Generic placeholder image

CNS & Neurological Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5273
ISSN (Online): 1996-3181

Review Article

Pre-clinical Aspects and Contemporary Treatments of Parkinson’s Disease

Author(s): Partosh Chhabra, Rishabh, Shivani Singla, Sunayna Choudhary, Shivam Kohli, Nitin Bansal and Seema Bansal*

Volume 23, Issue 8, 2024

Published on: 06 October, 2023

Page: [996 - 1014] Pages: 19

DOI: 10.2174/0118715273258646230920074421

Price: $65

Abstract

Background: After Alzheimer’s disease, the second slot for the most common neurodegenerative disease, is occupied by Parkinson’s disease. The symptoms of Parkinson’s are classified as motor symptoms and non-motor symptoms. Motor symptoms involve rigidity, tremors, bradykinesia, and postural instability. Non-motor symptoms consist of cognitive dysfunction, salivation, lacrimation, etc.

Objectives: The objectives of this study are to find out the most recent treatment options for Parkinson’s disease.

Methods: Research and review papers are collected from different databases like Google Scholar, PubMed, Mendeley, Scopus, Science Open, and the Directory of Open Access Journals using different keywords such as "Parkinson’s disease, biomarkers, animal models".

Results: Currently, various novel therapeutics have been emerging for PD. These may include treatments that may control the symptoms without causing any other severe side effects with already available treatments. Better therapies such as gene therapies, cell-based treatments, and regenerative therapies, which may evolve over time, can be a better therapeutic option.

Conclusion: There is a need for the development of novel and potential therapeutic strategies that offer fewer side effects to patients. Several clinical, biochemical, and imaging markers that are noteworthy in Parkinson’s disease examination have been discussed here. Current work in the field of Parkinson’s disease has developed a variety of significant small animal models, such as viral vector models and seeding models, including the insertion of preformed fibrils of alpha-synuclein. The brief concepts regarding risk factors, pathogenesis, clinical diagnosis, and emerging treatments of PD are discussed in this review article.

Keywords: Parkinson’s disease, treatment, biomarkers, animal models, pathophysiology, neuropharmacology, regenerative therapies.

Graphical Abstract
[1]
Kalia LV, Lang AE. Parkinson’s disease. Lancet 2015; 386(9996): 896-912.
[http://dx.doi.org/10.1016/S0140-6736(14)61393-3] [PMID: 25904081]
[2]
Dickson DW. Parkinson’s disease and parkinsonism: Neuropathology. Cold Spring Harb Perspect Med 2012; 2(8): a009258.
[http://dx.doi.org/10.1101/cshperspect.a009258] [PMID: 22908195]
[3]
Selikhova M, Williams DR, Kempster PA, Holton JL, Revesz T, Lees AJ. A clinico-pathological study of subtypes in Parkinson’s disease. Brain 2009; 132(11): 2947-57.
[http://dx.doi.org/10.1093/brain/awp234] [PMID: 19759203]
[4]
Huot P, Johnston TH, Koprich JB, Fox SH, Brotchie JM. The pharmacology of L-DOPA-induced dyskinesia in Parkinson’s disease. Pharmacol Rev 2013; 65(1): 171-222.
[http://dx.doi.org/10.1124/pr.111.005678] [PMID: 23319549]
[5]
Jenner P. Dopamine agonists, receptor selectivity and dyskinesia induction in Parkinsonʼs disease. Curr Opin Neurol 2003; 16(1): S3-7.
[http://dx.doi.org/10.1097/00019052-200312001-00002] [PMID: 15180131]
[6]
Dauer W, Przedborski S. Parkinson’s Disease. Neuron 2003; 39(6): 889-909.
[http://dx.doi.org/10.1016/S0896-6273(03)00568-3] [PMID: 12971891]
[7]
Cohen G. Oxy-radical toxicity in catecholamine neurons. Neurotoxicology 1984; 5(1): 77-82.
[PMID: 6326007]
[8]
Sandy MS, Armstrong M, Tanner CM, et al. CYP2D6 allelic frequencies in young-onset Parkinson’s disease. Neurology 1996; 47(1): 225-30.
[http://dx.doi.org/10.1212/WNL.47.1.225] [PMID: 8710083]
[9]
Giasson BI, Duda JE, Murray IV, et al. Oxidative damage linked to neurodegeneration by selective α-synuclein nitration in synucleinopathy lesions. Science 2000; 290(5493): 985-9.
[http://dx.doi.org/10.1126/science.290.5493.985] [PMID: 11062131]
[10]
Wakabayashi K, Matsumoto K, Takayama K, Yoshimoto M, Takahashi H. NACP, a presynaptic protein, immunoreactivity in Lewy bodies in Parkinson’s disease. Neurosci Lett 1997; 239(1): 45-8.
[http://dx.doi.org/10.1016/S0304-3940(97)00891-4] [PMID: 9547168]
[11]
Kopito RR. Aggresomes, inclusion bodies and protein aggregation. Trends Cell Biol 2000; 10(12): 524-30.
[http://dx.doi.org/10.1016/S0962-8924(00)01852-3] [PMID: 11121744]
[12]
Przedborski S. In Free radicals in brain pathophysiology. CRC Press 2000; pp. 296-313.
[13]
Chaudhary R, Singh R. Therapeutic viewpoint on rat models of locomotion abnormalities and neurobiological indicators in parkinson’s disease. CNS Neurol Disord Drug Targets. Formerly Current Drug Targets-CNS & Neurological Disorders 2023.
[14]
Beckman KB, Ames BN. The free radical theory of aging matures. Physiol Rev 1998; 78(2): 547-81.
[http://dx.doi.org/10.1152/physrev.1998.78.2.547] [PMID: 9562038]
[15]
Goedert M, Spillantini MG, Del Tredici K, Braak H. 100 years of Lewy pathology. Nat Rev Neurol 2013; 9(1): 13-24.
[http://dx.doi.org/10.1038/nrneurol.2012.242] [PMID: 23183883]
[16]
Jellinger KA. A critical reappraisal of current staging of Lewy-related pathology in human brain. Acta Neuropathol 2008; 116(1): 1-16.
[http://dx.doi.org/10.1007/s00401-008-0406-y] [PMID: 18592254]
[17]
Dickson DW. Parkinson’s disease and parkinsonism: Neuropathology Cold Spring Harb Perpect Med 2012; 2(8)
[18]
Baba M, Nakajo S, Tu P-H, et al. Aggregation of alpha-synuclein in Lewy bodies of sporadic Parkinson’s disease and dementia with Lewy bodies. Am J Pathol 1998; 152(4): 879-84.
[PMID: 9546347]
[19]
Spillantini MG, Schmidt ML, Lee VMY, Trojanowski JQ, Jakes R, Goedert M. α-synuclein in lewy bodies. Nature 1997; 388(6645): 839-40.
[http://dx.doi.org/10.1038/42166] [PMID: 9278044]
[20]
Nicklas WJ, Youngster SK, Kindt MV, Heikkila RE IV. IV. MPTP, MPP+ and mitochondrial function. Life Sci 1987; 40(8): 721-9.
[http://dx.doi.org/10.1016/0024-3205(87)90299-2] [PMID: 3100899]
[21]
Schapira AHV, Cooper JM, Dexter D, Clark JB, Jenner P, Marsden CD. Mitochondrial complex I deficiency in Parkinson’s disease. J Neurochem 1990; 54(3): 823-7.
[http://dx.doi.org/10.1111/j.1471-4159.1990.tb02325.x] [PMID: 2154550]
[22]
Parker WD Jr, Boyson SJ, Parks JK. Abnormalities of the electron transport chain in idiopathic Parkinson’s disease. Ann Neurol 1989; 26(6): 719-23.
[23]
Pozo Devoto VM, Falzone TL. Mitochondrial dynamics in Parkinson’s disease: A role for α-synuclein? Dis Model Mech 2017; 10(9): 1075-87.
[http://dx.doi.org/10.1242/dmm.026294] [PMID: 28883016]
[24]
Paillusson S, Gomez-Suaga P, Stoica R, et al. α-Synuclein binds to the ER–mitochondria tethering protein VAPB to disrupt Ca2+ homeostasis and mitochondrial ATP production. Acta Neuropathol 2017; 134(1): 129-49.
[http://dx.doi.org/10.1007/s00401-017-1704-z] [PMID: 28337542]
[25]
Trancikova A, Tsika E, Moore DJ. Mitochondrial dysfunction in genetic animal models of Parkinson’s disease. Antioxid Redox Signal 2012; 16(9): 896-919.
[http://dx.doi.org/10.1089/ars.2011.4200] [PMID: 21848447]
[26]
Bender A, Krishnan KJ, Morris CM, et al. High levels of mitochondrial DNA deletions in substantia nigra neurons in aging and Parkinson disease. Nat Genet 2006; 38(5): 515-7.
[http://dx.doi.org/10.1038/ng1769] [PMID: 16604074]
[27]
Gatt AP, Duncan OF, Attems J, Francis PT, Ballard CG, Bateman JM. Dementia in Parkinson’s disease is associated with enhanced mitochondrial complex I deficiency. Mov Disord 2016; 31(3): 352-9.
[http://dx.doi.org/10.1002/mds.26513] [PMID: 26853899]
[28]
Cohen G. Oxidative stress, mitochondrial respiration, and Parkinson’s disease. Ann N Y Acad Sci 2000; 899(1): 112-20.
[http://dx.doi.org/10.1111/j.1749-6632.2000.tb06180.x] [PMID: 10863533]
[29]
Chaudhary R, Gupta S, Chauhan S. Protein uncoupling as an innovative practice in diabetes mellitus treatment: A metabolic disorder. Endocr Metab Immune Disord Drug Targets 2023; 23(4): 494-502.
[30]
Berardelli A, Wenning GK, Antonini A, et al. EFNS/MDS-ES recommendations for the diagnosis of Parkinson’s disease. Eur J Neurol 2013; 20(1): 16-34.
[http://dx.doi.org/10.1111/ene.12022] [PMID: 23279440]
[31]
Schapira AHV, Schrag A. Parkinson disease clinical subtypes and their implications. Nat Rev Neurol 2011; 7(5): 247-8.
[http://dx.doi.org/10.1038/nrneurol.2011.40] [PMID: 21423265]
[32]
Schapira AHV. Recent developments in biomarkers in Parkinson disease. Curr Opin Neurol 2013; 26(4): 395-400.
[http://dx.doi.org/10.1097/WCO.0b013e3283633741] [PMID: 23823465]
[33]
Conway KA, Harper JD, Lansbury PT. Accelerated in vitro fibril formation by a mutant α-synuclein linked to early-onset Parkinson disease. Nat Med 1998; 4(11): 1318-20.
[http://dx.doi.org/10.1038/3311] [PMID: 9809558]
[34]
Xu J, Kao SY, Lee FJS, Song W, Jin LW, Yankner BA. Dopamine-dependent neurotoxicity of α-synuclein: A mechanism for selective neurodegeneration in Parkinson disease. Nat Med 2002; 8(6): 600-6.
[http://dx.doi.org/10.1038/nm0602-600] [PMID: 12042811]
[35]
Peelaerts W, Bousset L, Van der Perren A, et al. α-Synuclein strains cause distinct synucleinopathies after local and systemic administration. Nature 2015; 522(7556): 340-4.
[http://dx.doi.org/10.1038/nature14547] [PMID: 26061766]
[36]
Mollenhauer B, Locascio JJ, Schulz-Schaeffer W, Sixel-Döring F, Trenkwalder C, Schlossmacher MG. α-Synuclein and tau concentrations in cerebrospinal fluid of patients presenting with parkinsonism: A cohort study. Lancet Neurol 2011; 10(3): 230-40.
[http://dx.doi.org/10.1016/S1474-4422(11)70014-X] [PMID: 21317042]
[37]
Devic I, Hwang H, Edgar JS, et al. Salivary α-synuclein and DJ-1: Potential biomarkers for Parkinson’s disease. Brain 2011; 134(7): e178-8.
[http://dx.doi.org/10.1093/brain/awr015] [PMID: 21349902]
[38]
Perrino G, Wilson C, Santorelli M, di Bernardo D. Quantitative characterization of α-synuclein aggregation in living cells through automated microfluidics feedback control. Cell Rep 2019; 27(3): 916-27.
[http://dx.doi.org/10.1016/j.celrep.2019.03.081]
[39]
Narkiewicz J, Giachin G, Legname G. In vitro aggregation assays for the characterization of α-synuclein prion-like properties. Prion 2014; 8(1): 19-32.
[http://dx.doi.org/10.4161/pri.28125] [PMID: 24552879]
[40]
Hong Z, Shi M, Chung KA, et al. DJ-1 and α-synuclein in human cerebrospinal fluid as biomarkers of Parkinson’s disease. Brain 2010; 133(3): 713-26.
[http://dx.doi.org/10.1093/brain/awq008] [PMID: 20157014]
[41]
Shi M, Bradner J, Hancock AM, et al. Cerebrospinal fluid biomarkers for Parkinson disease diagnosis and progression. Ann Neurol 2011; 69(3): 570-80.
[http://dx.doi.org/10.1002/ana.22311] [PMID: 21400565]
[42]
Dekker MCJ, Eshuis SA, Maguire RP, et al. PET neuroimaging and mutations in the DJ-1 gene. J Neural Transm 2004; 111(12): 1575-81.
[http://dx.doi.org/10.1007/s00702-004-0165-4] [PMID: 15565491]
[43]
Abou-Sleiman PM, Healy DG, Wood NW. Causes of Parkinson?s disease: Genetics of DJ-1. Cell Tissue Res 2004; 318(1): 185-8.
[http://dx.doi.org/10.1007/s00441-004-0922-6] [PMID: 15503154]
[44]
Vogt T, Kramer K, Gartenschlaeger M, Schreckenberger M. Estimation of further disease progression of Parkinson’s disease by dopamin transporter scan vs clinical rating. Parkinsonism Relat Disord 2011; 17(6): 459-63.
[http://dx.doi.org/10.1016/j.parkreldis.2011.04.002] [PMID: 21515087]
[45]
Ravina B, Marek K, Eberly S, et al. Dopamine transporter imaging is associated with long-term outcomes in Parkinson’s disease. Mov Disord 2012; 27(11): 1392-7.
[http://dx.doi.org/10.1002/mds.25157] [PMID: 22976926]
[46]
Péran P, Cherubini A, Assogna F, et al. Magnetic resonance imaging markers of Parkinson’s disease nigrostriatal signature. Brain 2010; 133(11): 3423-33.
[http://dx.doi.org/10.1093/brain/awq212] [PMID: 20736190]
[47]
Gao X, Simon KC, Schwarzschild MA, Ascherio A. Prospective study of statin use and risk of Parkinson disease. Arch Neurol 2012; 69(3): 380-4.
[http://dx.doi.org/10.1001/archneurol.2011.1060] [PMID: 22410446]
[48]
Cipriani S, Chen X, Schwarzschild MA. Urate: A novel biomarker of Parkinson’s disease risk, diagnosis and prognosis. Biomarkers Med 2010; 4(5): 701-12.
[http://dx.doi.org/10.2217/bmm.10.94] [PMID: 20945982]
[49]
Chen X, Wu G, Schwarzschild MA. Urate in Parkinson’s disease: More than a biomarker? Curr Neurol Neurosci Rep 2012; 12(4): 367-75.
[http://dx.doi.org/10.1007/s11910-012-0282-7] [PMID: 22580741]
[50]
Schwarzschild MA, Marek K, Eberly S, et al. Serum urate and probability of dopaminergic deficit in early “Parkinson’s disease”. Mov Disord 2011; 26(10): 1864-8.
[http://dx.doi.org/10.1002/mds.23741] [PMID: 21538532]
[51]
Jankovic J. Parkinson’s disease: Clinical features and diagnosis. J Neurol Neurosurg Psychiatry 2008; 79(4): 368-76.
[http://dx.doi.org/10.1136/jnnp.2007.131045] [PMID: 18344392]
[52]
Cabreira V, Massano J. Parkinson’s disease: Clinical review and update. Acta Med Port 2019; 32(10): 661-70.
[http://dx.doi.org/10.20344/amp.11978] [PMID: 31625879]
[53]
Klockgether T. Parkinson?s disease: Clinical aspects. Cell Tissue Res 2004; 318(1): 115-20.
[http://dx.doi.org/10.1007/s00441-004-0975-6] [PMID: 15365814]
[54]
Burns RS, Chiueh CC, Markey SP, Ebert MH, Jacobowitz DM, Kopin IJ. A primate model of parkinsonism: Selective destruction of dopaminergic neurons in the pars compacta of the substantia nigra by N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Proc Natl Acad Sci 1983; 80(14): 4546-50.
[http://dx.doi.org/10.1073/pnas.80.14.4546] [PMID: 6192438]
[55]
Jenner P, Rupniak NMJ, Rose S, et al. 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced parkinsonism in the common marmoset. Neurosci Lett 1984; 50(1-3): 85-90.
[http://dx.doi.org/10.1016/0304-3940(84)90467-1] [PMID: 6436758]
[56]
William Langston J, Forno LS, Rebert CS, Irwin I. Selective nigral toxicity after systemic administration of 1-methyl-4-phenyl-1,2,5,6-tetrahydropyrine (MPTP) in the squirrel monkey. Brain Res 1984; 292(2): 390-4.
[http://dx.doi.org/10.1016/0006-8993(84)90777-7] [PMID: 6607092]
[57]
Han NR, Kim YK, Ahn S, Hwang TY, Lee H, Park HJ. A comprehensive phenotype of non-motor impairments and distribution of alpha-synuclein deposition in parkinsonism-induced mice by a combination injection of MPTP and probenecid. Front Aging Neurosci 2021; 12: 599045.
[http://dx.doi.org/10.3389/fnagi.2020.599045] [PMID: 33519420]
[58]
Forno LS, Langston JW, DeLanney LE, Irwin I, Ricaurte GA. Locus ceruleus lesions and eosinophilic inclusions in MPTP-treated monkeys. Ann Neurol 1986; 20(4): 449-55.
[http://dx.doi.org/10.1002/ana.410200403] [PMID: 3024555]
[59]
Forno LS, DeLanney LE, Irwin I, Langston JW. Similarities and differences between MPTP-induced parkinsonsim and Parkinson’s disease. Neuropathologic considerations. Adv Neurol 1993; 60: 600-8.
[PMID: 8380528]
[60]
Purisai MG, McCormack AL, Langston WJ, Johnston LC, Di Monte DA. α-Synuclein expression in the substantia nigra of MPTP-lesioned non-human primates. Neurobiol Dis 2005; 20(3): 898-906.
[http://dx.doi.org/10.1016/j.nbd.2005.05.028] [PMID: 16006134]
[61]
Hu S, Hu M, Liu J, et al. Phosphorylation of tau and α-synuclein induced neurodegeneration in MPTP mouse model of Parkinson’s disease. Neuropsych Dis Treat 2020; pp. 651-63.
[62]
Vila M, Vukosavic S, Jackson-Lewis V, Neystat M, Jakowec M, Przedborski S. α-synuclein up-regulation in substantia nigra dopaminergic neurons following administration of the parkinsonian toxin MPTP. J Neurochem 2000; 74(2): 721-9.
[http://dx.doi.org/10.1046/j.1471-4159.2000.740721.x] [PMID: 10646524]
[63]
Kowall NW, Hantraye P, Brouillet E, Beal MF, McKee AC, Ferrante RJ. MPTP induces alpha-synuclein aggregation in the substantia nigra of baboons. Neuroreport 2000; 11(1): 211-3.
[http://dx.doi.org/10.1097/00001756-200001170-00041] [PMID: 10683860]
[64]
Tanner CM, Kamel F, Ross GW, et al. Rotenone, paraquat, and Parkinson’s disease. Environ Health Perspect 2011; 119(6): 866-72.
[http://dx.doi.org/10.1289/ehp.1002839] [PMID: 21269927]
[65]
Sherer TB, Kim JH, Betarbet R, Greenamyre JT. Subcutaneous rotenone exposure causes highly selective dopaminergic degeneration and α-synuclein aggregation. Exp Neurol 2003; 179(1): 9-16.
[http://dx.doi.org/10.1006/exnr.2002.8072] [PMID: 12504863]
[66]
Ungerstedt U. 6-hydroxy-dopamine induced degeneration of central monoamine neurons. Eur J Pharmacol 1968; 5(1): 107-10.
[http://dx.doi.org/10.1016/0014-2999(68)90164-7] [PMID: 5718510]
[67]
Decker DE, Althaus JS, Buxser SE, VonVoigtlander PF, Ruppel PL. Competitive irreversible inhibition of dopamine uptake by 6-hydroxydopamine. Res Commun Chem Pathol Pharmacol 1993; 79(2): 195-208.
[PMID: 8451541]
[68]
Glinka YY, Youdim MB. Inhibition of mitochondrial complexes I and IV by 6-hydroxydopamine. Eur J Pharmacol 1995; 292(3-4): 329-32.
[PMID: 7796873]
[69]
Sauer H, Oertel WH. Progressive degeneration of nigrostriatal dopamine neurons following intrastriatal terminal lesions with 6-hydroxydopamine: A combined retrograde tracing and immunocytochemical study in the rat. Neuroscience 1994; 59(2): 401-15.
[http://dx.doi.org/10.1016/0306-4522(94)90605-X] [PMID: 7516500]
[70]
Kirik D, Rosenblad C, Björklund A. Characterization of behavioral and neurodegenerative changes following partial lesions of the nigrostriatal dopamine system induced by intrastriatal 6-hydroxydopamine in the rat. Exp Neurol 1998; 152(2): 259-77.
[http://dx.doi.org/10.1006/exnr.1998.6848] [PMID: 9710526]
[71]
Barata-Antunes S, Teixeira FG, Mendes-Pinheiro B, et al. Impact of aging on the 6-OHDA-induced rat model of Parkinson’s disease. Int J Mol Sci 2020; 21(10): 3459.
[http://dx.doi.org/10.3390/ijms21103459] [PMID: 32422916]
[72]
Di Monte DA, Lavasani M, Manning-Bog AB. Environmental factors in Parkinson’s disease. Neurotoxicology 2002; 23(4-5): 487-502.
[http://dx.doi.org/10.1016/S0161-813X(02)00099-2] [PMID: 12428721]
[73]
McCormack AL, Thiruchelvam M, Manning-Bog AB, et al. Environmental risk factors and Parkinson’s disease: selective degeneration of nigral dopaminergic neurons caused by the herbicide paraquat. Neurobiol Dis 2002; 10(2): 119-27.
[http://dx.doi.org/10.1006/nbdi.2002.0507] [PMID: 12127150]
[74]
Manning-Bog AB, McCormack AL, Li J, Uversky VN, Fink AL, Di Monte DA. The herbicide paraquat causes up-regulation and aggregation of α-synuclein in mice: Paraquat and α-synuclein. J Biol Chem 2002; 277(3): 1641-4.
[http://dx.doi.org/10.1074/jbc.C100560200] [PMID: 11707429]
[75]
Manning-Boğ AB, McCormack AL, Purisai MG, Bolin LM, Di Monte DA. α-synuclein overexpression protects against paraquat-induced neurodegeneration. J Neurosci 2003; 23(8): 3095-9.
[http://dx.doi.org/10.1523/JNEUROSCI.23-08-03095.2003] [PMID: 12716914]
[76]
Spira PJ, Sharpe DM, Halliday G, Cavanagh J, Nicholson GA. Clinical and pathological features of a parkinsonian syndrome in a family with an Ala53Thr? -synuclein mutation. Ann Neurol 2001; 49(3): 313-9.
[http://dx.doi.org/10.1002/ana.67] [PMID: 11261505]
[77]
Krüger R, Kuhn W, Müller T, et al. AlaSOPro mutation in the gene encoding α-synuclein in Parkinson’s disease. Nat Genet 1998; 18(2): 106-8.
[http://dx.doi.org/10.1038/ng0298-106] [PMID: 9462735]
[78]
Polymeropoulos MH, Lavedan C, Leroy E, et al. Mutation in the α-synuclein gene identified in families with Parkinson's disease. science 1997; 276(5321): 2045-7.
[79]
Leroy E, Boyer R, Auburger G, et al. The ubiquitin pathway in Parkinson’s disease. Nature 1998; 395(6701): 451-2.
[http://dx.doi.org/10.1038/26652] [PMID: 9774100]
[80]
Wilkinson KD. In Seminars in cell & developmental biology. Elsevier. 2000; 11: pp. 141-8.
[81]
Bonifati V, Rizzu P, van Baren MJ, et al. Mutations in the DJ-1 gene associated with autosomal recessive early-onset parkinsonism. Science 2003; 299(5604): 256-9.
[http://dx.doi.org/10.1126/science.1077209] [PMID: 12446870]
[82]
Mitsumoto A, Nakagawa Y, Takeuchi A, Okawa K, Iwamatsu A, Takanezawa Y. Oxidized forms of peroxiredoxins and DJ-1 on two-dimensional gels increased in response to sublethal levels of paraquat. Free Radic Res 2001; 35(3): 301-10.
[http://dx.doi.org/10.1080/10715760100300831] [PMID: 11697128]
[83]
Mitsumoto A, Nakagawa Y. DJ-1 is an indicator for endogenous reactive oxygen species elicited by endotoxin. Free Radic Res 2001; 35(6): 885-93.
[http://dx.doi.org/10.1080/10715760100301381] [PMID: 11811539]
[84]
Kitada T, Asakawa S, Hattori N, et al. Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. nature 1998; 392(6676): 605-8.
[85]
Lincoln S, Wiley J, Lynch T, et al. Parkin-proven disease: Common founders but divergent phenotypes. Neurology 2003; 60(10): 1605-10.
[http://dx.doi.org/10.1212/01.WNL.0000064289.49410.A9] [PMID: 12771249]
[86]
Mizuno Y, Hattori N, Mori H, Suzuki T, Tanaka K. Parkin and Parkinsonʼs disease. Curr Opin Neurol 2001; 14(4): 477-82.
[http://dx.doi.org/10.1097/00019052-200108000-00008] [PMID: 11470964]
[87]
Billingsley KJ, Bandres-Ciga S, Saez-Atienzar S, Singleton AB. Genetic risk factors in Parkinson’s disease. Cell Tissue Res 2018; 373(1): 9-20.
[http://dx.doi.org/10.1007/s00441-018-2817-y] [PMID: 29536161]
[88]
Xiong H, Wang D, Chen L, et al. Parkin, PINK1, and DJ-1 form a ubiquitin E3 ligase complex promoting unfolded protein degradation. J Clin Invest 2009; 119(3): 650-60.
[http://dx.doi.org/10.1172/JCI37617] [PMID: 19229105]
[89]
Fischer DL, Gombash SE, Kemp CJ, et al. Viral vector-based modeling of neurodegenerative disorders: Parkinson’s disease. Gene Therapy for Neurological Disorders: Methods and Protocols 2016; 367-82.
[90]
Kirik D, Rosenblad C, Burger C, et al. Parkinson-like neurodegeneration induced by targeted overexpression of α-synuclein in the nigrostriatal system. J Neurosci 2002; 22(7): 2780-91.
[http://dx.doi.org/10.1523/JNEUROSCI.22-07-02780.2002] [PMID: 11923443]
[91]
Klein RL, King MA, Hamby ME, Meyer EM. Dopaminergic cell loss induced by human A30P α-synuclein gene transfer to the rat substantia nigra. Hum Gene Ther 2002; 13(5): 605-12.
[http://dx.doi.org/10.1089/10430340252837206] [PMID: 11916484]
[92]
Lo Bianco C, Ridet J-L, Schneider BL, Déglon N, Aebischer P. α-Synucleinopathy and selective dopaminergic neuron loss in a rat lentiviral-based model of Parkinson’s disease. Proc Natl Acad Sci 2002; 99(16): 10813-8.
[http://dx.doi.org/10.1073/pnas.152339799] [PMID: 12122208]
[93]
Ulusoy A, Bjorklund T, Hermening S, Kirik D. In vivo gene delivery for development of mammalian models for Parkinson’s disease. Exp Neurol 2008; 209(1): 89-100.
[http://dx.doi.org/10.1016/j.expneurol.2007.09.011] [PMID: 18028909]
[94]
Ulusoy A, Decressac M, Kirik D, Björklund A. Viral vector-mediated overexpression of α-synuclein as a progressive model of Parkinson’s disease. Prog Brain Res 2010; 184: 89-111.
[http://dx.doi.org/10.1016/S0079-6123(10)84005-1]] [PMID: 20887871]
[95]
Bourdenx M, Dehay B, Bezard’ E. Experimental modelling of -synuclein aggregation and spreading in synucleinopathies. Bull Acad Natl Med 2015; 199(6): 797-808.
[http://dx.doi.org/10.1016/S0001-4079(19)30882-9] [PMID: 29901880]
[96]
Lundblad M, Decressac M, Mattsson B, Björklund A. Impaired neurotransmission caused by overexpression of α-synuclein in nigral dopamine neurons. Proc Natl Acad Sci 2012; 109(9): 3213-9.
[http://dx.doi.org/10.1073/pnas.1200575109] [PMID: 22315428]
[97]
Ulusoy A, Phillips RJ, Helwig M, Klinkenberg M, Powley TL, Di Monte DA. Brain-to-stomach transfer of α-synuclein via vagal preganglionic projections. Acta Neuropathol 2017; 133(3): 381-93.
[http://dx.doi.org/10.1007/s00401-016-1661-y] [PMID: 28012041]
[98]
Decressac M, Mattsson B, Lundblad M, Weikop P, Björklund A. Progressive neurodegenerative and behavioural changes induced by AAV-mediated overexpression of α-synuclein in midbrain dopamine neurons. Neurobiol Dis 2012; 45(3): 939-53.
[http://dx.doi.org/10.1016/j.nbd.2011.12.013] [PMID: 22182688]
[99]
Oliveras-Salvá M, Van der Perren A, Casadei N, et al. rAAV2/7 vector-mediated overexpression of alpha-synuclein in mouse substantia nigra induces protein aggregation and progressive dose-dependent neurodegeneration. Mol Neurodegener 2013; 8(1): 44.
[http://dx.doi.org/10.1186/1750-1326-8-44] [PMID: 24267638]
[100]
Kordower JH, Chu Y, Hauser RA, Freeman TB, Olanow CW. Lewy body–like pathology in long-term embryonic nigral transplants in Parkinson’s disease. Nat Med 2008; 14(5): 504-6.
[http://dx.doi.org/10.1038/nm1747] [PMID: 18391962]
[101]
Jan A, Gonçalves NP, Vaegter CB, Jensen PH, Ferreira N. The prion-like spreading of alpha-synuclein in parkinson’s disease: Update on models and hypotheses. Int J Mol Sci 2021; 22(15): 8338.
[http://dx.doi.org/10.3390/ijms22158338] [PMID: 34361100]
[102]
Li JY, Englund E, Holton JL, et al. Lewy bodies in grafted neurons in subjects with Parkinson’s disease suggest host-to-graft disease propagation. Nat Med 2008; 14(5): 501-3.
[http://dx.doi.org/10.1038/nm1746] [PMID: 18391963]
[103]
Luk KC, Kehm V, Carroll J, et al. Pathological α-synuclein transmission initiates Parkinson-like neurodegeneration in nontransgenic mice. Science 2012; 338(6109): 949-53.
[http://dx.doi.org/10.1126/science.1227157] [PMID: 23161999]
[104]
Shimozawa A, Ono M, Takahara D, et al. Propagation of pathological α-synuclein in marmoset brain. Acta Neuropathol Commun 2017; 5(1): 12.
[http://dx.doi.org/10.1186/s40478-017-0413-0] [PMID: 28148299]
[105]
Duffy MF, Collier TJ, Patterson JR, et al. Lewy body-like alpha-synuclein inclusions trigger reactive microgliosis prior to nigral degeneration. J Neuroinflammation 2018; 15(1): 1-18.
[PMID: 29301548]
[106]
Vekrellis K, Xilouri M, Emmanouilidou E, Rideout HJ, Stefanis L. Pathological roles of α-synuclein in neurological disorders. Lancet Neurol 2011; 10(11): 1015-25.
[http://dx.doi.org/10.1016/S1474-4422(11)70213-7] [PMID: 22014436]
[107]
Schapira AHV, Olanow CW, Greenamyre JT, Bezard E. Slowing of neurodegeneration in Parkinson’s disease and Huntington’s disease: Future therapeutic perspectives. Lancet 2014; 384(9942): 545-55.
[http://dx.doi.org/10.1016/S0140-6736(14)61010-2] [PMID: 24954676]
[108]
Singleton AB, Farrer M, Johnson J, et al. α-Synuclein locus triplication causes Parkinson’s disease. Science 2003; 302(5646): 841-1.
[http://dx.doi.org/10.1126/science.1090278] [PMID: 14593171]
[109]
Kara E, Kiely AP, Proukakis C, et al. A 6.4 Mb duplication of the α-synuclein locus causing frontotemporal dementia and Parkinsonism: Phenotype-genotype correlations. JAMA Neurol 2014; 71(9): 1162-71.
[http://dx.doi.org/10.1001/jamaneurol.2014.994] [PMID: 25003242]
[110]
Kingsbury AE, Daniel SE, Sangha H, Eisen S, Lees AJ, Foster OJF. Alteration in α-synuclein mRNA expression in Parkinson’s disease. Mov Disord 2004; 19(2): 162-70.
[http://dx.doi.org/10.1002/mds.10683] [PMID: 14978671]
[111]
Farrer M, Maraganore DM, Lockhart P, et al. α-synuclein gene haplotypes are associated with Parkinson’s disease. Hum Mol Genet 2001; 10(17): 1847-51.
[http://dx.doi.org/10.1093/hmg/10.17.1847] [PMID: 11532993]
[112]
Diaz NL, Waters CH. Current strategies in the treatment of Parkinson’s disease and a personalized approach to management. Expert Rev Neurother 2009; 9(12): 1781-9.
[http://dx.doi.org/10.1586/ern.09.117] [PMID: 19951137]
[113]
Marjama-Lyons J, Koller W. Tremor-predominant Parkinson’s disease. Approaches to treatment. Drugs Aging 2000; 16(4): 273-8.
[http://dx.doi.org/10.2165/00002512-200016040-00003] [PMID: 10874522]
[114]
Naidoo D, Roy A, Slavětínská LP, Chukwujekwu JC, Gupta S, Van Staden J. New role for crinamine as a potent, safe and selective inhibitor of human monoamine oxidase B: In vitro and in silico pharmacology and modeling. J Ethnopharmacol 2020; 248: 112305.
[http://dx.doi.org/10.1016/j.jep.2019.112305] [PMID: 31639490]
[115]
Załuski M, Schabikowski J, Schlenk M, et al. Novel multi-target directed ligands based on annelated xanthine scaffold with aromatic substituents acting on adenosine receptor and monoamine oxidase B. Synthesis, in vitro and in silico studies. Bioorg Med Chem 2019; 27(7): 1195-210.
[http://dx.doi.org/10.1016/j.bmc.2019.02.004] [PMID: 30808606]
[116]
Brooks DJ. Dopamine agonists: Their role in the treatment of Parkinson’s disease. J Neurol Neurosurg Psychiatry 2000; 68(6): 685-9.
[http://dx.doi.org/10.1136/jnnp.68.6.685] [PMID: 10811688]
[117]
Jenner P. Pharmacology of dopamine agonists in the treatment of Parkinson’s disease. Neurology 2002; 58((4)(1)): S1-8.
[http://dx.doi.org/10.1212/WNL.58.suppl_1.S1] [PMID: 11909980]
[118]
Perez-Lloret S, Rascol O. Dopamine receptor agonists for the treatment of early or advanced Parkinson’s disease. CNS Drugs 2010; 24(11): 941-68.
[http://dx.doi.org/10.2165/11537810-000000000-00000] [PMID: 20932066]
[119]
Bonuccelli U, Del Dotto P, Rascol O. Role of dopamine receptor agonists in the treatment of early Parkinson’s disease. Parkinsonism Relat Disord 2009; 15(4): S44-53.
[http://dx.doi.org/10.1016/S1353-8020(09)70835-1] [PMID: 20123557]
[120]
Baker WL, Silver D, White CM, et al. Dopamine agonists in the treatment of early Parkinson’s disease: A meta-analysis. Parkinsonism Relat Disord 2009; 15(4): 287-94.
[http://dx.doi.org/10.1016/j.parkreldis.2008.07.004] [PMID: 18774743]
[121]
Chaurasiya N, Zhao J, Pandey P, Doerksen R, Muhammad I, Tekwani B. Selective inhibition of human monoamine oxidase B by acacetin 7-methyl ether isolated from Turnera diffusa (Damiana). Molecules 2019; 24(4): 810.
[http://dx.doi.org/10.3390/molecules24040810] [PMID: 30813423]
[122]
Hisahara S, Shimohama S. Dopamine receptors and Parkinson's disease. Int J Med Chem 2011; 2011
[http://dx.doi.org/10.1155/2011/403039]
[123]
Poewe W. The role of COMT inhibition in the treatment of Parkinson’s disease. Neurology 2004; 62((1, Supplement 1)(1)): S31-8.
[http://dx.doi.org/10.1212/WNL.62.1_suppl_1.S31] [PMID: 14718678]
[124]
Antonini A, Abbruzzese G, Barone P, et al. COMT inhibition with tolcapone in the treatment algorithm of patients with Parkinson’s disease (PD): relevance for motor and non-motor features. Neuropsychiatr Dis Treat 2008; 4(1): 1-9.
[http://dx.doi.org/10.2147/NDT.S2404] [PMID: 18728767]
[125]
Bonifácio MJ, Palma PN, Almeida L, Soares-da-Silva P. Catechol-O-methyltransferase and its inhibitors in Parkinson’s disease. CNS Drug Rev 2007; 13(3): 352-79.
[http://dx.doi.org/10.1111/j.1527-3458.2007.00020.x] [PMID: 17894650]
[126]
Espinoza S, Managò F, Leo D, Sotnikova TD, Gainetdinov RR. Role of catechol-O-methyltransferase (COMT)-dependent processes in Parkinson’s disease and L-DOPA treatment. CNS Neurol Disord Drug Targets 2012; 11(3): 251-63.
[http://dx.doi.org/10.2174/187152712800672436] [PMID: 22483291]
[127]
Nutt JG. In Advances in Pharmacology. Elsevier sci. 1997; 42: pp. 331-4.
[128]
Tutone M, Chinnici A, Almerico AM, Perricone U, Sutera FM, De Caro V. Design, synthesis and preliminary evaluation of dopamine-amino acid conjugates as potential D1 dopaminergic modulators. Eur J Med Chem 2016; 124: 435-44.
[http://dx.doi.org/10.1016/j.ejmech.2016.08.051] [PMID: 27597419]
[129]
Zahoor I, Shafi A, Haq E. Pharmacological treatment of Parkinson’s disease. J Gene Med 2018; 129-44.
[PMID: 30702845]
[130]
Katzenschlager R, Sampaio C, Costa J, Lees A, Group CMD. Anticholinergics for symptomatic management of Parkinson’s disease. Cochrane Libr 2002; 2010(1)
[http://dx.doi.org/10.1002/14651858.CD003735] [PMID: 12804486]
[131]
Olivares D, Deshpande VK, Shi Y, et al. N-methyl D-aspartate (NMDA) receptor antagonists and memantine treatment for Alzheimer’s disease, vascular dementia and Parkinson’s disease. Curr Alzheimer Res 2012; 9(6): 746-58.
[http://dx.doi.org/10.2174/156720512801322564] [PMID: 21875407]
[132]
Greenamyre JT, O’Brien CF. N-methyl-D-aspartate antagonists in the treatment of Parkinson’s disease. Arch Neurol 1991; 48(9): 977-81.
[http://dx.doi.org/10.1001/archneur.1991.00530210109030] [PMID: 1835370]
[133]
Beattie A, Caird FI. The occupational therapist and the patient with Parkinson’s disease. BMJ 1980; 280(6228): 1354-5.
[http://dx.doi.org/10.1136/bmj.280.6228.1354] [PMID: 7388539]
[134]
Gibberd FB, Page NG, Spencer KM, Kinnear E, Hawksworth JB. Controlled trial of physiotherapy and occupational therapy for Parkinson’s disease. BMJ 1981; 282(6271): 1196.
[http://dx.doi.org/10.1136/bmj.282.6271.1196] [PMID: 6788131]
[135]
Caird F. SAGE Publications Sage UK. London, England 1986.
[136]
Oxtoby M. Parkingson’s Disease Patients and Their Social Needs: A Survey of Patients in Contact with the Parkinson’s Disease Soceiiety. npj. Parkinsons Dis 1982.
[137]
Akhtar AJ, Broe GA, Crombie A, McLean WMR, Andrews GR, Caird FI. Disability and dependence in the elderly at home. Age Ageing 1973; 2(2): 102-11.
[http://dx.doi.org/10.1093/ageing/2.2.102] [PMID: 4778610]
[138]
Eusebio A, Thevathasan W, Doyle Gaynor L, et al. Deep brain stimulation can suppress pathological synchronisation in parkinsonian patients. J Neurol Neurosurg Psychiatry 2011; 82(5): 569-73.
[http://dx.doi.org/10.1136/jnnp.2010.217489] [PMID: 20935326]
[139]
Herrington TM, Cheng JJ, Eskandar EN. Mechanisms of deep brain stimulation. J Neurophysiol 2016; 115(1): 19-38.
[http://dx.doi.org/10.1152/jn.00281.2015] [PMID: 26510756]
[140]
Odekerken VJJ, van Laar T, Staal MJ, et al. Subthalamic nucleus versus globus pallidus bilateral deep brain stimulation for advanced Parkinson’s disease (NSTAPS study): A randomised controlled trial. Lancet Neurol 2013; 12(1): 37-44.
[http://dx.doi.org/10.1016/S1474-4422(12)70264-8] [PMID: 23168021]
[141]
Ramirez-Zamora A, Ostrem JL. Globus pallidus interna or subthalamic nucleus deep brain stimulation for Parkinson disease: A review. JAMA Neurol 2018; 75(3): 367-72.
[http://dx.doi.org/10.1001/jamaneurol.2017.4321] [PMID: 29356826]
[142]
Follett KA, Weaver FM, Stern M, et al. Pallidal versus subthalamic deep-brain stimulation for Parkinson’s disease. N Engl J Med 2010; 362(22): 2077-91.
[http://dx.doi.org/10.1056/NEJMoa0907083] [PMID: 20519680]
[143]
Wirdefeldt K, Odin P, Nyholm D. Levodopa–carbidopa intestinal gel in patients with Parkinson’s disease: A systematic review. CNS Drugs 2016; 30(5): 381-404.
[http://dx.doi.org/10.1007/s40263-016-0336-5] [PMID: 27138916]
[144]
Nyholm D, Odin P, Johansson A, et al. Pharmacokinetics of levodopa, carbidopa, and 3-O-methyldopa following 16-hour jejunal infusion of levodopa-carbidopa intestinal gel in advanced Parkinson’s disease patients. AAPS J 2013; 15(2): 316-23.
[http://dx.doi.org/10.1208/s12248-012-9439-1] [PMID: 23229334]
[145]
Wang L, Li J, Chen J. Levodopa-carbidopa intestinal gel in Parkinson’s disease: A systematic review and meta-analysis. Front Neurol 2018; 9: 620.
[http://dx.doi.org/10.3389/fneur.2018.00620] [PMID: 30104997]
[146]
Elias WJ, Lipsman N, Ondo WG, et al. A randomized trial of focused ultrasound thalamotomy for essential tremor. N Engl J Med 2016; 375(8): 730-9.
[http://dx.doi.org/10.1056/NEJMoa1600159] [PMID: 27557301]
[147]
Bond AE, Shah BB, Huss DS, et al. Safety and efficacy of focused ultrasound thalamotomy for patients with medication-refractory, tremor-dominant Parkinson disease: A randomized clinical trial. JAMA Neurol 2017; 74(12): 1412-8.
[http://dx.doi.org/10.1001/jamaneurol.2017.3098] [PMID: 29084313]
[148]
Mittal S, Bjørnevik K, Im DS, et al. β2-Adrenoreceptor is a regulator of the α-synuclein gene driving risk of Parkinson’s disease. Science 2017; 357(6354): 891-8.
[http://dx.doi.org/10.1126/science.aaf3934] [PMID: 28860381]
[149]
Karuppagounder SS, Brahmachari S, Lee Y, Dawson VL, Dawson TM, Ko HS. The c-Abl inhibitor, Nilotinib, protects dopaminergic neurons in a preclinical animal model of Parkinson’s disease. Sci Rep 2014; 4(1): 4874.
[http://dx.doi.org/10.1038/srep04874] [PMID: 24786396]
[150]
Cai R, Zhang Y, Simmering JE, et al. Enhancing glycolysis attenuates Parkinson’s disease progression in models and clinical databases. J Clin Invest 2019; 129(10): 4539-49.
[http://dx.doi.org/10.1172/JCI129987] [PMID: 31524631]
[151]
Coles LD, Tuite PJ, Öz G, et al. Repeated‐dose oral N‐acetylcysteine in Parkinson’s disease: pharmacokinetics and effect on brain glutathione and oxidative stress. J Clin Pharmacol 2018; 58(2): 158-67.
[http://dx.doi.org/10.1002/jcph.1008] [PMID: 28940353]
[152]
Kosloski LM, Kosmacek EA, Olson KE, Mosley RL, Gendelman HE. GM-CSF induces neuroprotective and anti-inflammatory responses in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine intoxicated mice. J Neuroimmunol 2013; 265(1-2): 1-10.
[http://dx.doi.org/10.1016/j.jneuroim.2013.10.009] [PMID: 24210793]
[153]
Jucaite A, Svenningsson P, Rinne JO, et al. Effect of the myeloperoxidase inhibitor AZD3241 on microglia: A PET study in Parkinson’s disease. Brain 2015; 138(9): 2687-700.
[http://dx.doi.org/10.1093/brain/awv184] [PMID: 26137956]
[154]
Percário S, da Silva Barbosa A, Varela ELP, et al. Oxidative stress in Parkinson’s disease: Potential benefits of antioxidant supplementation. Oxid Med Cell Longev 2020; 2020
[155]
Teerapattarakan N, Benya-aphikul H, Tansawat R, Wanakhachornkrai O, Tantisira MH, Rodsiri R. Neuroprotective effect of a standardized extract of Centella asiatica ECa233 in rotenone-induced parkinsonism rats. Phytomedicine 2018; 44: 65-73.
[http://dx.doi.org/10.1016/j.phymed.2018.04.028] [PMID: 29895494]
[156]
Park S-Y, Karthivashan G, Ko HM, et al. Aqueous Extract of Dendropanax morbiferus Leaves Effectively Alleviated Neuroinflammation and Behavioral Impediments in MPTP-Induced Parkinson’s Mouse Model. Oxid Med Cell Longev 2018; 2018: 3175214.
[157]
Xiang X, Wu L, Mao L, Liu Y. Anti-oxidative and anti-apoptotic neuroprotective effects of Azadirachta indica in Parkinson-induced functional damage. Mol Med Rep 2018; 17(6): 7959-65.
[PMID: 29620282]
[158]
Manivasagam T, Essa MM, Guizani N, et al. Protective effect of i Zizyphus spinachristi i on MPP -induced oxidative stress. Front Biosci 2018; 10(2): 285-99.
[http://dx.doi.org/10.2741/s516] [PMID: 29293433]
[159]
Chonpathompikunlert P, Boonruamkaew P, Sukketsiri W, Hutamekalin P, Sroyraya M. The antioxidant and neurochemical activity of Apium graveolens L. and its ameliorative effect on MPTP-induced Parkinson-like symptoms in mice. BMC Complement Altern Med 2018; 18(1): 103.
[http://dx.doi.org/10.1186/s12906-018-2166-0] [PMID: 29558946]
[160]
Kuang S, Yang L, Rao Z, et al. Effects of Ginkgo biloba extract on A53T α-synuclein transgenic mouse models of Parkinson’s disease. Can J Neurol Sci 2018; 45(2): 182-7.
[http://dx.doi.org/10.1017/cjn.2017.268] [PMID: 29506601]
[161]
de Araújo DP, Nogueira PCN, Santos ADC, et al. Aspidosperma pyrifolium Mart: neuroprotective, antioxidant and anti-inflammatory effects in a Parkinson’s disease model in rats. J Pharm Pharmacol 2018; 70(6): 787-96.
[http://dx.doi.org/10.1111/jphp.12866] [PMID: 29490425]
[162]
Sarbishegi M, Charkhat Gorgich EA, Khajavi O, Komeili G, Salimi S. The neuroprotective effects of hydro-alcoholic extract of olive (Olea europaea L.) leaf on rotenone-induced Parkinson’s disease in rat. Metab Brain Dis 2018; 33(1): 79-88.
[http://dx.doi.org/10.1007/s11011-017-0131-0] [PMID: 29039078]
[163]
Singh B, Pandey S, Yadav SK, Verma R, Singh SP, Mahdi AA. Role of ethanolic extract of Bacopa monnieri against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) induced mice model via inhibition of apoptotic pathways of dopaminergic neurons. Brain Res Bull 2017; 135: 120-8.
[http://dx.doi.org/10.1016/j.brainresbull.2017.10.007] [PMID: 29032054]
[164]
Athauda D, Maclagan K, Skene SS, et al. Exenatide once weekly versus placebo in Parkinson’s disease: A randomised, double-blind, placebo-controlled trial. Lancet 2017; 390(10103): 1664-75.
[http://dx.doi.org/10.1016/S0140-6736(17)31585-4] [PMID: 28781108]
[165]
Martin-Bastida A, Ward RJ, Newbould R, et al. Brain iron chelation by deferiprone in a phase 2 randomised double-blinded placebo controlled clinical trial in Parkinson’s disease. Sci Rep 2017; 7(1): 1398.
[http://dx.doi.org/10.1038/s41598-017-01402-2] [PMID: 28469157]
[166]
Lehnert S, Jesse S, Rist W, et al. iTRAQ and multiple reaction monitoring as proteomic tools for biomarker search in cerebrospinal fluid of patients with Parkinson’s disease dementia. Exp Neurol 2012; 234(2): 499-505.
[http://dx.doi.org/10.1016/j.expneurol.2012.01.024] [PMID: 22327139]
[167]
Murer MG, Yan Q, Raisman-Vozari R. Brain-derived neurotrophic factor in the control human brain, and in Alzheimer’s disease and Parkinson’s disease. Prog Neurobiol 2001; 63(1): 71-124.
[http://dx.doi.org/10.1016/S0301-0082(00)00014-9] [PMID: 11040419]
[168]
Rangasamy SB, Soderstrom K, Bakay RAE, Kordower JH. Neurotrophic factor therapy for Parkinson’s disease. Prog Brain Res 2010; 184: 237-64.
[http://dx.doi.org/10.1016/S0079-6123(10)84013-0]] [PMID: 20887879]
[169]
Whone AL, Boca M, Luz M, et al. Extended treatment with glial cell line-derived neurotrophic factor in Parkinson’s disease. J Parkinsons Dis 2019; 9(2): 301-13.
[http://dx.doi.org/10.3233/JPD-191576] [PMID: 30829619]
[170]
Chauhan NB, Siegel GJ, Lee JM. Depletion of glial cell line-derived neurotrophic factor in substantia nigra neurons of Parkinson’s disease brain. J Chem Neuroanat 2001; 21(4): 277-88.
[http://dx.doi.org/10.1016/S0891-0618(01)00115-6] [PMID: 11429269]
[171]
Scalzo P, Kümmer A, Bretas TL, Cardoso F, Teixeira AL. Serum levels of brain-derived neurotrophic factor correlate with motor impairment in Parkinson’s disease. J Neurol 2010; 257(4): 540-5.
[http://dx.doi.org/10.1007/s00415-009-5357-2] [PMID: 19847468]
[172]
Mogi M, Togari A, Kondo T, et al. Brain-derived growth factor and nerve growth factor concentrations are decreased in the substantia nigra in Parkinson’s disease. Neurosci Lett 1999; 270(1): 45-8.
[http://dx.doi.org/10.1016/S0304-3940(99)00463-2] [PMID: 10454142]
[173]
Collier TJ, Sortwell CE. Therapeutic potential of nerve growth factors in Parkinson’s disease. Drugs Aging 1999; 14(4): 261-87.
[http://dx.doi.org/10.2165/00002512-199914040-00003] [PMID: 10319241]
[174]
Lorigados Pedre L, Pavón Fuentes N, Alvarez González L, et al. Nerve growth factor levels in parkinson disease and experimental parkinsonian rats. Brain Res 2002; 952(1): 122-7.
[http://dx.doi.org/10.1016/S0006-8993(02)03222-5] [PMID: 12363411]
[175]
Galli E, Planken A, Kadastik-Eerme L, Saarma M, Taba P, Lindholm P. Increased serum levels of mesencephalic astrocyte-derived neurotrophic factor in subjects with Parkinson’s disease. Front Neurosci 2019; 13: 929.
[http://dx.doi.org/10.3389/fnins.2019.00929] [PMID: 31555085]
[176]
Voutilainen MH, Bäck S, Pörsti E, et al. Mesencephalic astrocyte-derived neurotrophic factor is neurorestorative in rat model of Parkinson’s disease. J Neurosci 2009; 29(30): 9651-9.
[http://dx.doi.org/10.1523/JNEUROSCI.0833-09.2009] [PMID: 19641128]
[177]
Bespalov MM, Saarma M. GDNF family receptor complexes are emerging drug targets. Trends Pharmacol Sci 2007; 28(2): 68-74.
[http://dx.doi.org/10.1016/j.tips.2006.12.005] [PMID: 17218019]
[178]
Saarma M. GDNF: Stranger in the TGF-β superfamily? Eur J Biochem 2000; 267(24): 6968-71.
[http://dx.doi.org/10.1046/j.1432-1327.2000.01826.x] [PMID: 11106404]
[179]
Marks WJ Jr, Bartus RT, Siffert J, et al. Gene delivery of AAV2-neurturin for Parkinson’s disease: A double-blind, randomised, controlled trial. Lancet Neurol 2010; 9(12): 1164-72.
[http://dx.doi.org/10.1016/S1474-4422(10)70254-4] [PMID: 20970382]
[180]
Runeberg-Roos P, Piccinini E, Penttinen AM, et al. Developing therapeutically more efficient Neurturin variants for treatment of Parkinson’s disease. Neurobiol Dis 2016; 96: 335-45.
[http://dx.doi.org/10.1016/j.nbd.2016.07.008] [PMID: 27425888]
[181]
Kordower JH. AAV2-neurturin for Parkinson’s disease: What lessons have we learned? Gene Therapy for Neurological Disorders: Methods and Protocols 2016; 485-90.
[182]
Tanriover G, Seval-Celik Y, Ozsoy O, et al. The effects of docosahexaenoic acid on glial derived neurotrophic factor and neurturin in bilateral rat model of Parkinson’s disease. Folia Histochem Cytobiol 2010; 48(3): 434-41.
[http://dx.doi.org/10.2478/v10042-010-0047-6] [PMID: 21071351]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy