Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Mini-Review Article

Review on Nutritional Potential of Underutilized Millets as a Miracle Grain

Author(s): Sonia Singh*, Himanshu Sharma, Raghavan Ramankutty and Sarada Ramaswamy

Volume 25, Issue 9, 2024

Published on: 09 October, 2023

Page: [1082 - 1098] Pages: 17

DOI: 10.2174/0113892010248721230921093208

Price: $65

Abstract

The current situation, which includes changes in eating habits, an increasing population, and the unrestricted use of natural resources, has resulted in a lack of resources that could be used to provide nourishing food to everyone. Natural plant resources are quickly being depleted, so it is necessary to consider new alternatives. In addition to the staple grains of rice and wheat, many other crops are being consumed that need to be utilized to their full potential and have the potential to replace the staple crops. Millets are one of the most important underutilized crops that have the potential to be used as a nutricereal. Millets have a high nutritional value, do not produce acids, do not contain gluten, and can contribute to a healthy diet. Due to a lack of awareness regarding the nutritional value of millets, their consumption is still restricted to the population that adheres to conventional diets and is economically disadvantaged even though millets contain a significant amount of nutrients. Millets are becoming increasingly unpopular due to a lack of processing technologies, food subsidies, and the inconvenience of preparing food with millets. Millets are a Nutricereal rich in carbohydrates, dietary fibers, energy, essential fatty acids, proteins, vitamin B, and minerals such as calcium, iron, magnesium, potassium, and zinc. These nutrients help to protect against post-translational diseases such as diabetes, cancer, cardiovascular disease, and celiac disease, among others. Millets are beneficial for controlling blood pressure, blood sugar level, and thyroid function; however, despite these functional properties, millets consumption has declined. Utilizing millets and other staple food crops to develop alternative food sources has become a new area of focus for businesses in the food industry. In addition, millet consumption can help foster immunity and health, which is essential in strengthening our fight against malnutrition in children and adolescents. In this article, the authors examine the potential of millets in terms of their nutricereal qualities.

Keywords: Millets, antioxidant, cancer, nutrients, diabetes, dietary fiber.

Graphical Abstract
[1]
McKevith, B. Nutritional aspects of cereals. Nutr. Bull., 2004, 29(2), 111-142.
[http://dx.doi.org/10.1111/j.1467-3010.2004.00418.x]
[2]
Latham, M.C. Human nutrition in the developing world; Food & Agriculture Org: Ithaca, New York, USA, 1997.
[3]
Lu, H.; Yang, X.; Ye, M.; Liu, K.B.; Xia, Z.; Ren, X.; Cai, L.; Wu, N.; Liu, T.S. Culinary archaeology: Millet noodles in Late Neolithic China. Nature, 2005, 437(7061), 967-968.
[http://dx.doi.org/10.1038/437967a] [PMID: 16222289]
[4]
Shahidi, F.; Chandrasekara, A. Millet grain phenolics and their role in disease risk reduction and health promotion: A review. J. Funct. Foods, 2013, 5(2), 570-581.
[http://dx.doi.org/10.1016/j.jff.2013.02.004]
[5]
Slavin, J. Why whole grains are protective: Biological mechanisms. Proc. Nutr. Soc., 2003, 62(1), 129-134.
[http://dx.doi.org/10.1079/PNS2002221] [PMID: 12740067]
[6]
Nicodemus, K.K.; Jacobs, D.R., Jr; Folsom, A.R. Whole and refined grain intake and risk of incident postmenopausal breast cancer (United States). Cancer Causes Control, 2001, 12(10), 917-925.
[http://dx.doi.org/10.1023/A:1013746719385] [PMID: 11808711]
[7]
Meyer, K.A.; Kushi, L.H.; Jacobs, D.R., Jr; Slavin, J.; Sellers, T.A.; Folsom, A.R. Carbohydrates, dietary fiber, and incident type 2 diabetes in older women. Am. J. Clin. Nutr., 2000, 71(4), 921-930.
[http://dx.doi.org/10.1093/ajcn/71.4.921] [PMID: 10731498]
[8]
Fung, T.T.; Hu, F.B.; Pereira, M.A.; Liu, S.; Stampfer, M.J.; Colditz, G.A.; Willett, W.C. Whole-grain intake and the risk of type 2 diabetes: A prospective study in men. Am. J. Clin. Nutr., 2002, 76(3), 535-540.
[http://dx.doi.org/10.1093/ajcn/76.3.535] [PMID: 12197996]
[9]
Liu, S.; Buring, J.E.; Sesso, H.D.; Rimm, E.B.; Willett, W.C.; Manson, J.E. A prospective study of dietary fiber intake and risk of cardiovascular disease among women. J. Am. Coll. Cardiol., 2002, 39(1), 49-56.
[http://dx.doi.org/10.1016/S0735-1097(01)01695-3] [PMID: 11755286]
[10]
Anderson, J.W.; Hanna, T.J.; Peng, X.; Kryscio, R.J. Whole grain foods and heart disease risk. J. Am. Coll. Nutr., 2000, 19(3), 291S-299S.
[11]
Chinchole, M; Pathak, RK; Singh, UM; Kumar, A Molecular characterization of EcCIPK 24 gene of finger millet (Eleusine coracana) for investigating its regulatory role in calcium transport. 3 Biotech, 2017, 7, 1-10.
[12]
Yang, X.; Wan, Z.; Perry, L.; Lu, H.; Wang, Q.; Zhao, C.; Li, J.; Xie, F.; Yu, J.; Cui, T.; Wang, T.; Li, M.; Ge, Q. Early millet use in northern China. Proc. Natl. Acad. Sci., 2012, 109(10), 3726-3730.
[http://dx.doi.org/10.1073/pnas.1115430109] [PMID: 22355109]
[13]
Nithiyanantham, S.; Kalaiselvi, P.; Mahomoodally, M.F.; Zengin, G.; Abirami, A.; Srinivasan, G. Nutritional and functional roles of millets—A review. J. Food Biochem., 2019, 43(7), e12859.
[http://dx.doi.org/10.1111/jfbc.12859] [PMID: 31353706]
[14]
Palaniswamy, S.K.; Govindaswamy, V. In-vitro probiotic characteristics assessment of feruloyl esterase and glutamate decarboxylase producing Lactobacillus spp. isolated from traditional fermented millet porridge (kambu koozh). Lebensm. Wiss. Technol., 2016, 68, 208-216.
[http://dx.doi.org/10.1016/j.lwt.2015.12.024]
[15]
Sharma, R.; Sharma, S.; Dar, B.N.; Singh, B. Millets as potential nutri‐cereals: A review of nutrient composition, phytochemical profile and techno‐functionality. Int. J. Food Sci. Technol., 2021, 56(8), 3703-3718.
[http://dx.doi.org/10.1111/ijfs.15044]
[16]
Taylor, J.R.; Emmambux, M.N. Gluten-free foods and beverages from millets.Gluten-free cereal products and beverages; Academic Press, 2008, pp. 119-V.
[http://dx.doi.org/10.1016/B978-012373739-7.50008-3]
[17]
Lu, H.; Zhang, J.; Liu, K.; Wu, N.; Li, Y.; Zhou, K.; Ye, M.; Zhang, T.; Zhang, H.; Yang, X.; Shen, L.; Xu, D.; Li, Q. Earliest domestication of common millet (Panicum miliaceum) in East Asia extended to 10,000 years ago. Proc. Natl. Acad. Sci. USA, 2009, 106(18), 7367-7372.
[http://dx.doi.org/10.1073/pnas.0900158106] [PMID: 19383791]
[18]
Amadou, I.; Gbadamosi, O.S.; Le, G.W. Millet-based traditional processed foods and beverages—A review. Cereal Foods World, 2011, 56(3), 115.
[http://dx.doi.org/10.1094/CFW-56-3-0115]
[19]
Bhattacharjee, R.; Khairwal, I.S.; Bramel, P.J.; Reddy, K.N. Establishment of a pearl millet [Pennisetum glaucum (L.) R. Br. core collection based on geographical distribution and quantitative traits. Euphytica, 2007, 155(1-2), 35-45.
[http://dx.doi.org/10.1007/s10681-006-9298-x]
[20]
Himanshu, K.; Sonawane, S.K.; Arya, S.S. Nutritional and nutraceutical properties of millets: A review. Clin J Nutr Diet., 2018, 1(1), 1-0.
[21]
Serna-Saldivar, S.O.; Espinosa-Ramírez, J. Grain structure and grain chemical composition.Sorghum and millets; AACC International Press, 2019, pp. 85-129.
[http://dx.doi.org/10.1016/B978-0-12-811527-5.00005-8]
[22]
Patil, J.V., Ed.; Millets and Sorghum: biology and genetic improvement; John Wiley & Sons, 2016.
[23]
Zhu, F. Structure, physicochemical properties, and uses of millet starch. Food Res. Int., 2014, 64, 200-211.
[http://dx.doi.org/10.1016/j.foodres.2014.06.026] [PMID: 30011641]
[24]
Amponsah, A.G.; Massimo, M.; Eric, B.; Koushik, S. Physical and molecular characterization of millet starches. Cereal Chem., 2014, 91, 280-292.
[25]
Veena Bharati, B.; Chimmad, V.; Naik, R.K.; Shanthakumar, G. Physico-chemical and nutritional studies in barnyard millet. Karnataka J. Agric. Sci., 2010, 18(1)
[26]
Balasubramanian, S. Processing of millets. Madurai Symposium, Thamukkam Grounds, Madurai, 2013, 13.
[27]
Bean, SR; Zhu, L; Smith, BM; Wilson, JD; Ioerger, BP; Tilley, M Starch and protein chemistry and functional properties. Sorghum and millets, 2019, 1, 131-170.
[http://dx.doi.org/10.1016/B978-0-12-811527-5.00006-X]
[28]
Taylor, J.R.; Taylor, J. Proteins from sorghum and millets. Sustainable protein sources; Academic Press, 2017, pp. 79-104.
[http://dx.doi.org/10.1016/B978-0-12-802778-3.00005-6]
[29]
Shobana, S.; Krishnaswamy, K.; Sudha, V.; Malleshi, N.G.; Anjana, R.M.; Palaniappan, L.; Mohan, V. Finger millet (Ragi, Eleusine coracana L.): A review of its nutritional properties, processing, and plausible health benefits. Adv. Food Nutr. Res., 2013, 69, 1-39.
[http://dx.doi.org/10.1016/B978-0-12-410540-9.00001-6] [PMID: 23522794]
[30]
Slama, A.; Cherif, A.; Sakouhi, F.; Boukhchina, S.; Radhouane, L. Fatty acids, phytochemical composition and antioxidant potential of pearl millet oil. J. Verbraucherschutz Lebensmsicherh., 2020, 15(2), 145-151.
[http://dx.doi.org/10.1007/s00003-019-01250-4]
[31]
Soetan, K.O.; Olaiya, C.O.; Oyewole, O.E. The importance of mineral elements for humans, domestic animals and plants: A review. Afr. J. Food Sci., 2010, 4(5), 200-222.
[32]
Vali Pasha, K.; Ratnavathi, C.V.; Ajani, J.; Raju, D.; Manoj Kumar, S.; Beedu, S.R. Proximate, mineral composition and antioxidant activity of traditional small millets cultivated and consumed in Rayalaseema region of south India. J. Sci. Food Agric., 2018, 98(2), 652-660.
[http://dx.doi.org/10.1002/jsfa.8510] [PMID: 28665516]
[33]
Gilani, G.S.; Cockell, K.A.; Sepehr, E. Effects of antinutritional factors on protein digestibility and amino acid availability in foods. J. AOAC Int., 2005, 88(3), 967-987.
[http://dx.doi.org/10.1093/jaoac/88.3.967] [PMID: 16001874]
[34]
Serna Saldivar, S.O. Cereals dietary importance, encyclopedia of food sciences and nutrition. In: J. Sci. Di; , 2003; 2, .
[35]
Oghbaei, M.; Prakash, J. Effect of primary processing of cereals and legumes on its nutritional quality: A comprehensive review. Cogent Food Agric., 2016, 2(1), 1136015.
[http://dx.doi.org/10.1080/23311932.2015.1136015]
[36]
Rasane, P.; Jha, A.; Kumar, A.; Sharma, N. Reduction in phytic acid content and enhancement of antioxidant properties of nutricereals by processing for developing a fermented baby food. J. Food Sci. Technol., 2015, 52(6), 3219-3234.
[PMID: 26028703]
[37]
Gupta, R.K.; Gangoliya, S.S.; Singh, N.K. Reduction of phytic acid and enhancement of bioavailable micronutrients in food grains. J. Food Sci. Technol., 2015, 52(2), 676-684.
[http://dx.doi.org/10.1007/s13197-013-0978-y] [PMID: 25694676]
[38]
Vinoth, A.; Ravindhran, R. Biofortification in millets: A sustainable approach for nutritional security. Front. Plant Sci., 2017, 8, 29.
[http://dx.doi.org/10.3389/fpls.2017.00029] [PMID: 28167953]
[39]
Asharani, V.T.; Jayadeep, A.; Malleshi, N.G. Natural antioxidants in edible flours of selected small millets. Int. J. Food Prop., 2010, 13(1), 41-50.
[http://dx.doi.org/10.1080/10942910802163105]
[40]
McDonough, C.M.; Rooney, L.W.; Serna-Saldivar, S.O. The millets. Handbook of cereal science and technology; CRC Press, 2000, pp. 177-201.
[41]
Miller, H.E.; Rigelhof, F.; Marquart, L.; Prakash, A.; Kanter, M. Antioxidant content of whole grain breakfast cereals, fruits and vegetables. J. Am. Coll. Nutr., 2000, 19(3), 312S-319S.
[42]
Tian, S.; Nakamura, K.; Kayahara, H. Analysis of phenolic compounds in white rice, brown rice, and germinated brown rice. J. Agric. Food Chem., 2004, 52(15), 4808-4813.
[http://dx.doi.org/10.1021/jf049446f] [PMID: 15264919]
[43]
Chandrasekara, A.; Shahidi, F. Determination of antioxidant activity in free and hydrolyzed fractions of millet grains and characterization of their phenolic profiles by HPLC-DAD-ESI-MSn. J. Funct. Foods, 2011, 3(3), 144-158.
[http://dx.doi.org/10.1016/j.jff.2011.03.007]
[44]
Chethan, S.; Malleshi, N. Finger millet polyphenols: Optimization of extraction and the effect of pH on their stability. Food Chem., 2007, 105(2), 862-870.
[http://dx.doi.org/10.1016/j.foodchem.2007.02.012]
[45]
Sartelet, H.; Serghat, S.; Lobstein, A.; Ingenbleek, Y.; Anton, R.; Petitfrère, E.; Aguie-Aguie, G.; Martiny, L.; Haye, B. Flavonoids extracted from fonio millet (Digitaria exilis) reveal potent antithyroid properties. Nutrition, 1996, 12(2), 100-106.
[http://dx.doi.org/10.1016/0899-9007(96)90707-8] [PMID: 8724380]
[46]
Watanabe, M. Antioxidative phenolic compounds from Japanese barnyard millet (Echinochloa utilis) grains. J. Agric. Food Chem., 1999, 47(11), 4500-4505.
[http://dx.doi.org/10.1021/jf990498s] [PMID: 10552841]
[47]
Pradeep, S.R.; Guha, M. Effect of processing methods on the nutraceutical and antioxidant properties of little millet (Panicum sumatrense) extracts. Food Chem., 2011, 126(4), 1643-1647.
[http://dx.doi.org/10.1016/j.foodchem.2010.12.047] [PMID: 25213939]
[48]
Xiang, J.; Apea-Bah, F.B.; Ndolo, V.U.; Katundu, M.C.; Beta, T. Profile of phenolic compounds and antioxidant activity of finger millet varieties. Food Chem., 2019, 275, 361-368.
[http://dx.doi.org/10.1016/j.foodchem.2018.09.120] [PMID: 30724208]
[49]
Moreau, R.A.; Nyström, L.; Whitaker, B.D.; Winkler-Moser, J.K.; Baer, D.J.; Gebauer, S.K.; Hicks, K.B. Phytosterols and their derivatives: Structural diversity, distribution, metabolism, analysis, and health-promoting uses. Prog. Lipid Res., 2018, 70, 35-61.
[http://dx.doi.org/10.1016/j.plipres.2018.04.001] [PMID: 29627611]
[50]
Bhandari, S.R.; Lee, Y.S. The contents of phytosterols, squalene, and vitamin E and the composition of fatty acids of korean landrace setaria italica and Sorghum bicolar seeds. Hangug. Jaweon Sigmul Haghoeji, 2013, 26(6), 663-672.
[http://dx.doi.org/10.7732/kjpr.2013.26.6.663]
[51]
Ryan, E.; Galvin, K.; O’Connor, T.P.; Maguire, A.R.; O’Brien, N.M. Phytosterol, squalene, tocopherol content and fatty acid profile of selected seeds, grains, and legumes. Plant Foods Hum. Nutr., 2007, 62(3), 85-91.
[http://dx.doi.org/10.1007/s11130-007-0046-8] [PMID: 17594521]
[52]
Pang, M.; He, S.; Wang, L.; Cao, X.; Cao, L.; Jiang, S. Physicochemical properties, antioxidant activities and protective effect against acute ethanol-induced hepatic injury in mice of foxtail millet (Setaria italica) bran oil. Food Funct., 2014, 5(8), 1763-1770.
[http://dx.doi.org/10.1039/C4FO00106K] [PMID: 24909671]
[53]
Duodu, K.G.; Awika, J.M. Phytochemical-related health-promoting attributes of sorghum and millets.Sorghum and millets; AACC International Press, 2019, pp. 225-258.
[http://dx.doi.org/10.1016/B978-0-12-811527-5.00008-3]
[54]
Ji, J.; Liu, Y.; Ge, Z.; Zhang, Y.; Wang, X. Oleochemical properties for different fractions of foxtail millet bran. J. Oleo Sci., 2019, 68(8), 709-718.
[http://dx.doi.org/10.5650/jos.ess19063] [PMID: 31292341]
[55]
Radhajeyalakshmi, R.; Yamunarani, K.; Seetharaman, K.; Velazhahan, R. Existence of thaumatin-like proteins (TLPs) in seeds of cereals. Acta Phytopathol. Entomol. Hung., 2003, 38(3-4), 251-257.
[http://dx.doi.org/10.1556/APhyt.38.2003.3-4.5]
[56]
Banerjee, S.; Sanjay, K.R.; Chethan, S.; Malleshi, N.G. Finger millet (Eleusine coracana) polyphenols: Investigation of their antioxidant capacity and antimicrobial activity. Afr. J. Food Sci., 2012, 6(13), 362-374.
[http://dx.doi.org/10.5897/AJFS12.031]
[57]
Siwela, M.; Taylor, J.R.N.; de Milliano, W.A.J.; Duodu, K.G. Influence of phenolics in finger millet on grain and malt fungal load, and malt quality. Food Chem., 2010, 121(2), 443-449.
[http://dx.doi.org/10.1016/j.foodchem.2009.12.062]
[58]
Shi, J.; Shan, S.; Li, H.; Song, G.; Li, Z. Anti-inflammatory effects of millet bran derived-bound polyphenols in LPS-induced HT-29 cell via ROS/miR-149/Akt/NF-κB signaling pathway. Oncotarget, 2017, 8(43), 74582-74594.
[http://dx.doi.org/10.18632/oncotarget.20216] [PMID: 29088809]
[59]
Lakshmi Kumari, P.; Sumathi, S. Effect of consumption of finger millet on hyperglycemia in non-insulin dependent diabetes mellitus (NIDDM) subjects. Plant Foods Hum. Nutr., 2002, 57(3/4), 205-213.
[http://dx.doi.org/10.1023/A:1021805028738] [PMID: 12602929]
[60]
Choi, Y.Y.; Osada, K.; Ito, Y.; Nagasawa, T.; Choi, M.R.; Nishizawa, N. Effects of dietary protein of Korean foxtail millet on plasma adiponectin, HDL-cholesterol, and insulin levels in genetically type 2 diabetic mice. Biosci. Biotechnol. Biochem., 2005, 69(1), 31-37.
[http://dx.doi.org/10.1271/bbb.69.31] [PMID: 15665464]
[61]
Park, K.O.; Ito, Y.; Nagasawa, T.; Choi, M.R.; Nishizawa, N. Effects of dietary Korean proso-millet protein on plasma adiponectin, HDL cholesterol, insulin levels, and gene expression in obese type 2 diabetic mice. Biosci. Biotechnol. Biochem., 2008, 72(11), 2918-2925.
[http://dx.doi.org/10.1271/bbb.80395] [PMID: 18997420]
[62]
Ito, K.; Ozasa, H.; Noda, Y.; Arii, S.; Horikawa, S. Effects of free radical scavenger on acute liver injury induced by d-galactosamine and lipopolysaccharide in rats. Hepatol. Res., 2008, 38(2), 194-201.
[PMID: 17727650]
[63]
Sireesha, Y.; Kasetti, R.B.; Nabi, S.A.; Swapna, S.; Apparao, C. Antihyperglycemic and hypolipidemic activities of Setaria italica seeds in STZ diabetic rats. Pathophysiology, 2011, 18(2), 159-164.
[http://dx.doi.org/10.1016/j.pathophys.2010.08.003] [PMID: 20869855]
[64]
Lee, S.H.; Chung, I.M.; Cha, Y.S.; Park, Y. Millet consumption decreased serum concentration of triglyceride and C-reactive protein but not oxidative status in hyperlipidemic rats. Nutr. Res., 2010, 30(4), 290-296.
[http://dx.doi.org/10.1016/j.nutres.2010.04.007] [PMID: 20534332]
[65]
Shobana, S.; Sreerama, Y.N.; Malleshi, N.G. Composition and enzyme inhibitory properties of finger millet (Eleusine coracana L.) seed coat phenolics: Mode of inhibition of α-glucosidase and pancreatic amylase. Food Chem., 2009, 115(4), 1268-1273.
[http://dx.doi.org/10.1016/j.foodchem.2009.01.042]
[66]
Jain, S.; Bhatia, G.; Barik, R.; Kumar, P.; Jain, A.; Dixit, V.K. Antidiabetic activity of Paspalum scrobiculatum Linn. in alloxan induced diabetic rats. J. Ethnopharmacol., 2010, 127(2), 325-328.
[http://dx.doi.org/10.1016/j.jep.2009.10.038] [PMID: 19900528]
[67]
Spiller, G.A. CRC handbook of dietary fiber in human nutrition; CRC press, 2001.
[http://dx.doi.org/10.1201/9781420038514]
[68]
Devi, P.B.; Vijayabharathi, R.; Sathyabama, S.; Malleshi, N.G.; Priyadarisini, V.B. Health benefits of finger millet (Eleusine coracana L.) polyphenols and dietary fiber: A review. J. Food Sci. Technol., 2014, 51(6), 1021-1040.
[http://dx.doi.org/10.1007/s13197-011-0584-9] [PMID: 24876635]
[69]
Mohamed, T.K.; Issoufou, A.; Zhou, H. Antioxidant activity of fractionated foxtail millet protein hydrolysate. Int. Food Res. J., 2012, 19(1)
[70]
Quesada, S.; Azofeifa, G.; Jatunov, S.; Jiménez, G. Carotenoids composition, antioxidant activity and glycemic index of two varieties of Bactris Gasipaes. Emir. J. Food Agric., 2011, 482-489.
[71]
Hegde, P.S.; Rajasekaran, N.S.; Chandra, T.S. Effects of the antioxidant properties of millet species on oxidative stress and glycemic status in alloxan-induced rats. Nutr. Res., 2005, 25(12), 1109-1120.
[http://dx.doi.org/10.1016/j.nutres.2005.09.020]
[72]
Viswanath, V.; Urooj, A.; Malleshi, N.G. Evaluation of antioxidant and antimicrobial properties of finger millet polyphenols (Eleusine coracana). Food Chem., 2009, 114(1), 340-346.
[http://dx.doi.org/10.1016/j.foodchem.2008.09.053]
[73]
Bellato, S.; Ciccoritti, R.; Del Frate, V.; Sgrulletta, D.; Carbone, K. Influence of genotype and environment on the content of 5-n alkylresorcinols, total phenols and on the antiradical activity of whole durum wheat grains. J. Cereal Sci., 2013, 57(2), 162-169.
[http://dx.doi.org/10.1016/j.jcs.2012.11.003]
[74]
Wei, S.; Cheng, D.; Yu, H.; Wang, X.; Song, S.; Wang, C. Millet-enriched diets attenuate high salt-induced hypertension and myocardial damage in male rats. J. Funct. Foods, 2018, 44, 304-312.
[http://dx.doi.org/10.1016/j.jff.2018.03.028]
[75]
Shan, S.; Shi, J.; Li, Z.; Gao, H.; Shi, T.; Li, Z.; Li, Z. Targeted anti-colon cancer activities of a millet bran-derived peroxidase were mediated by elevated ROS generation. Food Funct., 2015, 6(7), 2331-2338.
[http://dx.doi.org/10.1039/C5FO00260E] [PMID: 26075747]
[76]
Shan, S.; Niu, J.; Yin, R.; Shi, J.; Zhang, L.; Wu, C.; Li, H.; Li, Z. Peroxidase from foxtail millet bran exerts anti-colorectal cancer activity via targeting cell-surface GRP78 to inactivate STAT3 pathway. Acta Pharm. Sin. B, 2022, 12(3), 1254-1270.
[http://dx.doi.org/10.1016/j.apsb.2021.10.004] [PMID: 35530132]
[77]
Zhang, L.; Liu, R.; Niu, W. Phytochemical and antiproliferative activity of proso millet. PLoS One, 2014, 9(8), e104058.
[http://dx.doi.org/10.1371/journal.pone.0104058] [PMID: 25098952]
[78]
Sivalingam, N.; Ramadoss, D.P. Vanillin extracted from proso and barnyard millets induces cell cycle inhibition and apoptotic cell death in MCF-7 cell line. J. Cancer Res. Ther., 2021, 17(6), 1425-1433.
[http://dx.doi.org/10.4103/jcrt.JCRT_1128_19] [PMID: 34916373]
[79]
Chandra, D.; Chandra, S.; Pallavi, ; Sharma, A.K. Review of Finger millet (Eleusine coracana (L.) Gaertn): A power house of health benefiting nutrients. Food Sci. Hum. Wellness, 2016, 5(3), 149-155.
[http://dx.doi.org/10.1016/j.fshw.2016.05.004]
[80]
Zhang, B.; Xu, Y.; Liu, S.; Lv, H.; Hu, Y.; Wang, Y.; Li, Z.; Wang, J.; Ji, X.; Ma, H.; Wang, X.; Wang, S. Dietary supplementation of foxtail millet ameliorates colitis-associated colorectal cancer in mice via activation of gut receptors and suppression of the STAT3 pathway. Nutrients, 2020, 12(8), 2367.
[http://dx.doi.org/10.3390/nu12082367] [PMID: 32784751]
[81]
Shobana, S.; Usha Kumari, S.R.; Malleshi, N.G.; Ali, S.Z. Glycemic response of rice, wheat and finger millet based diabetic food formulations in normoglycemic subjects. Int. J. Food Sci. Nutr., 2007, 58(5), 363-372.
[http://dx.doi.org/10.1080/09637480701252229] [PMID: 17558728]
[82]
Shobana, S.; Harsha, M.R.; Platel, K.; Srinivasan, K.; Malleshi, N.G. Amelioration of hyperglycaemia and its associated complications by finger millet (Eleusine coracana L.) seed coat matter in streptozotocin-induced diabetic rats. Br. J. Nutr., 2010, 104(12), 1787-1795.
[http://dx.doi.org/10.1017/S0007114510002977] [PMID: 20979682]
[83]
Rohn, S.; Rawel, H.M.; Kroll, J. Inhibitory effects of plant phenols on the activity of selected enzymes. J. Agric. Food Chem., 2002, 50(12), 3566-3571.
[http://dx.doi.org/10.1021/jf011714b] [PMID: 12033830]
[84]
Bailey, CJ New approaches to the pharmacotherapy of diabetes. Textbook of diabetes, 2003, 2, 73-71.
[85]
Chethan, S.; Dharmesh, S.M.; Malleshi, N.G. Inhibition of aldose reductase from cataracted eye lenses by finger millet (Eleusine coracana) polyphenols. Bioorg. Med. Chem., 2008, 16(23), 10085-10090.
[http://dx.doi.org/10.1016/j.bmc.2008.10.003] [PMID: 18976928]
[86]
Chethan, S.; Sreerama, Y.N.; Malleshi, N.G. Mode of inhibition of finger millet malt amylases by the millet phenolics. Food Chem., 2008, 111(1), 187-191.
[http://dx.doi.org/10.1016/j.foodchem.2008.03.063] [PMID: 26050182]
[87]
Annor, G.A.; Tyl, C.; Marcone, M.; Ragaee, S.; Marti, A. Why do millets have slower starch and protein digestibility than other cereals? Trends Food Sci. Technol., 2017, 66, 73-83.
[http://dx.doi.org/10.1016/j.tifs.2017.05.012]
[88]
Mbithi-Mwikya, S.; Van Camp, J.; Yiru, Y.; Huyghebaert, A. Nutrient and antinutrient changes in finger millet (Eleusine coracan) during sprouting. Lebensm. Wiss. Technol., 2000, 33(1), 9-14.
[http://dx.doi.org/10.1006/fstl.1999.0605]
[89]
Chavan, J.K.; Kadam, S.S.; Beuchat, L.R. Nutritional improvement of cereals by fermentation. Crit. Rev. Food Sci. Nutr., 1989, 28(5), 349-400.
[http://dx.doi.org/10.1080/10408398909527507] [PMID: 2692608]
[90]
Hassan, A.B.; Ahmed, I.A.; Osman, N.M.; Eltayeb, M.M.; Osman, G.A.; Babiker, E.E. Effect of processing treatments followed by fermentation on protein content and digestibility of pearl millet (Pennisetum typhoideum) cultivars. Pak. J. Nutr., 2006, 5(1), 86-89.
[91]
Alaunyte, I.; Stojceska, V.; Plunkett, A.; Ainsworth, P.; Derbyshire, E. Improving the quality of nutrient-rich Teff (Eragrostis tef) breads by combination of enzymes in straight dough and sourdough breadmaking. J. Cereal Sci., 2012, 55(1), 22-30.
[http://dx.doi.org/10.1016/j.jcs.2011.09.005]
[92]
Mancebo, C.M.; Picón, J.; Gómez, M. Effect of flour properties on the quality characteristics of gluten free sugar-snap cookies. Lebensm. Wiss. Technol., 2015, 64(1), 264-269.
[http://dx.doi.org/10.1016/j.lwt.2015.05.057]
[93]
Omoba, O.S.; Taylor, J.R.N.; de Kock, H.L. Sensory and nutritive profiles of biscuits from whole grain sorghum and pearl millet plus soya flour with and without sourdough fermentation. Int. J. Food Sci. Technol., 2015, 50(12), 2554-2561.
[http://dx.doi.org/10.1111/ijfs.12923]
[94]
Anju, T., Jr; Sarita, S. Suitability of foxtail millet (Setaria italica) and barnyard millet (Echinochloa frumentacea) for development of low glycemic index biscuits. Malays. J. Nutr., 2010, 16(3), 361-368.
[PMID: 22691989]
[95]
Subbulakshmi, B.; Malathi, D. Formulation of multi millet cookies anf evaluate its hypoglycaemic effect in albino rats. J. Crop Weed, 2017, 13(3), 112-116.
[96]
Vijayakumar, T.P.; Mohankumar, J.B.; Srinivasan, T. Quality evaluation of noodles from millet flour blend incorporated composite flour. J. Sci. Ind. Res., 2010, 69, 84-89.
[97]
Collar, C. Impact of visco-metric profile of composite dough matrices on starch digestibility and firming and retrogradation kinetics of breads thereof: Additive and interactive effects of non-wheat flours. J. Cereal Sci., 2016, 69, 32-39.
[http://dx.doi.org/10.1016/j.jcs.2016.02.006]
[98]
Čukelj Mustač, N.; Novotni, D.; Habuš, M.; Drakula, S.; Nanjara, L.; Voučko, B.; Benković, M.; Ćurić, D. Storage stability, micronisation, and application of nutrient-dense fraction of proso millet bran in gluten-free bread. J. Cereal Sci., 2020, 91, 102864.
[http://dx.doi.org/10.1016/j.jcs.2019.102864]
[99]
Collar, C.; Angioloni, A. Pseudocereals and teff in complex breadmaking matrices: Impact on lipid dynamics. J. Cereal Sci., 2014, 59(2), 145-154.
[http://dx.doi.org/10.1016/j.jcs.2013.12.008]
[100]
Jalgaonkar, K.; Jha, S.K. Influence of particle size and blend composition on quality of wheat semolina-pearl millet pasta. J. Cereal Sci., 2016, 71, 239-245.
[http://dx.doi.org/10.1016/j.jcs.2016.09.007]
[101]
Gull, A.; Prasad, K.; Kumar, P. Optimization and functionality of millet supplemented pasta. Food Sci. Technol., 2015, 35(4), 626-632.
[http://dx.doi.org/10.1590/1678-457X.6745]
[102]
Giuberti, G.; Gallo, A.; Fiorentini, L.; Fortunati, P.; Masoero, F. In vitro starch digestibility and quality attributes of gluten free ‘tagliatelle’ prepared with teff flour and increasing levels of a new developed bean cultivar. Stärke, 2016, 68(3-4), 374-378.
[http://dx.doi.org/10.1002/star.201500007]
[103]
Banerjee, D.; Bag, P.; Chowdhury, R.; Bhattacharya, P. Sustainability of the probiotic lactobacillus casei in fortified indian milk cakes under different preservation conditions-effects of co-immobilization of L. casei and commercial prebiotic inulin (chicory based) and millet inulin. Int. J. Pharm. Pharm. Sci., 2016, 9(1), 152-157.
[http://dx.doi.org/10.22159/ijpps.2017v9i1.15305]
[104]
Rajyalakshmi, K.; Roopa, B.; Saikat, D.M.; Priyanka, D.; Vadlamudi, S.; Subramaniam, G. Characterization of potential probiotic bacteria isolated from sorghum and pearl millet of the semi-arid tropics. Afr. J. Biotechnol., 2016, 15(16), 613-621.
[http://dx.doi.org/10.5897/AJB2016.15212]
[105]
Tripathi, J.; Gupta, A.; Prasad, R.; Puranik, V. Enhancing micronutrient content of beverage powder by incorporating malted finger millet. Indian J. Community Health, 2014, 26(2), 339-342.
[106]
Adam, A.; Leuillet, M.; Crespy, V.; Levrat-Verny, M-A.; Leenhardt, F.; Demigné, C.; Rémésy, C. The bioavailability of ferulic acid is governed primarily by the food matrix rather than its metabolism in intestine and liver in rats. J. Nutr., 2002, 132(7), 1962-1968.
[http://dx.doi.org/10.1093/jn/132.7.1962] [PMID: 12097677]
[107]
Chen, C.Y.; Milbury, P.E.; Kwak, H.K.; Blumberg, J.B.; Collins, F.W.; Samuel, P. Avenanthramides and phenolic acids from oats are bioavailable and act synergistically with vitamin C to enhance hamster and human LDL resistance to oxidation. J. Nutr., 2004, 134(6), 1459-1466.
[http://dx.doi.org/10.1093/jn/134.6.1459] [PMID: 15173412]
[108]
Lafay, S.; Gil-Izquierdo, A.; Manach, C.; Morand, C.; Besson, C.; Scalbert, A. Chlorogenic acid is absorbed in its intact form in the stomach of rats. J. Nutr., 2006, 136(5), 1192-1197.
[http://dx.doi.org/10.1093/jn/136.5.1192] [PMID: 16614403]
[109]
Olthof, M.R.; Hollman, P.C.H.; Buijsman, M.N.C.P.; van Amelsvoort, J.M.M.; Katan, M.B. Chlorogenic acid, quercetin-3-rutinoside and black tea phenols are extensively metabolized in humans. J. Nutr., 2003, 133(6), 1806-1814.
[http://dx.doi.org/10.1093/jn/133.6.1806] [PMID: 12771321]
[110]
Rondini, L.; Peyrat-Maillard, M.N.; Marsset-Baglieri, A.; Fromentin, G.; Durand, P.; Tomé, D.; Prost, M.; Berset, C. Bound ferulic acid from bran is more bioavailable than the free compound in rat. J. Agric. Food Chem., 2004, 52(13), 4338-4343.
[http://dx.doi.org/10.1021/jf0348323] [PMID: 15212489]
[111]
Manach, C.; Williamson, G.; Morand, C.; Scalbert, A.; Rémésy, C. Bioavailability and bioefficacy of polyphenols in humans. I. Review of 97 bioavailability studies. Am. J. Clin. Nutr., 2005, 81(1), 230S-242S.
[http://dx.doi.org/10.1093/ajcn/81.1.230S] [PMID: 15640486]
[112]
Zhao, Z.; Egashira, Y.; Sanada, H. Ferulic acid is quickly absorbed from rat stomach as the free form and then conjugated mainly in liver. J. Nutr., 2004, 134(11), 3083-3088.
[http://dx.doi.org/10.1093/jn/134.11.3083] [PMID: 15514279]
[113]
Hollman, P.C.; de Vries, J.H.; van Leeuwen, S.D.; Mengelers, M.J.; Katan, M.B. Absorption of dietary quercetin glycosides and quercetin in healthy ileostomy volunteers. Am. J. Clin. Nutr., 1995, 62(6), 1276-1282.
[http://dx.doi.org/10.1093/ajcn/62.6.1276] [PMID: 7491892]
[114]
Bourne, L.C.; Rice-Evans, C. Bioavailability of ferulic acid. Biochem. Biophys. Res. Commun., 1998, 253(2), 222-227.
[http://dx.doi.org/10.1006/bbrc.1998.9681] [PMID: 9878519]
[115]
Chandrasekara, A.; Shahidi, F. Antiproliferative potential and DNA scission inhibitory activity of phenolics from whole millet grains. J. Funct. Foods, 2011, 3(3), 159-170.
[http://dx.doi.org/10.1016/j.jff.2011.03.008]
[116]
Murti, Y.; Pathak, D.; Pathak, K. Green chemistry approaches to the synthesis of flavonoids. Curr. Org. Chem., 2021, 25(17), 2005-2027.
[http://dx.doi.org/10.2174/1385272825666210728095624]
[117]
Jain, D.; Murti, Y.; Khan, W.U.; Hossain, R.; Hossain, M.N.; Agrawal, K.K.; Ashraf, R.A.; Islam, M.T.; Janmeda, P.; Taheri, Y.; Alshehri, M.M.; Daştan, S.D.; Yeskaliyeva, B.; Kipchakbayeva, A.; Sharifi-Rad, J.; Cho, W.C. Roles of therapeutic bioactive compounds in hepatocellular carcinoma. Oxid. Med. Cell. Longev., 2021, 2021, 1-31.
[http://dx.doi.org/10.1155/2021/9068850] [PMID: 34754365]
[118]
Murti, Y.; Semwal, B.C.; Goyal, A.; Mishra, P. Naringenin scaffold as a template for drug designing. Curr. Tradit. Med., 2021, 7(1), 28-44.
[http://dx.doi.org/10.2174/2215083805666190617144652]
[119]
Murti, Y. Biological evaluation of synthesized naringenin derivatives as antimicrobial agents. Antiinfect. Agents, 2021, 19(2), 192-199.
[http://dx.doi.org/10.2174/2211352518999200729111045]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy