Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Editorial

Glucosinolates Biosynthesis, Characterization and Chemopreventive Properties

Author(s): Baskar Venkidasamy, Rajakumar Govindasamy and Muthu Thiruvengadam*

Volume 27, Issue 14, 2023

Published on: 10 October, 2023

Page: [1199 - 1201] Pages: 3

DOI: 10.2174/0113852728242322231004094103

Open Access Journals Promotions 2
Next »
[1]
Mitreiter, S.; Gigolashvili, T. Regulation of glucosinolate biosynthesis. J. Exp. Bot., 2021, 72(1), 70-91.
[http://dx.doi.org/10.1093/jxb/eraa479] [PMID: 33313802]
[2]
Nguyen, V.P.T.; Stewart, J.; Lopez, M.; Ioannou, I.; Allais, F. Glucosinolates: Natural occurrence, biosynthesis, accessibility, isolation, structures, and biological activities. Molecules, 2020, 25(19), 4537.
[http://dx.doi.org/10.3390/molecules25194537] [PMID: 33022970]
[3]
Chung, I.M.; Venkidasamy, B.; Thiruvengadam, M. Nickel oxide nanoparticles cause substantial physiological, phytochemical, and molecular-level changes in Chinese cabbage seedlings. Plant Physiol. Biochem., 2019, 139, 92-101.
[http://dx.doi.org/10.1016/j.plaphy.2019.03.010] [PMID: 30884416]
[4]
Förster, N.; Ulrichs, C.; Schreiner, M.; Müller, C.T.; Mewis, I. Development of a reliable extraction and quantification method for glucosinolates in Moringa oleifera. Food Chem., 2015, 166, 456-464.
[http://dx.doi.org/10.1016/j.foodchem.2014.06.043] [PMID: 25053080]
[5]
Ishikawa, S.; Maruyama, A.; Yamamoto, Y.; Hara, S. Extraction and characterization of glucosinolates and isothiocyanates from rape seed meal. J. Oleo Sci., 2014, 63(3), 303-308.
[http://dx.doi.org/10.5650/jos.ess13170] [PMID: 24492379]
[6]
Wang, T.; Liang, H.; Yuan, Q. Separation of sinigrin from Indian mustard (Brassica juncea L.) seed using macroporous ion-exchange resin. Korean J. Chem. Eng., 2012, 29(3), 396-403.
[http://dx.doi.org/10.1007/s11814-011-0175-5]
[7]
Arora, R.; Bhushan, S.; Arora, S. Changing trends in the methodologies of extraction and analysis of hydrolytic products of glucosinolates: A review.In: Glucosinolates, Reference Series in Phytochemistry; Mérillon, J.M.; Ramawat, K.G., Eds.; , 2017, pp. 383-405.
[http://dx.doi.org/10.1007/978-3-319-25462-3_13]
[8]
Blažević, I.; Montaut, S.; Burčul; F.; Olsen, C.E.; Burow, M.; Rollin, P.; Agerbirk, N. Glucosinolate structural diversity, identification, chemical synthesis and metabolism in plants. Phytochemistry, 2020, 169, 112100.
[http://dx.doi.org/10.1016/j.phytochem.2019.112100] [PMID: 31771793]
[9]
Doheny-Adams, T.; Redeker, K.; Kittipol, V.; Bancroft, I.; Hartley, S.E. Development of an efficient glucosinolate extraction method. Plant Methods, 2017, 13(1), 17.
[http://dx.doi.org/10.1186/s13007-017-0164-8] [PMID: 28344636]
[10]
Ares, A.M.; Nozal, M.J.; Bernal, J. Extraction, chemical characterization and biological activity determination of broccoli health promoting compounds. J. Chromatogr. A, 2013, 1313, 78-95.
[http://dx.doi.org/10.1016/j.chroma.2013.07.051] [PMID: 23899380]
[11]
Miękus; N.; Marszałek; K.; Podlacha, M.; Iqbal, A.; Puchalski, C.;Świergiel, A.H. Health benefits of plant-derived sulfur compounds, glucosinolates, and organosulfur compounds. Molecules, 2020, 25(17), 3804.
[http://dx.doi.org/10.3390/molecules25173804] [PMID: 32825600]
[12]
Krishnan, M.; Venkidasamy, B. PEITC: A prospective natural metabolite in oral cancer treatment. Oral Oncol., 2022, 133, 106044.
[http://dx.doi.org/10.1016/j.oraloncology.2022.106044] [PMID: 35908363]
[13]
Rekha, K.; Venkidasamy, B.; Govindasamy, R.; Neralla, M.; Thiruvengadam, M. Isothiocyanates (AITC & BITC) bioactive molecules: Therapeutic potential for oral cancer. Oral Oncol., 2022, 133, 106060.
[http://dx.doi.org/10.1016/j.oraloncology.2022.106060] [PMID: 35952583]
[14]
Melim, C.; Lauro, M.R.; Pires, I.M.; Oliveira, P.J.; Cabral, C. The role of glucosinolates from cruciferous vegetables (Brassicaceae) in gastrointestinal cancers: From prevention to therapeutics. Pharmaceutics, 2022, 14(1), 190.
[http://dx.doi.org/10.3390/pharmaceutics14010190] [PMID: 35057085]
[15]
Dinkova-Kostova, A.T.; Kostov, R.V. Glucosinolates and isothiocyanates in health and disease. Trends Mol. Med., 2012, 18(6), 337-347.
[http://dx.doi.org/10.1016/j.molmed.2012.04.003] [PMID: 22578879]
[16]
Melrose, J. The glucosinolates: A sulphur glucoside family of mustard anti-tumour and antimicrobial phytochemicals of potential therapeutic application. Biomedicines, 2019, 7(3), 62.
[http://dx.doi.org/10.3390/biomedicines7030062] [PMID: 31430999]
[17]
Mikkelsen, M.D.; Buron, L.D.; Salomonsen, B.; Olsen, C.E.; Hansen, B.G.; Mortensen, U.H.; Halkier, B.A. Microbial production of indolylglucosinolate through engineering of a multi-gene pathway in a versatile yeast expression platform. Metab. Eng., 2012, 14(2), 104-111.
[http://dx.doi.org/10.1016/j.ymben.2012.01.006] [PMID: 22326477]
[18]
Yang, H.; Liu, F.; Li, Y.; Yu, B. Reconstructing biosynthetic pathway of the plant-derived cancer chemopreventive-precursor glucoraphanin in Escherichia coli. ACS Synth. Biol., 2018, 7(1), 121-131.
[http://dx.doi.org/10.1021/acssynbio.7b00256] [PMID: 29149798]
[19]
Petersen, A.; Crocoll, C.; Halkier, B.A. De novo production of benzyl glucosinolate in Escherichia coli. Metab. Eng., 2019, 54, 24-34.
[http://dx.doi.org/10.1016/j.ymben.2019.02.004] [PMID: 30831267]
[20]
Yang, H.; Qin, J.; Wang, X. EI-Shora, H.M.; Yu, B. Production of plant-derived anticancer precursor glucoraphanin in chromosomally engineered Escherichia coli. Microbiol. Res., 2020, 238, 126484.
[http://dx.doi.org/10.1016/j.micres.2020.126484] [PMID: 32408045]

© 2024 Bentham Science Publishers | Privacy Policy