Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Research Article

GC-MS Analysis, Antioxidant, and Antidiabetic Properties of Methanol Extract of Annona muricata L. Leaves - An In vitro and In silico Study

Author(s): Abhay Prakash Mishra, Manisha Nigam*, Jennifer Nambooze, Veronica F. Salau, Kolawole A. Olofinsan, Marcello Iriti* and Motlalepula G. Matsabisa*

Volume 27, Issue 17, 2023

Published on: 10 October, 2023

Page: [1531 - 1541] Pages: 11

DOI: 10.2174/0113852728254495231002100354

Price: $65

Abstract

The Annona muricata L. leaves have been long employed in the traditional remedy of diabetes mellitus (DM) and its comorbidities. Different analytical techniques were used to evaluate the methanol extract of this plant part. In vitro antidiabetic assays of A. muricata extract were analysed using α-glucosidase and α-amylase inhibition tests. Employing gas chromatography-mass spectrometry (GC-MS), the primary bioactive components of the methanol extract were identified. Additionally, molecular docking experiments regarding the identified compounds were performed by silicification of UCFS Chimera, Autodock Vina, and BIOVIA Discovery Studio software. The total phenolic content of the A. muricata leaf extract was 14.83 mg GAE/g and the total flavonoids 34.22 mg QE/g. The plant extract showed concentration-dependent ferric reducing antioxidant power (FRAP) when compared with the standard ascorbic acid whereas significant radical scavenging activity was exhibited through the 2,2-Diphenyl-1-picrylhydrazyl (DPPH•) assay with IC50 of 0.202 μg/mL. Ten compounds were revealed by GC-MS analysis, and they exhibited a favourable quantity (area %). The extract inhibited α-amylase enzymes with a range of 36.52% - 67.30% as well as α-glucosidase enzymes with a range of 42.68 - 72.80% at different doses (15 μg/mL - 240 μg/mL) and performed well compared to the conventional drug acarbose. The high binding affinity of plant phytochemicals to α-amylase and α-glucosidase and their acceptable pharmacokinetic characteristics further suggested a prospective therapeutic relevance. According to our investigations, the leaves of A. muricata can be used to develop drugs with high antioxidant potential. However, adequate scientific data is needed for A. muricata's therapeutic use, as well as further clinical and in vivo research both for toxicological and pharmacological evaluation.

Keywords: Annona muricata L., antidiabetic, enzyme inhibition, antioxidant, molecular docking, GC-MS analysis.

Graphical Abstract
[1]
Agu, K.C.; Eluehike, N.; Ofeimun, R.O.; Abile, D.; Ideho, G.; Ogedengbe, M.O.; Onose, P.O.; Elekofehinti, O.O. Possible anti-diabetic potentials of Annona muricata (soursop): Inhibition of α-amylase and α-glucosidase activities. Clin. Phytosci., 2019, 5(1), 21.
[http://dx.doi.org/10.1186/s40816-019-0116-0]
[2]
Atanu, F.O.; Francis, E.O.; Avwioroko, O.J.; Ibrahim, R.E.; Adaji, B.I.; Amos, F.I.; Ikoja, F.O.; Ibrahim, H.E. Chemical profile, antioxidant and alpha-amylase inhibitory activity of leaves extracts of Annona muricata: A combined in vitro and in silico study. Lett. Appl. NanoBioScience, 2021, 11(2), 3470-3479.
[http://dx.doi.org/10.33263/LIANBS112.34703479]
[3]
Mohamed, A.I.; Beseni, B.K.; Msomi, N.Z.; Salau, V.F.; Erukainure, O.L.; Aljoundi, A.; Islam, M.S. The antioxidant and antidiabetic potentials of polyphenolic-rich extracts of Cyperus rotundus (Linn.). J. Biomol. Struct. Dyn., 2022, 40(22), 12075-12087.
[http://dx.doi.org/10.1080/07391102.2021.1967197] [PMID: 34455935]
[4]
Salau, V.F.; Erukainure, O.L.; Koorbanally, N.A.; Islam, M.S. Kolaviron modulates dysregulated metabolism in oxidative pancreatic injury and inhibits intestinal glucose absorption with concomitant stimulation of muscle glucose uptake. Arch. Physiol. Biochem., 2023, 129(1), 157-167.
[http://dx.doi.org/10.1080/13813455.2020.1806331] [PMID: 32799570]
[5]
Hedrington, M.S.; Davis, S.N. Considerations when using alpha-glucosidase inhibitors in the treatment of type 2 diabetes. Expert Opin. Pharmacother., 2019, 20(18), 2229-2235.
[http://dx.doi.org/10.1080/14656566.2019.1672660] [PMID: 31593486]
[6]
Avwioroko, O.J.; Anigboro, A.A.; Ejoh, A.S.; Atanu, F.O.; Okeke, M.A.; Tonukari, N.J. Characterization of α-amylases isolated from Cyperus esculentus seeds (tigernut): Biochemical features, kinetics and thermal inactivation thermodynamics. Biocatal. Agric. Biotechnol., 2019, 21, 101298.
[http://dx.doi.org/10.1016/j.bcab.2019.101298]
[7]
Maruthur, N.M.; Tseng, E.; Hutfless, S.; Wilson, L.M.; Suarez-Cuervo, C.; Berger, Z.; Chu, Y.; Iyoha, E.; Segal, J.B.; Bolen, S. Diabetes medications as monotherapy or metformin-based combination therapy for type 2 diabetes: A systematic review and meta-analysis. Ann. Intern. Med., 2016, 164(11), 740-751.
[http://dx.doi.org/10.7326/M15-2650] [PMID: 27088241]
[8]
Sen Tseng, P.; Ande, C.; Moremen, K.W.; Crich, D. Influence of side chain conformation on the activity of glycosidase inhibitors. Angew. Chem. Int. Ed. Engl., 2022, 62(8), e202217809.
[http://dx.doi.org/10.1002/anie.202217809]
[9]
Rajasekaran, P.; Ande, C.; Vankar, Y.D. Synthesis of (5,6 & 6,6)-oxa-oxa annulated sugars as glycosidase inhibitors from 2-formyl galactal using iodocyclization as a key step. Arkivoc, 2022, 2022(6), 5-23.
[http://dx.doi.org/10.24820/ark.5550190.p011.809]
[10]
Chennaiah, A.; Bhowmick, S.; Vankar, Y.D. Conversion of glycals into vicinal-1,2-diazides and 1,2-(or 2,1)-azidoacetates using hypervalent iodine reagents and Me3SiN3. Application in the synthesis of N-glycopeptides, pseudo-trisaccharides and an iminosugar. RSC Adv., 2017, 7(66), 41755-41762.
[http://dx.doi.org/10.1039/C7RA08637G]
[11]
Verma, S.; Gupta, M.; Popli, H.; Aggarwal, G. Diabetes mellitus treatment using herbal drugs. Int. J. Phytomedicine, 2018, 10(1), 01.
[http://dx.doi.org/10.5138/09750185.2181]
[12]
Llauradó Maury, G.; Méndez Rodríguez, D.; Hendrix, S.; Escalona Arranz, J.C.; Fung Boix, Y.; Pacheco, A.O.; García Díaz, J.; Morris-Quevedo, H.J.; Ferrer Dubois, A.; Aleman, E.I.; Beenaerts, N.; Méndez-Santos, I.E.; Orberá Ratón, T.; Cos, P.; Cuypers, A. Antioxidants in plants: A valorization potential emphasizing the need for the conservation of plant biodiversity in Cuba. Antioxidants, 2020, 9(11), 1048.
[http://dx.doi.org/10.3390/antiox9111048] [PMID: 33121046]
[13]
Moghadamtousi, S.; Fadaeinasab, M.; Nikzad, S.; Mohan, G.; Ali, H.; Kadir, H. Annona muricata (Annonaceae): A review of its traditional uses, isolated acetogenins and biological activities. Int. J. Mol. Sci., 2015, 16(7), 15625-15658.
[http://dx.doi.org/10.3390/ijms160715625] [PMID: 26184167]
[14]
Komansilan, A.; Abadi, A.L.; Yanuwiadi, B.; Kaligis, D.A. Isolation and identification of biolarvicide from Soursop (Annona muricata Linn) seeds to mosquito (Aedes aegypti) larvae. Int. J. Eng. Technol. IJET-IJENS, 2012, 12(3), 28-32.
[15]
Coria-Téllez, A.V.; Montalvo-Gónzalez, E.; Yahia, E.M.; Obledo-Vázquez, E.N. Annona muricata: A comprehensive review on its traditional medicinal uses, phytochemicals, pharmacological activities, mechanisms of action and toxicity. Arab. J. Chem., 2018, 11(5), 662-691.
[http://dx.doi.org/10.1016/j.arabjc.2016.01.004]
[16]
Zorofchian Moghadamtousi, S.; Rouhollahi, E.; Karimian, H.; Fadaeinasab, M.; Firoozinia, M.; Ameen Abdulla, M.; Abdul Kadir, H. The chemopotential effect of Annona muricata leaves against azoxymethaneinduced colonic aberrant crypt foci in rats and the apoptotic effect of Acetogenin Annomuricin E in HT-29 cells: A bioassay - guided approach. PLoS One, 2015, 10(4), e0122288.
[http://dx.doi.org/10.1371/journal.pone.0122288]
[17]
Prasad, S.K.; Varsha, V.; Devananda, D. Anti-cancer properties of Annona muricata (L.): A review. Int. J. Phytomed., 2019, 11(2), 123-134.
[http://dx.doi.org/10.5958/0975-6892.2019.00016.9]
[18]
Okullo, J.B.L.; Omujal, F.; Bigirimana, C.; Isubikalu, P.; Malinga, M.; Bizuru, E.; Namutebi, A. Ethno-medicinal uses of selected indigenous fruit trees from the Lake Victoria basin districts in Uganda. J. Med. Plants Stud., 2014, 2(1), 78-88.
[19]
Adeyemi, D.O.; Komolafe, O.A.; Adewole, O.S.; Obuotor, E.M.; Adenowo, T.K. Anti hyperglycemic activities of Annona muricata (Linn). Afr. J. Tradit. Complement. Altern. Med., 2008, 6(1), 62-69.
[PMID: 20162043]
[20]
Syed Najmuddin, S.U.F.; Romli, M.F.; Hamid, M.; Alitheen, N.B.; Nik Abd Rahman, N.M.A. Anti-cancer effect of Annona muricata Linn leaves crude extract (AMCE) on breast cancer cell line. BMC Complement. Altern. Med., 2016, 16(1), 311.
[http://dx.doi.org/10.1186/s12906-016-1290-y] [PMID: 27558166]
[21]
Kim, W.S.; Kim, Y.E.; Cho, E.J.; Byun, E.B.; Park, W.Y.; Song, H.Y.; Kim, K.; Park, S.H.; Byun, E.H. Neuroprotective effect of Annona muricata-derived polysaccharides in neuronal HT22 cell damage induced by hydrogen peroxide. Biosci. Biotechnol. Biochem., 2020, 84(5), 1001-1012.
[http://dx.doi.org/10.1080/09168451.2020.1715201] [PMID: 31960754]
[22]
Florence, N.T.; Benoit, M.Z.; Jonas, K.; Alexandra, T.; Désiré, D.D.P.; Pierre, K.; Théophile, D. Antidiabetic and antioxidant effects of Annona muricata (Annonaceae), aqueous extract on streptozotocin-induced diabetic rats. J. Ethnopharmacol., 2014, 151(2), 784-790.
[http://dx.doi.org/10.1016/j.jep.2013.09.021] [PMID: 24076471]
[23]
Chigayo, K.; Mojapelo, P.E.L.; Mnyakeni-Moleele, S.; Misihairabgwi, J.M. Phytochemical and antioxidant properties of different solvent extracts of Kirkia wilmsii tubers. Asian Pac. J. Trop. Biomed., 2016, 6(12), 1037-1043.
[http://dx.doi.org/10.1016/j.apjtb.2016.10.004]
[24]
Ahmed, A.S.; McGaw, L.J.; Elgorashi, E.E.; Naidoo, V.; Eloff, J.N. Polarity of extracts and fractions of four Combretum (Combretaceae) species used to treat infections and gastrointestinal disorders in Southern African traditional medicine has a major effect on different relevant in vitro activities. J. Ethnopharmacol., 2014, 154(2), 339-350.
[http://dx.doi.org/10.1016/j.jep.2014.03.030] [PMID: 24681040]
[25]
McDonald, S.; Prenzler, P.D.; Antolovich, M.; Robards, K. Phenolic content and antioxidant activity of olive extracts. Food Chem., 2001, 73(1), 73-84.
[http://dx.doi.org/10.1016/S0308-8146(00)00288-0]
[26]
Chang, C.C.; Yang, M.H.; Wen, H.M.; Chern, J.C. Estimation of total flavonoid content in propolis by two complementary colometric methods. Yao Wu Shi Pin Fen Xi, 2020, 10(3), 178-182.
[http://dx.doi.org/10.38212/2224-6614.2748]
[27]
Islam, M.S.; Beseni, B.K.; Olofinsan, K.A.; Salau, V.F.; Erukainure, O.L. Rhus longipes (Engl.) infusions improve glucose metabolism and mitigate oxidative biomarkers in ferrous sulfate-induced renal injury. Asian Pac. J. Trop. Biomed., 2022, 12(11), 453-465.
[http://dx.doi.org/10.4103/2221-1691.360561]
[28]
Braca, A.; Sortino, C.; Politi, M.; Morelli, I.; Mendez, J. Antioxidant activity of flavonoids from Licania licaniaeflora. J. Ethnopharmacol., 2002, 79(3), 379-381.
[http://dx.doi.org/10.1016/S0378-8741(01)00413-5] [PMID: 11849846]
[29]
Nampoothiri, S.V.; Prathapan, A.; Cherian, O.L.; Raghu, K.G.; Venugopalan, V.V.; Sundaresan, A. In vitro antioxidant and inhibitory potential of Terminalia bellerica and Emblica officinalis fruits against LDL oxidation and key enzymes linked to type 2 diabetes. Food Chem. Toxicol., 2011, 49(1), 125-131.
[http://dx.doi.org/10.1016/j.fct.2010.10.006] [PMID: 20951180]
[30]
Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF Chimera? A visualization system for exploratory research and analysis. J. Comput. Chem., 2004, 25(13), 1605-1612.
[http://dx.doi.org/10.1002/jcc.20084] [PMID: 15264254]
[31]
Wang, J.; Wang, W.; Kollman, P.A.; Case, D.A. Automatic atom type and bond type perception in molecular mechanical calculations. J. Mol. Graph. Model., 2006, 25(2), 247-260.
[http://dx.doi.org/10.1016/j.jmgm.2005.12.005] [PMID: 16458552]
[32]
Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem., 2010, 31(2), 455-461.
[http://dx.doi.org/10.1002/jcc.21334]
[33]
Aryal, S.; Baniya, M.K.; Danekhu, K.; Kunwar, P.; Gurung, R.; Koirala, N. Total phenolic content, flavonoid content and antioxidant potential of wild vegetables from Western Nepal. Plants, 2019, 8(4), 96.
[http://dx.doi.org/10.3390/plants8040096] [PMID: 30978964]
[34]
Krisanti, E.A.; Harumanti, A.I.; Mulia, K. Annona muricata leaves ethanolic extract in water, n-hexane, and methanol fractions: Cytotoxicity assay, antioxidant activity, flavonoid content, polyphenol content, and acetogenin content. AIP Conf. Proc, 2021, 2344(1), 040004.
[http://dx.doi.org/10.1063/5.0047484]
[35]
Orak, H.H.; Bahrisefit, I.S.; Sabudak, T. Antioxidant activity of extracts of soursop (Annona muricata L.) leaves, fruit pulps, peels, and seeds. Pol. J. Food Nutr. Sci., 2019, 69(4), 359-366.
[http://dx.doi.org/10.31883/pjfns/112654]
[36]
Mohammadi Bazargani, M.; Falahati-Anbaran, M.; Rohloff, J. Comparative analyses of phytochemical variation within and between congeneric species of Willow herb, Epilobium hirsutum and E. parviflorum: Contribution of environmental factors. Front. Plant Sci., 2021, 11, 595190.
[http://dx.doi.org/10.3389/fpls.2020.595190] [PMID: 33679815]
[37]
Bhalodia, N.; Nariya, P.; Shukla, V.; Acharya, R. In vitro antioxidant activity of hydro alcoholic extract from the fruit pulp of Cassia fistula Linn. AYU (An Int. Q. J. Res. Ayurveda),, 2013, 34(2), 209-214.
[http://dx.doi.org/10.4103/0974-8520.119684]
[38]
Chithiraikumar, S.; Gandhimathi, S.; Neelakantan, M.A. Structural characterization, surface characteristics and non covalent interactions of a heterocyclic Schiff base: Evaluation of antioxidant potential by UV-visible spectroscopy and DFT. J. Mol. Struct., 2017, 1137, 569-580.
[http://dx.doi.org/10.1016/j.molstruc.2017.02.088]
[39]
Ogunyemi, O.M.; Gyebi, G.A.; Saheed, A.; Paul, J.; Nwaneri-Chidozie, V.; Olorundare, O.; Adebayo, J.; Koketsu, M.; Aljarba, N.; Alkahtani, S.; Batiha, G.E.S.; Olaiya, C.O. Inhibition mechanism of alpha-amylase, a diabetes target, by a steroidal pregnane and pregnane glycosides derived from Gongronema latifolium Benth. Front. Mol. Biosci., 2022, 9, 866719.
[http://dx.doi.org/10.3389/fmolb.2022.866719] [PMID: 36032689]
[40]
Kaur, N.; Kumar, V.; Nayak, S.K.; Wadhwa, P.; Kaur, P.; Sahu, S.K. Alphaamylase as molecular target for treatment of diabetes mellitus: A comprehensive review. Chem. Biol. Drug Des., 2021, 98(4), 539-560.
[http://dx.doi.org/10.1111/cbdd.13909] [PMID: 34173346]
[41]
Adinortey, C.A.; Kwarko, G.B.; Koranteng, R.; Boison, D.; Obuaba, I.; Wilson, M.D.; Kwofie, S.K. Molecular structure-based screening of the constituents of Calotropis procera identifies potential inhibitors of diabetes mellitus target alpha glucosidase. Curr. Issues Mol. Biol., 2022, 44(2), 963-987.
[http://dx.doi.org/10.3390/cimb44020064] [PMID: 35723349]
[42]
Olawale, F.; Olofinsan, K.; Iwaloye, O.; Ologuntere, T.E. Phytochemicals from Nigerian medicinal plants modulate therapeutically-relevant diabetes targets: Insight from computational direction. Adv. Trad. Med., 2022, 22(4), 723-737.
[http://dx.doi.org/10.1007/s13596-021-00598-z]
[43]
Romaniouk, A. vijay, I.K. Structure-function relationships in glucosidase I: Amino acids involved in binding the substrate to the enzyme. Glycobiology, 1997, 7(3), 399-404.
[http://dx.doi.org/10.1093/glycob/7.3.399] [PMID: 9147049]
[44]
Elmazar, M.M.; El-Abhar, H.S.; Schaalan, M.F.; Farag, N.A. Phytol/Phytanic acid and insulin resistance: Potential role of phytanic acid proven by docking simulation and modulation of biochemical alterations. PLoS One, 2013, 8(1), e45638.
[http://dx.doi.org/10.1371/journal.pone.0045638] [PMID: 23300941]
[45]
Mozirandi, W.; Tagwireyi, D.; Mukanganyama, S. Evaluation of antimicrobial activity of chondrillasterol isolated from Vernonia adoensis (Asteraceae). BMC Complement. Altern. Med., 2019, 19(1), 249.
[http://dx.doi.org/10.1186/s12906-019-2657-7] [PMID: 31492140]
[46]
Ahn, J.H.; Song, E.J.; Jung, D.H.; Kim, Y.J.; Seo, I.S.; Park, S.C.; Jung, Y.S.; Cho, E.S.; Mo, S.H.; Hong, J.J.; Cho, J.Y.; Park, J.H. The sesquiterpene lactone estafiatin exerts anti-inflammatory effects on macrophages and protects mice from sepsis induced by LPS and cecal ligation puncture. Phytomedicine, 2022, 99, 153934.
[http://dx.doi.org/10.1016/j.phymed.2022.153934] [PMID: 35172258]
[47]
Mahankali, S.; Kalava, J.; Garapati, Y.; Domathoti, B.; Maddumala, V.; Sundramurty, V.P. A treatment to cure diabetes using plant-based drug discovery. Evidence-based Complement. Evid. Based Complement. Alternat. Med., 2022, 2022, 1-12.
[http://dx.doi.org/10.1155/2022/8621665] [PMID: 35586686]
[48]
Alqahtani, S. In silico ADME-Tox modeling: Progress and prospects. Expert Opin. Drug Metab. Toxicol., 2017, 13(11), 1147-1158.
[http://dx.doi.org/10.1080/17425255.2017.1389897] [PMID: 28988506]
[49]
Kisani, A.I.; Saganuwan, S.A. Investigation of anaesthetic potentials of various extracts of Annona muricata (sour sop) in Wister albino rat and dog. J. King Saud Univ. Sci., 2022, 34(7), 102225.
[http://dx.doi.org/10.1016/j.jksus.2022.102225]
[50]
Olowofolahan, A.O.; Adewoye, F.O.; Olorunsogo, O.O. Modulatory effect of methanol extract of Annona muricata stem bark on mitochondrial membrane permeability transition pore in normal rat liver and monosodium glutamate-induced uterine hyperplasia. J. Complement. Integr. Med., 2021, 18(2), 355-361.
[http://dx.doi.org/10.1515/jcim-2019-0341] [PMID: 33787189]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy