Generic placeholder image

Current Drug Delivery

Editor-in-Chief

ISSN (Print): 1567-2018
ISSN (Online): 1875-5704

Review Article

Nanoformulations Insights: A Novel Paradigm for Antifungal Therapies and Future Perspectives

Author(s): Ashima Ahuja* and Meenakshi Bajpai*

Volume 21, Issue 9, 2024

Published on: 05 October, 2023

Page: [1241 - 1272] Pages: 32

DOI: 10.2174/0115672018270783231002115728

Price: $65

Abstract

Currently, fungal infections are becoming more prevalent worldwide. Subsequently, many antifungal agents are available to cure diseases like pemphigus, athlete’s foot, acne, psoriasis, hyperpigmentation, albinism, and skin cancer. Still, they fall short due to pitfalls in physiochemical properties. Conventional medications like lotion, creams, ointments, poultices, and gels are available for antifungal therapy but present many shortcomings. They are associated with drug retention and poor penetration problems, resulting in drug resistance, hypersensitivity, and diminished efficacy. On the contrary, nanoformulations have gained tremendous potential in overcoming the drawbacks of conventional delivery. Furthermore, the potential breakthroughs of nanoformulations are site-specific targeting. It has improved bioavailability, patient-tailored approach, reduced drug retention and hypersensitivity, and improved skin penetration. Nowadays, nanoformulations are gaining popularity for antifungal therapy against superficial skin infections. Nanoformulations-based liposomes, niosomes, nanosponges, solid lipid nanoparticles, and potential applications have been explored for antifungal therapy due to enhanced activity and reduced toxicity. Researchers are now more focused on developing patient-oriented target-based nano delivery to cover the lacunas of conventional treatment with higher immune stimulatory effects. Future direction involves the construction of novel nanotherapeutic devices, nanorobotics, and robust methods. In addition, for the preparations of nanoformulations for clinical studies, animal modeling solves the problems of antifungal therapy. This review describes insights into various superficial fungal skin infections and their potential applications, nanocarrier-based drug delivery, and mechanism of action. In addition, it focuses on regulatory considerations, pharmacokinetic and pharmacodynamic studies, clinical trials, patents, challenges, and future inputs for researchers to improve antifungal therapy.

Keywords: Nanoformulations, antifungals, drug resistance, superficial fungal infection, mechanism of action, clinical trials.

