drug repurposing for COVID-19: Advantages and limitations. RSC Adv 2021; 11(57): 36181-98.
[http://dx.doi.org/10.1039/D1RA05320E] [PMID: 35492747]
[114]
Senanayake SL. Drug repurposing strategies for COVID-19. Future Drug Discov 2020; 2(2): fdd-2020-.
[http://dx.doi.org/10.4155/fdd-2020-0010]
[115]
Mehta PP, Dhapte-Pawar VS. Repurposing drug molecules for new pulmonary therapeutic interventions. Drug Deliv Transl Res 2021; 11(5): 1829-48.
[http://dx.doi.org/10.1007/s13346-020-00874-6] [PMID: 33188495]
[116]
Naasani I. Compare analysis, a bioinformatic approach to accelerate drug repurposing against COVID-19 and other emerging epidemics. SLAS Discov 2021; 26(3): 345-51.
[http://dx.doi.org/10.1177/2472555220975672] [PMID: 33267713]
[117]
Behera SK, Vhora N, Contractor D, et al. Computational drug repurposing study elucidating simultaneous inhibition of entry and replication of novel corona virus by Grazoprevir. Sci Rep 2021; 11(1): 7307.
[http://dx.doi.org/10.1038/s41598-021-86712-2] [PMID: 33790352]
[118]
Talevi A, Bellera CL. Challenges and opportunities with drug repurposing: Finding strategies to find alternative uses of therapeutics. Expert Opin Drug Discov 2020; 15(4): 397-401.
[http://dx.doi.org/10.1080/17460441.2020.1704729] [PMID: 31847616]
[119]
Mucke HAM. Drug repositioning in the mirror of patenting: Surveying and mining uncharted territory. Front Pharmacol 2017; 8: 927.
[http://dx.doi.org/10.3389/fphar.2017.00927] [PMID: 29326592]
[120]
Rastegar-Mojarad M, Ye Z, Kolesar JM, Hebbring SJ, Lin SM. Opportunities for drug repositioning from phenome-wide association studies. Nat Biotechnol 2015; 33(4): 342-5.
[http://dx.doi.org/10.1038/nbt.3183] [PMID: 25850054]
[121]
Heus JJ, de Pauw ES, Mirjam L, Margherita M, Michael R H, Michal H. Importance of intellectual property generated by biomedical research at universities and academic hospitals. J Clin Transl Res 2017; 3(2): 250-9.
[http://dx.doi.org/10.18053/jctres.03.201702.005] [PMID: 30873476]
[122]
Gurgula O. Strategic patenting by pharmaceutical companies - should competition law intervene? IIC Int Rev Ind Prop Copyr Law 2020; 51(9): 1062-85.
[http://dx.doi.org/10.1007/s40319-020-00985-0] [PMID: 33132411]
[123]
Cavalla D. Scientific commercial value of drug repurposing. In: Dudley J, Berliocchi LE, Eds. Drug Repositioning - Approaches and Applications for Neurotherapeutics. Abingdon: Taylor & Francis Group 2017; pp. 3-22.
[http://dx.doi.org/10.4324/9781315373669-1]
[124]
Padhy BM, Gupta YK. Drug repositioning: Re-investigating existing drugs for new therapeutic indications. J Postgrad Med 2011; 57(2): 153-60.
[http://dx.doi.org/10.4103/0022-3859.81870] [PMID: 21654146]
[125]
Verbaanderd C, Rooman I, Meheus L, Huys I. On-label or off-label? Overcoming regulatory and financial barriers to bring repurposed medicines to cancer patients. Front Pharmacol 2020; 10: 1664.
[http://dx.doi.org/10.3389/fphar.2019.01664] [PMID: 32076405]
[126]
Smith RB. Repositioned drugs: Integrating intellectual property and regulatory strategies. Drug Discov Today Ther Strateg 2011; 8(3-4): 131-7.
[http://dx.doi.org/10.1016/j.ddstr.2011.06.008]
[127]
Allarakhia M. Open-source approaches for the repurposing of existing or failed candidate drugs: Learning from and applying the lessons across diseases. Drug Des Devel Ther 2013; 7: 753-66.
[http://dx.doi.org/10.2147/DDDT.S46289] [PMID: 23966771]
[128]
Van Norman GA. Phase II trials in drug development and adaptive trial design. JACC Basic Transl Sci 2019; 4(3): 428-37.
[http://dx.doi.org/10.1016/j.jacbts.2019.02.005] [PMID: 31312766]
[129]
Manjesh PS, Shetty YC, Brahma S. Compassionate drug use: Current status in India. Perspect Clin Res 2020; 11(1): 3-7.
[http://dx.doi.org/10.4103/picr.PICR_119_18] [PMID: 32154142]
[130]
Banta D. What is technology assessment? Int J Technol Assess Health Care 2009; 25(S1): 7-9.
[http://dx.doi.org/10.1017/S0266462309090333] [PMID: 19519979]
[131]
Patil S. Early access programs: Benefits, challenges, and key considerations for successful implementation. Perspect Clin Res 2016; 7(1): 4-8.
[http://dx.doi.org/10.4103/2229-3485.173779] [PMID: 26955570]
[132]
Strovel J, Sittampalam S, Coussens NP, et al. Early drug discovery and development guidelines: For academic researchers, collaborators, and start-up companies. In: Markossian S, Grossman A, Brimacombe K, Eds. Assay Guidance Manual. Bethesda, MD: Eli Lilly & Company and the National Center for Advancing Translational Sciences 2004.
[133]
Statement for healthcare professionals: How COVID-19 vaccines are regulated for safety and effectiveness. 2022. Available from: https://www.who.int/news/item/17-05-2022-statement-for-healthcare-professionals-how-COVID-19-vaccines-are-regulated-for-safety-and-effectiveness(Accessed on: Nov. 01, 2022)
[134]
Nair B. Clinical trial designs. Indian Dermatol Online J 2019; 10(2): 193-201.
[http://dx.doi.org/10.4103/idoj.IDOJ_475_18] [PMID: 30984604]
[135]
Lamph S. Regulation of medical devices outside the European Union. J R Soc Med 2012; 105(1_suppl): 12-21.
[http://dx.doi.org/10.1258/jrsm.2012.120037] [PMID: 22508968]
[136]
Nagata R, Raflzadeh-Kabe J-D. Japanese pharmaceutical and regulatory environment. Dialogues Clin Neurosci 2002; 4(4): 470-4.
[http://dx.doi.org/10.31887/DCNS.2002.4.4/rnagata] [PMID: 22034129]
[137]
Beigel JH, Tomashek KM, Dodd LE, et al. Remdesivir for the treatment of Covid-19 - Final report. N Engl J Med 2020; 383(19): 1813-26.
[http://dx.doi.org/10.1056/NEJMoa2007764] [PMID: 32445440]
[138]
Wang Y, Zhang D, Du G, et al. Remdesivir in adults with severe COVID-19: A randomised, double-blind, placebo-controlled, multicen-tre trial. Lancet 2020; 395(10236): 1569-78.
[http://dx.doi.org/10.1016/S0140-6736(20)31022-9] [PMID: 32423584]
[139]
Pandey A. Overview of all phases in drug development and discovery process. 2022. Available from: https://www.nebiolab.com/drug-discovery-and-development-process/(Accessed on Nov. 16, 2022)
[140]
Kermali M, Khalsa RK, Pillai K, Ismail Z, Harky A. The role of biomarkers in diagnosis of COVID-19 - A systematic review. Life Sci 2020; 254: 117788.
[http://dx.doi.org/10.1016/j.lfs.2020.117788] [PMID: 32475810]
[141]
Zhang L, Guo H. Biomarkers of COVID-19 and technologies to combat SARS-CoV-2. Adv Biomarker Sci Technol 2020; 2: 1-23.
[http://dx.doi.org/10.1016/j.abst.2020.08.001] [PMID: 33511330]
[142]
Conditional marketing authorization. 2022. Available from: https://www.ema.europa.eu/en/human-regulatory/marketing-authorisation/conditional-marketing-authorisation(Accessed on: Nov. 16, 2022)
[143]
Vreman RA, Belitser SV, Mota ATM, et al. Efficacy gap between phase II and subsequent phase III studies in oncology. Br J Clin Pharmacol 2020; 86(7): 1306-13.
[http://dx.doi.org/10.1111/bcp.14237] [PMID: 32034790]
[144]
Alomar M, Tawfiq AM, Hassan N, Palaian S. Post marketing surveillance of suspected adverse drug reactions through spontaneous reporting: Current status, challenges and the future. Ther Adv Drug Saf 2020; 11.
[http://dx.doi.org/10.1177/2042098620938595] [PMID: 32843958]
[145]
Balian JD, Wherry JC, Malhotra R, Perentesis V. Roadmap to risk evaluation and mitigation strategies (REMS) success. Ther Adv Drug Saf 2010; 1(1): 21-38.
[http://dx.doi.org/10.1177/2042098610381419] [PMID: 25083193]
[146]
European Medicines Agency pre-authorisation procedural advice for users of the centralised procedure. 2022. Available from: https://www.ema.europa.eu/en/documents/regulatory-procedural-guideline/european-medicines-agency-pre-authorisation-procedural-advice-users-centralised-procedure_en-0.pdf(Accessed on: Nov. 15, 2022)
[147]
EU Regulatory procedures for a marketing authorisation (MA). Available from: https://learning.eupati.eu/mod/book/tool/print/index.php?id=893(Accessed on: Nov. 16, 2022)
[148]
Shah RR, Stonier PD. Repurposing old drugs in oncology: Opportunities with clinical and regulatory challenges ahead. J Clin Pharm Ther 2019; 44(1): 6-22.
[http://dx.doi.org/10.1111/jcpt.12759] [PMID: 30218625]
[149]
Authorisation of medicines.. > 2022. Available from: https://www.ema.europa.eu/en/about-us/what-we-do/authorisation-medicines(Accessed on: Nov.12, 2022)
[150]
Murteira S, Millier A, Ghezaiel Z, Lamure M. Drug reformulations and repositioning in the pharmaceutical industry and their impact on market access: Regulatory implications. J Mark Access Health Policy 2014; 2(1): 22813.
[http://dx.doi.org/10.3402/jmahp.v2.22813] [PMID: 27226839]
[151]
Ashburn TT, Thor KB. Drug repositioning: Identifying and developing new uses for existing drugs. Nat Rev Drug Discov 2004; 3(8): 673-83.
[http://dx.doi.org/10.1038/nrd1468] [PMID: 15286734]
[152]
Dey G. An overview of drug repurposing: Review article. J Med Sci Clin Res 2019; 7(2): 3-5.
[http://dx.doi.org/10.18535/jmscr/v7i2.12]
[153]
Panda S, Kumari L, Badwaik HR, et al. Computational Approaches for Novel Therapeutic and Diagnostic Designing to Mitigate SARS-CoV-2 Infection. Elsevier 2022.
[http://dx.doi.org/10.1016/B978-0-323-91172-6.00008-X]
[154]
An increasing number of companies are using a once-obscure FDA drug approval pathway”: Regulatory Focus. 2022. Available from: http://www.raps.org/Regulatory-Focus/News/2015/04/08/21933/An-Increasing-Number-of-Companies-Are-Using-a-Once-Obscure-FDA-Drug-Approval-Pathway/(Accessed on Nov. 16, 2022)
[155]
Guidance for Industry: Applications covered by section 505(b)(2). 2022. Available from: https://www.fda.gov/downloads/Drugs/Guidances/ucm079345.pdf(Accessed on Nov. 15, 2022)
[156]
Weng HB, Chen HX, Wang MW. Innovation in neglected tropical disease drug discovery and development. Infect Dis Poverty 2018; 7(1): 67.
[http://dx.doi.org/10.1186/s40249-018-0444-1] [PMID: 29950174]
[157]
Jean-Robert Ioset , Chatelain. Drug discovery and development for neglected diseases: The DNDi model. Drug Des Devel Ther 2011; 5: 175-81.
[http://dx.doi.org/10.2147/DDDT.S16381] [PMID: 21552487]
[158]
Olliaro PL, Kuesel AC, Reeder JC. A changing model for developing health products for poverty-related infectious diseases. PLoS Negl Trop Dis 2015; 9(1): e3379.
[http://dx.doi.org/10.1371/journal.pntd.0003379] [PMID: 25569161]
[159]
Huang F, Zhang C, Liu Q, et al. Identification of amitriptyline HCl, flavin adenine dinucleotide, azacitidine and calcitriol as repurposing drugs for influenza A H5N1 virus-induced lung injury. PLoS Pathog 2020; 16(3): e1008341.
[http://dx.doi.org/10.1371/journal.ppat.1008341] [PMID: 32176725]
[160]
Bhardwaj A, Scaria V, Raghava GPS, et al. Open source drug discovery- A new paradigm of collaborative research in tuberculosis drug development. Tuberculosis 2011; 91(5): 479-86.
[http://dx.doi.org/10.1016/j.tube.2011.06.004] [PMID: 21782516]
[161]
Munir A, Vedithi SC, Chaplin AK, Blundell TL. Genomics, computational biology and drug discovery for mycobacterial infections: Fighting the emergence of resistance. Front Genet 2020; 11: 965.
[http://dx.doi.org/10.3389/fgene.2020.00965] [PMID: 33101362]
[162]
Huszár S, Chibale K, Singh V. The quest for the holy grail: New antitubercular chemical entities, targets and strategies. Drug Discov Today 2020; 25(4): 772-80.
[http://dx.doi.org/10.1016/j.drudis.2020.02.003] [PMID: 32062007]
[163]
Angula KT, Legoabe LJ, Beteck RM. Chemical classes presenting novel antituberculosis agents currently in different phases of drug development: A 2010-2020 Review. Pharmaceuticals 2021; 14(5): 461.
[http://dx.doi.org/10.3390/ph14050461] [PMID: 34068171]
[164]
Differding E. The drug discovery and development industry in india-two decades of proprietary small-molecule R&D. ChemMedChem 2017; 12(11): 786-818.
[http://dx.doi.org/10.1002/cmdc.201700043] [PMID: 28464443]
[165]
Breckenridge A, Jacob R. Overcoming the legal and regulatory barriers to drug repurposing. Nat Rev Drug Discov 2019; 18(1): 1-2.
[http://dx.doi.org/10.1038/nrd.2018.92] [PMID: 29880920]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy