Generic placeholder image

Drug Metabolism and Bioanalysis Letters

Editor-in-Chief

ISSN (Print): 2949-6810
ISSN (Online): 2949-6829

Research Article

CYP1A2*F Polymorphism Contributes at Least Partially to the Variability of Plasma Levels of Dehydroaripiprazole, an Active Metabolite of Aripiprazole, in Schizophrenic Patients

Author(s): Takeshi Suzuki, Goyo Nagai, Kazuo Mihara*, Yoko Tomori, Shoko Kagawa, Akifumi Nakamura, Kenji Nemoto and Tsuyoshi Kondo

Volume 17, Issue 1, 2024

Published on: 06 October, 2023

Page: [7 - 12] Pages: 6

DOI: 10.2174/0118723128246698230921095141

Price: $65

Open Access Journals Promotions 2
Abstract

Aim: The relationship between CYP1A2 polymorphisms and the steady-state plasma levels of aripiprazole and its active metabolite, dehydroaripiprazole, were investigated in Japanese schizophrenic patients.

Background: It has been implied that cytochrome P450 (CYP) 1A2 may play a role in the metabo-lism of aripiprazole. Genetic variations in the CYP1A2 gene have been reported.

Objective: The authors investigated the relationship between 2 CYP1A2 polymorphisms, CYP1A2*C (-3860G>A) and CYP1A2*F (-163C>A), and the steady-state plasma levels/dose (C/D) ratios of aripiprazole and dehydroaripiprazole in Japanese schizophrenic patients.

Methods: All 89 subjects (46 males and 43 females) had been receiving 2 fixed daily doses of aripiprazole (24 mg; n=56 and 12 mg: n=33) for more than 2 weeks. No other drugs were used except flunitrazepam and biperiden. The plasma drug levels were determined by LC/MS/MS. These CYP1A2 polymorphisms were detected using polymerase chain reaction analysis.

Results: The mean C/D ratios of dehydroaripiprazole were significantly (P < 0.05) lower in patients with the A/A allele of CYP1A2*F than in those without the allele. No differences were found in the values of aripiprazole and the combination of aripiprazole and dehydroaripiprazole among the CYP1A2*F genotype. There were no differences in the values of aripiprazole, dehydroaripiprazole, or the combination of the 2 compounds among the CYP1A2*C genotype. The absence of the A allele of CYP1A2*F was correlated with the mean C/D ratios of dehydroaripiprazole (standardized partial correlation coefficient = 0.276, P < 0.01) by multiple regression analysis.

Conclusion: The findings of this study suggest that the CYP1A2*F polymorphism contributes at least partially to the variability in the steady-state plasma levels of dehydroaripiprazole.

Keywords: Aripiprazole, dehydroaripiprazole, metabolism, CYP1A2 polymorphism, schizophrenia, polymerase chain reac-tion.

Graphical Abstract
[1]
Shapiro, D.A.; Renock, S.; Arrington, E.; Chiodo, L.A.; Liu, L.X.; Sibley, D.R.; Roth, B.L.; Mailman, R. Aripiprazole, a novel atypical antipsychotic drug with a unique and robust pharmacology. Neuropsychopharmacology, 2003, 28(8), 1400-1411.
[http://dx.doi.org/10.1038/sj.npp.1300203] [PMID: 12784105]
[2]
Caccia, S. N-dealkylation of arylpiperazine derivatives: Disposition and metabolism of the 1-aryl-piperazines formed. Curr. Drug Metab., 2007, 8(6), 612-622.
[http://dx.doi.org/10.2174/138920007781368908 ] [PMID: 17691920]
[3]
Lin, S.K.; Chen, C.K.; Liu, Y.L. Aripiprazole and dehydroaripiprazole plasma concentrations and clinical responses in patients with schizophrenia. J. Clin. Psychopharmacol., 2011, 31(6), 758-762.
[http://dx.doi.org/10.1097/JCP.0b013e3182356255 ] [PMID: 22020350]
[4]
Nagai, G.; Mihara, K.; Nakamura, A.; Nemoto, K.; Kagawa, S.; Suzuki, T.; Kondo, T. Prediction of an optimal dose of aripiprazole in the treatment of schizophrenia from plasma concentrations of aripiprazole plus its active metabolite dehydroaripiprazole at week 1. Ther. Drug Monit., 2017, 39(1), 62-65.
[http://dx.doi.org/10.1097/FTD.0000000000000358 ] [PMID: 27861318]
[5]
Suzuki, T.; Mihara, K.; Nakamura, A.; Kagawa, S.; Nagai, G.; Nemoto, K.; Kondo, T. Effects of genetic polymorphisms of CYP2D6, CYP3A5, and ABCB1 on the steady-state plasma concentrations of aripiprazole and its active metabolite, dehydroaripiprazole, in Japanese patients with schizophrenia. Ther. Drug Monit., 2014, 36(5), 651-655.
[http://dx.doi.org/10.1097/FTD.0000000000000070 ] [PMID: 24682161]
[6]
Kubo, M.; Koue, T.; Inaba, A.; Takeda, H.; Maune, H.; Fukuda, T.; Azuma, J. Influence of itraconazole co-administration and CYP2D6 genotype on the pharmacokinetics of the new antipsychotic ARIPIPRAZOLE. Drug Metab. Pharmacokinet., 2005, 20(1), 55-64.
[http://dx.doi.org/10.2133/dmpk.20.55 ] [PMID: 15770075]
[7]
Hendset, M.; Hermann, M.; Lunde, H.; Refsum, H.; Molden, E. Impact of the CYP2D6 genotype on steady-state serum concentrations of aripiprazole and dehydroaripiprazole. Eur. J. Clin. Pharmacol., 2007, 63(12), 1147-1151.
[http://dx.doi.org/10.1007/s00228-007-0373-6] [PMID: 17828532]
[8]
Kim, J.R.; Seo, H.B.; Cho, J.Y.; Kang, D.H.; Kim, Y.K.; Bahk, W.M.; Yu, K.S.; Shin, S.G.; Kwon, J.S.; Jang, I.J. Population pharmacokinetic modelling of aripiprazole and its active metabolite, dehydroaripiprazole, in psychiatric patients. Br. J. Clin. Pharmacol., 2008, 66(6), 802-810.
[http://dx.doi.org/10.1111/j.1365-2125.2008.03223.x ] [PMID: 19032724]
[9]
Suzuki, T.; Mihara, K.; Nakamura, A.; Nagai, G.; Kagawa, S.; Nemoto, K.; Ohta, I.; Arakaki, H.; Uno, T.; Kondo, T. Effects of the CYP2D6*10 allele on the steady-state plasma concentrations of aripiprazole and its active metabolite, dehydroaripiprazole, in Japanese patients with schizophrenia. Ther. Drug Monit., 2011, 33(1), 21-24.
[http://dx.doi.org/10.1097/FTD.0b013e3182031021 ] [PMID: 21157400]
[10]
Nemoto, K.; Mihara, K.; Nakamura, A.; Nagai, G.; Kagawa, S.; Suzuki, T.; Kondo, T. Effects of paroxetine on plasma concentrations of aripiprazole and its active metabolite, dehydroaripiprazole, in Japanese patients with schizophrenia. Ther. Drug Monit., 2012, 34(2), 188-192.
[http://dx.doi.org/10.1097/FTD.0b013e31824a31e6 ] [PMID: 22377745]
[11]
Hendset, M.; Molden, E.; Knape, M.; Hermann, M. Serum concentrations of risperidone and aripiprazole in subgroups encoding CYP2D6 intermediate metabolizer phenotype. Ther. Drug Monit., 2014, 36(1), 80-85.
[http://dx.doi.org/10.1097/FTD.0000000000000018 ] [PMID: 24232129]
[12]
Urichuk, L.; Prior, T.; Dursun, S.; Baker, G. Metabolism of atypical antipsychotics: Involvement of cytochrome p450 enzymes and relevance for drug-drug interactions. Curr. Drug Metab., 2008, 9(5), 410-418.
[http://dx.doi.org/10.2174/138920008784746373] [PMID: 18537577]
[13]
Citrome, L.; Macher, J.P.; Salazar, D.E.; Mallikaarjun, S.; Boulton, D.W. Pharmacokinetics of aripiprazole and concomitant carbamazepine. J. Clin. Psychopharmacol., 2007, 27(3), 279-283.
[http://dx.doi.org/10.1097/jcp.0b013e318056f309] [PMID: 17502775]
[14]
Nakamura, A.; Mihara, K.; Nagai, G.; Suzuki, T.; Kondo, T. Pharmacokinetic and pharmacodynamic interactions between carbamazepine and aripiprazole in patients with schizophrenia. Ther. Drug Monit., 2009, 31(5), 575-578.
[http://dx.doi.org/10.1097/FTD.0b013e3181b6326a ] [PMID: 19701114]
[15]
Steen, V.M.; Andreassen, O.A.; Daly, A.K.; Tefre, T.; Børresen, A.L.; Idle, J.R.; Gulbrandsen, A.K. Detection of the poor metabolizer-associated CYP2D6(D) gene deletion allele by long-PCR technology. Pharmacogenetics, 1995, 5(4), 215-223.
[http://dx.doi.org/10.1097/00008571-199508000-00005 ] [PMID: 8528268]
[16]
Johansson, I.; Oscarson, M.; Yue, Q.Y.; Bertilsson, L.; Sjöqvist, F.; Ingelman-Sundberg, M. Genetic analysis of the Chinese cytochrome P4502D locus: Characterization of variant CYP2D6 genes present in subjects with diminished capacity for debrisoquine hydroxylation. Mol. Pharmacol., 1994, 46(3), 452-459.
[PMID: 7935325]
[17]
Kubota, T.; Yamaura, Y.; Ohkawa, N.; Hara, H.; Chiba, K. Frequencies of CYP2D6 mutant alleles in a normal Japanese population and metabolic activity of dextromethorphan O -demethylation in different CYP2D6 genotypes. Br. J. Clin. Pharmacol., 2000, 50(1), 31-34.
[http://dx.doi.org/10.1046/j.1365-2125.2000.00209.x ] [PMID: 10886115]
[18]
Hustert, E.; Haberl, M.; Burk, O.; Wolbold, R.; He, Y.Q.; Klein, K.; Nuessler, A.C.; Neuhaus, P.; Klattig, J.; Eiselt, R.; Koch, I.; Zibat, A.; Brockmöller, J.; Halpert, J.R.; Zanger, U.M.; Wojnowski, L. The genetic determinants of the CYP3A5 polymorphism. Pharmacogenetics, 2001, 11(9), 773-779.
[http://dx.doi.org/10.1097/00008571-200112000-00005 ] [PMID: 11740341]
[19]
Azuma, J.; Hasunuma, T.; Kubo, M.; Miyatake, M.; Koue, T.; Higashi, K.; Fujiwara, T.; Kitahara, S.; Katano, T.; Hara, S. The relationship between clinical pharmacokinetics of aripiprazole and CYP2D6 genetic polymorphism: Effects of CYP enzyme inhibition by coadministration of paroxetine or fluvoxamine. Eur. J. Clin. Pharmacol., 2012, 68(1), 29-37.
[http://dx.doi.org/10.1007/s00228-011-1094-4] [PMID: 21739267]
[20]
Gunes, A.; Dahl, M.L. Variation in CYP1A2 activity and its clinical implications: Influence of environmental factors and genetic polymorphisms. Pharmacogenomics, 2008, 9(5), 625-637.
[http://dx.doi.org/10.2217/14622416.9.5.625 ] [PMID: 18466106]
[21]
Koller, D.; Saiz-Rodríguez, M.; Zubiaur, P.; Ochoa, D.; Almenara, S.; Román, M.; Romero-Palacián, D.; Miguel-Cáceres, A.; Martín, S.; Navares-Gómez, M.; Mejía, G.; Wojnicz, A.; Abad-Santos, F. The effects of aripiprazole and olanzapine on pupillary light reflex and its relationship with pharmacogenetics in a randomized multiple‐dose trial. Br. J. Clin. Pharmacol., 2020, 86(10), 2051-2062.
[http://dx.doi.org/10.1111/bcp.14300] [PMID: 32250470]
[22]
American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders, 4th ed; American Psychiatric Association: Washington, DC, 2000.
[23]
Kubo, M.; Koue, T.; Maune, H.; Fukuda, T.; Azuma, J. Pharmacokinetics of aripiprazole, a new antipsychotic, following oral dosing in healthy adult Japanese volunteers: Influence of CYP2D6 polymorphism. Drug Metab. Pharmacokinet., 2007, 22(5), 358-366.
[http://dx.doi.org/10.2133/dmpk.22.358] [PMID: 17965519]
[24]
Kubo, M.; Mizooku, Y.; Hirao, Y.; Osumi, T. Development and validation of an LC–MS/MS method for the quantitative determination of aripiprazole and its main metabolite, OPC-14857, in human plasma. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2005, 822(1-2), 294-299.
[http://dx.doi.org/10.1016/j.jchromb.2005.06.023] [PMID: 16005688]
[25]
Suzumura, T.; Kimura, T.; Kudoh, S.; Umekawa, K.; Nagata, M.; Matsuura, K.; Tanaka, H.; Mitsuoka, S.; Yoshimura, N.; Kira, Y.; Nakai, T.; Hirata, K. Reduced CYP2D6 function is associated with gefitinib-induced rash in patients with non-small cell lung cancer. BMC Cancer, 2012, 12(1), 568.
[http://dx.doi.org/10.1186/1471-2407-12-568] [PMID: 23207012]
[26]
Laika, B.; Leucht, S.; Heres, S.; Schneider, H.; Steimer, W. Pharmacogenetics and olanzapine treatment: CYP1A2*1F and serotonergic polymorphisms influence therapeutic outcome. Pharmacogenomics J., 2010, 10(1), 20-29.
[http://dx.doi.org/10.1038/tpj.2009.32] [PMID: 19636338]
[27]
Koonrungsesomboon, N.; Khatsri, R.; Wongchompoo, P.; Teekachunhatean, S. The impact of genetic polymorphisms on CYP1A2 activity in humans: A systematic review and meta-analysis. Pharmacogenomics J., 2018, 18(6), 760-768.
[http://dx.doi.org/10.1038/s41397-017-0011-3] [PMID: 29282363]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy