Generic placeholder image

Current Analytical Chemistry

Editor-in-Chief

ISSN (Print): 1573-4110
ISSN (Online): 1875-6727

Perspective

New Toxicological Endpoints of Pesticides: Perspectives on Metabolomics

Author(s): Bizhang Dong*

Volume 19, Issue 7, 2023

Published on: 10 October, 2023

Page: [509 - 512] Pages: 4

DOI: 10.2174/0115734110275151231005183853

Open Access Journals Promotions 2
Abstract

Food safety has received increasing attention, and pesticide contamination is one of the primary issues. Many toxicological endpoints have been established to evaluate the hazards of pesticides. However, the sensitivity of toxic endpoints is dominated by analytical methods. The risks of pesticides may be underestimated when using insensitive analytical methods to establish the toxicological endpoints. Therefore, it is necessary to find highly sensitive analytical approaches to develop a toxicological endpoint. Recently, metabolomics has been widely applied for investigating the toxicological mechanism of environmental pollutants in animals and plants with higher sensitivity. However, metabolomics has not been utilized to establish toxicological endpoints. Herein, the potential of metabolomics for toxicological endpoint establishment is briefly discussed.

Keywords: Pesticide, toxicological endpoints, metabolomics, sensitivity, transformation product, co-exposure.

Next »
Graphical Abstract
[1]
Umapathi, R.; Rani, G.M.; Kim, E.; Park, S.Y.; Cho, Y.; Huh, Y.S. Sowing kernels for food safety: Importance of rapid on‐site detction of pesticide residues in agricultural foods. Food Front., 2022, 3(4), 666-676.
[http://dx.doi.org/10.1002/fft2.166]
[2]
Umapathi, R.; Park, B.; Sonwal, S.; Rani, G.M.; Cho, Y.; Huh, Y.S. Advances in optical-sensing strategies for the on-site detection of pesticides in agricultural foods. Trends Food Sci. Technol., 2022, 119, 69-89.
[http://dx.doi.org/10.1016/j.tifs.2021.11.018]
[3]
Cao, Y.; Xi, J.; You, X.; Liu, W.; Luan, Y. Dose–response genotoxicity of triclosan in mice: An estimate of acceptable daily intake based on organ toxicity. Toxicol. Res., 2021, 10(6), 1153-1161.
[http://dx.doi.org/10.1093/toxres/tfab098] [PMID: 34956618]
[4]
Dorato, M.A.; Engelhardt, J.A. The no-observed-adverse-effect-level in drug safety evaluations: Use, issues, and definition(s). Regul. Toxicol. Pharmacol., 2005, 42(3), 265-274.
[http://dx.doi.org/10.1016/j.yrtph.2005.05.004] [PMID: 15979222]
[5]
Mesnage, R.; Arno, M.; Costanzo, M.; Malatesta, M.; Séralini, G.E.; Antoniou, M.N. Transcriptome profile analysis reflects rat liver and kidney damage following chronic ultra-low dose Roundup exposure. Environ. Health, 2015, 14(1), 70.
[http://dx.doi.org/10.1186/s12940-015-0056-1] [PMID: 26302742]
[6]
Xu, Y.; Zhang, Y.; Tao, Q.; Sun, Q.; Zheng, Y.; Yin, D.; Yang, Y. A possible but unrecognized risk of acceptable daily intake dose triazole pesticides exposure—bile acid disturbance induced pharmacokinetic changes of oral medication. Chemosphere, 2023, 322, 138209.
[http://dx.doi.org/10.1016/j.chemosphere.2023.138209] [PMID: 36822518]
[7]
Sol Dourdin, T.; Rivière, G.; Cormier, A.; Di Poi, C.; Guyomard, K.; Rabiller, M.; Akcha, F.; Bah Sadialiou, T.; Le Monier, P.; Sussarellu, R. Molecular and phenotypic effects of early exposure to an environmentally relevant pesticide mixture in the Pacific oyster, Crassostrea gigas. Environ. Pollut., 2023, 326, 121472.
[http://dx.doi.org/10.1016/j.envpol.2023.121472] [PMID: 36965683]
[8]
Nicholson, J.K.; Lindon, J.C.; Holmes, E. ‘Metabonomics’: Understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data. Xenobiotica, 1999, 29(11), 1181-1189.
[http://dx.doi.org/10.1080/004982599238047] [PMID: 10598751]
[9]
Liu, L.; Wu, Q.; Miao, X.; Fan, T.; Meng, Z.; Chen, X.; Zhu, W. Study on toxicity effects of environmental pollutants based on metabolomics: A review. Chemosphere, 2022, 286(Pt 2), 131815.
[http://dx.doi.org/10.1016/j.chemosphere.2021.131815] [PMID: 34375834]
[10]
Shahid, M.; Singh, U.B.; Khan, M.S. Metabolomics-based mechanistic insights into revealing the adverse effects of pesticides on plants: An interactive review. Metabolites, 2023, 13(2), 246.
[http://dx.doi.org/10.3390/metabo13020246] [PMID: 36837865]
[11]
Porto, V.A.; da Rocha Júnior, E.R.; Ursulino, J.S.; Porto, R.S.; da Silva, M.; de Jesus, L.W.O.; Oliveira, J.M.; Crispim, A.C.; Santos, J.C.C.; Aquino, T.M. NMR-based metabolomics applied to ecotoxicology with zebrafish (Danio rerio) as a prominent model for metabolic profiling and biomarker discovery: Overviewing the most recent approaches. Sci. Total Environ., 2023, 868, 161737.
[http://dx.doi.org/10.1016/j.scitotenv.2023.161737] [PMID: 36693575]
[12]
Utpott, M.; Rodrigues, E.; Rios, A.O.; Mercali, G.D.; Flôres, S.H. Metabolomics: An analytical technique for food processing evaluation. Food Chem., 2022, 366, 130685.
[http://dx.doi.org/10.1016/j.foodchem.2021.130685] [PMID: 34333182]
[13]
Zhao, L.; Zhang, Y.; Wang, L.; Liu, X.; Zhang, J.; He, Z. Stereoselective metabolomic and lipidomic responses of lettuce (Lactuca sativa L.) exposing to chiral triazole fungicide tebuconazole. Food Chem., 2022, 371, 131209.
[http://dx.doi.org/10.1016/j.foodchem.2021.131209] [PMID: 34598121]
[14]
Long, T.; Gu, R.; Linghu, C.; Long, J.; Kennelly, E.J.; Long, C. UPLC-QTOF-MS-based metabolomics and chemometrics studies of geographically diverse Acer truncatum leaves: A traditional herbal tea in Northern China. Food Chem., 2023, 417, 135873.
[http://dx.doi.org/10.1016/j.foodchem.2023.135873] [PMID: 36933422]
[15]
de Graaf, L.; Boulanger, M.; Bureau, M.; Bouvier, G.; Meryet-Figuiere, M.; Tual, S.; Lebailly, P.; Baldi, I. Occupational pesticide exposure, cancer and chronic neurological disorders: A systematic review of epidemiological studies in greenspace workers. Environ. Res., 2022, 203, 111822.
[http://dx.doi.org/10.1016/j.envres.2021.111822] [PMID: 34352232]
[16]
Lu, Y.S.; Yang, S.L.; Gou, C.L.; Wang, X.L.; Wen, X.; He, X.R.; Guo, X.X.; Xu, Y.Y.; Yu, J.; Qiu, J.; Qian, Y.Z. Integrated metabolomics and transcriptomics analysis reveals new biomarkers and mechanistic insights on atrazine exposures in MCF 7 cells. Ecotoxicol. Environ. Saf., 2022, 232, 113244.
[http://dx.doi.org/10.1016/j.ecoenv.2022.113244] [PMID: 35093817]
[17]
Hao, D.F.; Xu, W.; Wang, H.; Du, L.F.; Yang, J.D.; Zhao, X.J.; Sun, C.H. Metabolomic analysis of the toxic effect of chronic low-dose exposure to acephate on rats using ultra-performance liquid chromatography/mass spectrometry. Ecotoxicol. Environ. Saf., 2012, 83, 25-33.
[http://dx.doi.org/10.1016/j.ecoenv.2012.06.006] [PMID: 22727594]
[18]
Perez-Fernandez, C.; Morales-Navas, M.; Aguilera-Sáez, L.M.; Abreu, A.C.; Guardia-Escote, L.; Fernández, I.; Garrido-Cárdenas, J.A.; Colomina, M.T.; Giménez, E.; Sánchez-Santed, F. Medium and long-term effects of low doses of Chlorpyrifos during the postnatal, preweaning developmental stage on sociability, dominance, gut microbiota and plasma metabolites. Environ. Res., 2020, 184, 109341.
[http://dx.doi.org/10.1016/j.envres.2020.109341] [PMID: 32179266]
[19]
Hu, J.; Lesseur, C.; Miao, Y.; Manservisi, F.; Panzacchi, S.; Mandrioli, D.; Belpoggi, F.; Chen, J.; Petrick, L. Low-dose exposure of glyphosate-based herbicides disrupt the urine metabolome and its interaction with gut microbiota. Sci. Rep., 2021, 11(1), 3265.
[http://dx.doi.org/10.1038/s41598-021-82552-2] [PMID: 33547360]
[20]
Ji, C.; Song, Q.; Chen, Y.; Zhou, Z.; Wang, P.; Liu, J.; Sun, Z.; Zhao, M. The potential endocrine disruption of pesticide transformation products (TPs): The blind spot of pesticide risk assessment. Environ. Int., 2020, 137, 105490.
[http://dx.doi.org/10.1016/j.envint.2020.105490] [PMID: 32007685]
[21]
Alves, K.V.B.; Martinez, D.S.T.; Alves, O.L.; Barbieri, E. Co-exposure of carbon nanotubes with carbofuran pesticide affects metabolic rate in Palaemon pandaliformis (shrimp). Chemosphere, 2022, 288(Pt 1), 132359.
[http://dx.doi.org/10.1016/j.chemosphere.2021.132359] [PMID: 34627048]
[22]
Mesnage, R.; Teixeira, M.; Mandrioli, D.; Falcioni, L.; Ibragim, M.; Ducarmon, Q.R.; Zwittink, R.D.; Amiel, C.; Panoff, J.M.; Bourne, E.; Savage, E.; Mein, C.A.; Belpoggi, F.; Antoniou, M.N. Multi-omics phenotyping of the gut-liver axis reveals metabolic perturbations from a low-dose pesticide mixture in rats. Commun. Biol., 2021, 4(1), 471.
[http://dx.doi.org/10.1038/s42003-021-01990-w] [PMID: 33854195]
[23]
Wang, Y.; Gao, Z.; Liu, C.; Mao, L.; Liu, X.; Ren, J.; Lu, Z.; Yao, J.; Liu, X. Mixture toxicity of pyraclostrobine and metiram to the zebrafish (Danio rerio) and its potential mechanism. Environ. Sci. Pollut. Res. Int., 2023, 30(15), 44400-44414.
[http://dx.doi.org/10.1007/s11356-023-25518-3] [PMID: 36692725]
[24]
Gil-Solsona, R.; Álvarez-Muñoz, D.; Serra-Compte, A.; Rodríguez-Mozaz, S. (Xeno)metabolomics for the evaluation of aquatic organism’s exposure to field contaminated water. Trends Environ. Anal. Chem., 2021, 31, e00132.
[http://dx.doi.org/10.1016/j.teac.2021.e00132]
[25]
Bedia, C. Metabolomics in environmental toxicology: Applications and challenges. Trends Environ. Anal. Chem., 2022, 34, e00161.
[http://dx.doi.org/10.1016/j.teac.2022.e00161]
[26]
Chatterjee, N.; Kim, C.; Im, J.; Kim, S.; Choi, J. Mixture and individual effects of benzene, toluene, and formaldehyde in zebrafish (Danio rerio) development: Metabolomics, epigenetics, and behavioral approaches. Environ. Toxicol. Pharmacol., 2023, 97, 104031.
[http://dx.doi.org/10.1016/j.etap.2022.104031] [PMID: 36460283]
[27]
Hou, Y.; Ding, T.; Guan, Z.; Wang, J.; Yao, R.; Yu, Z.; Zhao, X. Untargeted metabolomics reveals the preventive effect of quercetin on nephrotoxicity induced by four organophosphorus pesticide mixtures. Food Chem. Toxicol., 2023, 175, 113747.
[http://dx.doi.org/10.1016/j.fct.2023.113747] [PMID: 36997054]

© 2024 Bentham Science Publishers | Privacy Policy