Graphical Abstract
[1]
Pawar, K.; Gadhave, R.; Waydande, S.; Pawar, P. Recent trends in antifungal agents: A reference to formulation, characterization and applications. Drug Deliv. Lett., 2019, 9(3), 199-210.
[http://dx.doi.org/10.2174/2210303109666190508082009]
[2]
Rajendra, V.B.; Baro, A.; Kumari, A.; Dhamecha, D.L.; Lahoti, S.R.; Shelke, S.D. Transungual drug delivery: An overview. J. Appl. Pharm. Sci., 2012, 2(1), 203-209.
[3]
Shanbhag, P.P.; Jani, U. Drug delivery through nails: Present and future. New Horiz. Transl. Med., 2017, 3(5), 252-264.
[4]
Akhtar, N.; Sharma, H.; Pathak, K. Onychomycosis: Potential of nail lacquers in transungual delivery of antifungals. Scientifica (Cairo), 2016, 2016, 1-12.
[http://dx.doi.org/10.1155/2016/1387936] [PMID: 27123362]
[5]
Das, P.J.; Paul, P.; Mukherjee, B.; Mazumder, B.; Mondal, L.; Baishya, R.; Debnath, M.C.; Dey, K.S. Pulmonary delivery of voriconazole loaded nanoparticles providing a prolonged drug level in lungs: a promise for treating fungal infection. Mol. Pharm., 2015, 12(8), 2651-2664.
[http://dx.doi.org/10.1021/acs.molpharmaceut.5b00064] [PMID: 25941882]
[6]
Sousa, F.; Ferreira, D.; Reis, S.; Costa, P. Current insights on antifungal therapy: novel nanotechnology approaches for drug delivery systems and new drugs from natural sources. Pharmaceuticals (Basel), 2020, 13(9), 248.
[http://dx.doi.org/10.3390/ph13090248] [PMID: 32942693]
[7]
Das, R.; Kotra, K.; Singh, P.; Loh, B.; Leptihn, S.; Bajpai, U. alternative treatment strategies for secondary bacterial and fungal infections associated with covid-19. Infect. Dis. Ther., 2022, 11(1), 53-78.
[http://dx.doi.org/10.1007/s40121-021-00559-8] [PMID: 34807451]
[8]
Patra, J.K.; Das, G.; Fraceto, L.F.; Campos, E.V.R.; Rodriguez-Torres, M.P.; Acosta-Torres, L.S.; Diaz-Torres, L.A.; Grillo, R.; Swamy, M.K.; Sharma, S.; Habtemariam, S.; Shin, H.S. Nano based drug delivery systems: recent developments and future prospects. J. Nanobiotechnology, 2018, 16(1), 71.
[http://dx.doi.org/10.1186/s12951-018-0392-8] [PMID: 30231877]
[9]
Puglia, C.; Blasi, P.; Ostacolo, C.; Sommella, E.; Bucolo, C.; Platania, C.B.M.; Romano, G.L.; Geraci, F.; Drago, F.; Santonocito, D.; Albertini, B.; Campiglia, P.; Puglisi, G.; Pignatello, R. Innovative nanoparticles enhance n-palmitoylethanolamide intraocular delivery. Front. Pharmacol., 2018, 9, 285.
[http://dx.doi.org/10.3389/fphar.2018.00285] [PMID: 29643808]
[10]
Ahmed, T.A.; Alzahrani, M.M.; Sirwi, A.; Alhakamy, N.A. Study the antifungal and ocular permeation of ketoconazole from ophthalmic formulations containing trans-ethosomes nanoparticles. Pharmaceutics, 2021, 13(2), 151.
[http://dx.doi.org/10.3390/pharmaceutics13020151]
[11]
Mishra, G.P.; Bagui, M.; Tamboli, V.; Mitra, A.K. Recent applications of liposomes in ophthalmic drug delivery. J. Drug Deliv., 2011, 2011, 1-14.
[http://dx.doi.org/10.1155/2011/863734] [PMID: 21490757]
[12]
Habib, F.S.; Fouad, E.A.; Abdel-Rhaman, M.S.; Fathalla, D. Liposomes as an ocular delivery system of fluconazole: in-vitro studies. Acta Ophthalmol., 2010, 88(8), 901-904.
[http://dx.doi.org/10.1111/j.1755-3768.2009.01584.x] [PMID: 19681761]
[13]
Abbas, N.; Parveen, K.; Hussain, A.; Latif, S.; Uz Zaman, S.; Shah, P.A.; Ahsan, M. Nanosponge-based hydrogel preparation of fluconazole for improved topical delivery. Trop. J. Pharm. Res., 2019, 18(2), 215-222.
[http://dx.doi.org/10.4314/tjpr.v18i2.1]
[14]
Overview of fungal skin infections Available from: https://www.msdmanuals.com/en-in/home/skin-disorders/fungal-skin-infections/overview-of-fungal-skin-infections (Accessed online, 14 May, 2023).
[15]
Candidiasis (Yeast Infection) Available from: https://www.msdmanuals.com/en-in/home/skin-disorders/fungal-skin-infections/candidiasis-yeast-infection (Accessed online, 14 May, 2023).
[16]
Dermatophytid reaction. Available from: https://www.msdmanuals.com/en-in/home/skin-disorders/fungal-skin-infections/dermatophytid-reaction (Accessed online, 14 May, 2023)
[17]
Intertrigo. Available from: https://www.msdmanuals.com/en-in/home/skin-disorders/fungal-skin-infections/intertrigo(Accessed online, 14 May, 2023).
[18]
Athlete's foot (Tinea pedis). Available from: https://www.msdmanuals.com/en-in/home/skin-disorders/fungal-skin-infections/athletes-foot-tinea-pedis (Accessed online, 14 May, 2023).
[19]
Jock Itch (Tinea Cruris). Available from: https://www.msdmanuals.com/en-in/home/skin-disorders/fungal-skin-infections/jock-itch-tinea-cruris (Accessed online, 14 May, 2023).
[20]
Gupta, M.; Chandra, A.; Aggarwal, G. Curcumin: Potential therapeutic moiety for fungal infections. Curr. Tradit. Med., 2019, 4(4), 249-262.
[http://dx.doi.org/10.2174/2215083805666181120124245]
[21]
Köhler, A.; Weber, L.; Gall, H.; Peter, R.U. Sporotrichose - fixe kutane und lymphokutane Form. Hautarzt, 2000, 51(7), 509-512.
[http://dx.doi.org/10.1007/s001050051163] [PMID: 10969407]
[22]
Gupta, M.; Agrawal, U.; Vyas, S.P. Nanocarrier-based topical drug delivery for the treatment of skin diseases. Expert Opin. Drug Deliv., 2012, 9(7), 783-804.
[http://dx.doi.org/10.1517/17425247.2012.686490] [PMID: 22559240]
[23]
Antifungal medicines. Available from: patient.info/in/health/antifungal-medicines (Accessed on June 25, 2023).
[24]
Ma, Z.; Wang, X.; Li, C. Strategies of drug delivery for deep fungal infection: a review. Pharm. Nanotechnol., 2020, 8(5), 372-390.
[http://dx.doi.org/10.2174/2211738508666200910101923] [PMID: 32912132]
[25]
Nene, S.; Shah, S.; Rangaraj, N.; Mehra, N.K.; Singh, P.K.; Srivastava, S. Lipid based nanocarriers: A novel paradigm for topical antifungal therapy. J. Drug Deliv. Sci. Technol., 2021, 62, 102397.
[http://dx.doi.org/10.1016/j.jddst.2021.102397]
[26]
van Etten, E.W.; ten Kate, M.T.; Stearne, L.E.; Bakker-Woudenberg, I.A. Amphotericin B liposomes with prolonged circulation in blood: in vitro antifungal activity, toxicity, and efficacy in systemic candidiasis in leukopenic mice. Antimicrob. Agents Chemother., 1995, 39(9), 1954-1958.
[http://dx.doi.org/10.1128/AAC.39.9.1954] [PMID: 8540697]
[27]
Wang, J.; Huang, G. Preparation of itraconazole-loaded liposomes coated by carboxymethyl chitosan and its pharmacokinetics and tissue distribution. Drug Deliv., 2011, 18(8), 631-638.
[PMID: 22111976]
[28]
Zeb, A.; Arif, S.T.; Malik, M.; Shah, F.A.; Din, F.U.; Qureshi, O.S.; Lee, E.S.; Lee, G.Y.; Kim, J.K. Potential of nanoparticulate carriers for improved drug delivery via skin. J. Pharm. Investig., 2019, 49(5), 485-517.
[http://dx.doi.org/10.1007/s40005-018-00418-8]
[29]
Akhtar, N.; Verma, A.; Pathak, K. Topical delivery of drugs for the effective treatment of fungal infections of skin. Curr. Pharm. Des., 2015, 21(20), 2892-2913.
[http://dx.doi.org/10.2174/1381612821666150428150456] [PMID: 25925110]
[30]
Nami, S.; Aghebati-Maleki, A.; Aghebati-Maleki, L. Current applications and prospects of nanoparticles for antifungal drug delivery. EXCLI J., 2021, 20, 562-584.
[31]
Schreier, H.; Bouwstra, J. Liposomes and niosomes as topical drug carriers: dermal and transdermal drug delivery. J. Control. Release, 1994, 30(1), 1-15.
[http://dx.doi.org/10.1016/0168-3659(94)90039-6]
[32]
Ho, H.N.; Le, T.G.; Dao, T.T.T.; Le, T.H.; Dinh, T.T.H.; Nguyen, D.H.; Tran, T.C.; Nguyen, C.N. Development of itraconazole-loaded polymeric nanoparticle dermal gel for enhanced antifungal efficacy. J. Nanomater., 2020, 2020, 1-11.
[http://dx.doi.org/10.1155/2020/8894541]
[33]
Balzus, B.; Sahle, F.F.; Hönzke, S.; Gerecke, C.; Schumacher, F.; Hedtrich, S.; Kleuser, B.; Bodmeier, R. Formulation and ex vivo evaluation of polymeric nanoparticles for controlled delivery of corticosteroids to the skin and the corneal epithelium. Eur. J. Pharm. Biopharm., 2017, 115, 122-130.
[http://dx.doi.org/10.1016/j.ejpb.2017.02.001] [PMID: 28189623]
[34]
Sahu, S.; Saraf, S.; Kaur, C.D.; Saraf, S. Biocompatible nanoparticles for sustained topical delivery of anticancer phytoconstituent quercetin. Pak. J. Biol. Sci., 2013, 16(13), 601-609.
[http://dx.doi.org/10.3923/pjbs.2013.601.609] [PMID: 24505982]
[35]
Duarah, S.; Durai, R.D.; Narayanan, V.B. Nanoparticle-in-gel system for delivery of vitamin C for topical application. Drug Deliv. Transl. Res., 2017, 7(5), 750-760.
[http://dx.doi.org/10.1007/s13346-017-0398-z] [PMID: 28597122]
[36]
Rodríguez-Félix, F.; Del-Toro-Sánchez, C.L.; Javier Cinco-Moroyoqui, F.; Juárez, J.; Ruiz-Cruz, S.; López-Ahumada, G.A.; Carvajal-Millan, E.; Castro-Enríquez, D.D.; Barreras-Urbina, C.G.; Tapia-Hernández, J.A. Preparation and Characterization of Quercetin‐Loaded Zein Nanoparticles by Electrospraying and Study of In vitro Bioavailability. J. Food Sci., 2019, 84(10), 2883-2897.
[http://dx.doi.org/10.1111/1750-3841.14803] [PMID: 31553062]
[37]
Radwan, M.A.; AlQuadeib, B.T.; Šiller, L.; Wright, M.C.; Horrocks, B. Oral administration of amphotericin B nanoparticles: antifungal activity, bioavailability and toxicity in rats. Drug Deliv., 2017, 24(1), 40-50.
[http://dx.doi.org/10.1080/10717544.2016.1228715] [PMID: 28155565]
[38]
AL-Quadeib B.T.; Radwan, M.A.; Siller, L.; Horrocks, B.; Wright, M.C. Stealth Amphotericin B nanoparticles for oral drug delivery: In vitro optimization. Saudi Pharm. J., 2015, 23(3), 290-302.
[http://dx.doi.org/10.1016/j.jsps.2014.11.004] [PMID: 26106277]
[39]
Das, S.; Suresh, P.K.; Desmukh, R. Design of Eudragit RL 100 nanoparticles by nanoprecipitation method for ocular drug delivery. Nanomedicine, 2010, 6(2), 318-323.
[http://dx.doi.org/10.1016/j.nano.2009.09.002] [PMID: 19800990]
[40]
Cuddihy, G.; Wasan, E.; Di, Y.; Wasan, K. The development of oral amphotericin b to treat systemic fungal and parasitic infections: has the myth been finally realized? Pharmaceutics, 2019, 11(3), 99.
[http://dx.doi.org/10.3390/pharmaceutics11030099] [PMID: 30813569]
[41]
Pereira, L.; Dias, N.; Carvalho, J.; Fernandes, S.; Santos, C.; Lima, N. Synthesis, characterization and antifungal activity of chemically and fungal-produced silver nanoparticles against Trichophyton rubrum. J. Appl. Microbiol., 2014, 117(6), 1601-1613.
[http://dx.doi.org/10.1111/jam.12652] [PMID: 25234047]
[42]
Asadi, P.; Mehravaran, A.; Soltanloo, N.; Abastabar, M.; Akhtari, J. Nanoliposome-loaded antifungal drugs for dermal administration: A review. Curr. Med. Mycol., 2021, 7(1), 71-78.
[http://dx.doi.org/10.18502/cmm.7.1.6247] [PMID: 34553102]
[43]
Jøraholmen, M.W.; Johannessen, M.; Gravningen, K.; Puolakkainen, M.; Acharya, G.; Basnet, P.; Škalko-Basnet, N. Liposomes-in-hydrogel delivery system enhances the potential of resveratrol in combating vaginal chlamydia infection. Pharmaceutics, 2020, 12(12), 1203.
[http://dx.doi.org/10.3390/pharmaceutics12121203] [PMID: 33322392]
[44]
Hemanth, A.R.; Kiran Kumar, G.B.; Goudanavar, P.; Dhruva, S.S. Formulation and evaluation of hydrogels containing liposomes entrapped with antifungal agents. RJPT, 2021, 14, 9.
[45]
Ashwini, A.; Iliger, S.R.; Shivayya, A.; Kavita, Y.; Kulkarni, V.H.; Demappa, T.; Karigar, A.A. Formulation and evaluation of topical liposomes of an antifungal drug. unique journal of pharmaceutical and biological sciences. Ujpbs, 2017, 05(02), 1-8.
[46]
Thirumaleshwar, S.; Kulkarni, P.; Gowda, D. Liposomal hydrogels: a novel drug delivery system for wound dressing. Curr. Drug Ther., 2012, 7(3), 212-218.
[http://dx.doi.org/10.2174/157488512803988021]
[47]
Carita, A.C.; Eloy, J.O.; Chorilli, M.; Lee, R.J.; Leonardi, G.R. Recent advances and perspectives in liposomes for cutaneous drug delivery. Curr. Med. Chem., 2018, 25(5), 606-635.
[http://dx.doi.org/10.2174/0929867324666171009120154] [PMID: 28990515]
[48]
Jain, S.; Patel, N.; Shah, M.K.; Khatri, P.; Vora, N. Recent advances in lipid-based vesicles and particulate carriers for topical and transdermal application. J. Pharm. Sci., 2017, 106(2), 423-445.
[http://dx.doi.org/10.1016/j.xphs.2016.10.001] [PMID: 27865609]
[49]
Ganesan, M.G.; Weiner, N.D.; Flynn, G.L.; Ho, N.F.H. Influence of liposomal drug entrapment on percutaneous absorption. Int. J. Pharm., 1984, 20(1-2), 139-154.
[http://dx.doi.org/10.1016/0378-5173(84)90225-4]
[50]
Ashtikar, M.; Nagarsekar, K.; Fahr, A. Transdermal delivery from liposomal formulations – Evolution of the technology over the last three decades. J. Control. Release, 2016, 242, 126-140.
[http://dx.doi.org/10.1016/j.jconrel.2016.09.008] [PMID: 27620074]
[51]
El Maghraby, G.M.M.; Williams, A.C.; Barry, B.W. Skin delivery of oestradiol from deformable and traditional liposomes: mechanistic studies. J. Pharm. Pharmacol., 2010, 51(10), 1123-1134.
[http://dx.doi.org/10.1211/0022357991776813] [PMID: 10579683]
[52]
Kato, A.; Ishibashi, Y.; Miyake, Y. Effect of egg yolk lecithin on transdermal delivery of bunazosin hydrochloride. J. Pharm. Pharmacol., 2011, 39(5), 399-400.
[http://dx.doi.org/10.1111/j.2042-7158.1987.tb03407.x] [PMID: 2886592]
[53]
Hofland, H.E.J.; Bouwstra, J.A.; Boddé, H.E.; Spies, F.; Junginger, H.E. Interactions between liposomes and human stratum corneum in vitro: freeze fracture electron microscopical visualization and small angle X-ray scattering studies. Br. J. Dermatol., 1995, 132(6), 853-866.
[http://dx.doi.org/10.1111/j.1365-2133.1995.tb16940.x] [PMID: 7662563]
[54]
Kirjavainen, M.; Urtti, A.; Jääskeläinen, I.; Marjukka Suhonen, T.; Paronen, P.; Valjakka-Koskela, R.; Kiesvaara, J.; Mönkkönen, J. Interaction of liposomes with human skin in vitro — The influence of lipid composition and structure. Biochim. Biophys. Acta Lipids Lipid Metab., 1996, 1304(3), 179-189.
[http://dx.doi.org/10.1016/S0005-2760(96)00126-9] [PMID: 8982264]
[55]
Zellmer, S.; Pfeil, W.; Lasch, J. Interaction of phosphatidylcholine liposomes with the human stratum corneum. Biochim. Biophys. Acta Biomembr., 1995, 1237(2), 176-182.
[http://dx.doi.org/10.1016/0005-2736(95)00100-H] [PMID: 7632711]
[56]
Yokomizo, Y.; Sagitani, H. Effects of phospholipids on the percutaneous penetration of indomethacin through the dorsal skin of guinea pigs in vitro. J. Control. Release, 1996, 38(2-3), 267-274.
[http://dx.doi.org/10.1016/0168-3659(95)00127-1]
[57]
Osanloo, M.; Assadpour, S.; Mehravaran, A.; Abastabar, M.; Akhtari, J. Niosome-loaded antifungal drugs as an effective nanocarrier system: A mini review. Curr. Med. Mycol., 2018, 4(4), 31-36.
[PMID: 30815615]
[58]
Wagh, V.D.; Deshmukh, O.J. Itraconazole niosomes drug delivery system and its antimycotic activity against Candida albicans. ISRN Pharm., 2012, 2012, 1-7.
[http://dx.doi.org/10.5402/2012/653465] [PMID: 23378932]
[59]
Fetih, G. Fluconazole-loaded niosomal gels as a topical ocular drug delivery system for corneal fungal infections. J. Drug Deliv. Sci. Technol., 2016, 35, 8-15.
[http://dx.doi.org/10.1016/j.jddst.2016.06.002]
[60]
Shirsand, S.B.; Keshavshetti, G. Formulation and characterization of drug loaded niosomes for antifungal activity. SPER J. Adv. Nov. Drug Deliv., 2018, 1(1), 12-17.
[61]
Goyal, M.K.; Qureshi, J. Formulation and evaluation of itraconazole niosomal gel for topical application. J. Drug Deliv. Ther., 2019, 9(4-s), 961-966.
[62]
Shirsand, S.B.; Kanani, K.M.; Keerthy, D.; Nagendrakumar, D.; Para, M.S. Formulation and evaluation of Ketoconazole niosomal gel drug delivery system. Int. J. Pharm. Investig., 2012, 2(4), 201-207.
[http://dx.doi.org/10.4103/2230-973X.107002] [PMID: 23580936]
[63]
El-Nabarawi, M.A.; Abd El Rehem, R.T.; Teaima, M.; Abary, M.; El-Mofty, H.M.; Khafagy, M.M.; Lotfy, N.M.; Salah, M. Natamycin niosomes as a promising ocular nanosized delivery system with ketorolac tromethamine for dual effects for treatment of candida rabbit keratitis; in vitro/in vivo and histopathological studies. Drug Dev. Ind. Pharm., 2019, 45(6), 922-936.
[http://dx.doi.org/10.1080/03639045.2019.1579827] [PMID: 30744431]
[64]
Abdelbary, G.; El-gendy, N. Niosome-encapsulated gentamicin for ophthalmic controlled delivery. AAPS PharmSciTech, 2008, 9(3), 740-747.
[http://dx.doi.org/10.1208/s12249-008-9105-1] [PMID: 18563578]
[65]
El-Emam, G.A.; Girgis, G.N.S.; El-Sokkary, M.M.A.; El-Azeem Soliman, O.A.; Abd El Gawad, A.E.G.H. Gawad, Abd. Ocular inserts of voriconazole-loaded proniosomal gels: formulation, evaluation and microbiological studies. Int. J. Nanomedicine, 2020, 15, 7825-7840.
[http://dx.doi.org/10.2147/IJN.S268208] [PMID: 33116503]
[66]
Mhlwatika, Z.; Aderibigbe, B. Application of dendrimers for the treatment of infectious diseases. Molecules, 2018, 23(9), 2205.
[http://dx.doi.org/10.3390/molecules23092205] [PMID: 30200314]
[67]
Jose, J.; Charyulu, R.N. Prolonged drug delivery system of an antifungal drug by association with polyamidoamine dendrimers. Int. J. Pharm. Investig., 2016, 6(2), 123-127.
[http://dx.doi.org/10.4103/2230-973X.177833] [PMID: 27051632]
[68]
Stolarska, m.; Gucwa, K.; Urbańczyk‐Lipkowska, Z.; Andruszkiewicz, R. Peptide dendrimers as antifungal agents and carriers for potential antifungal agent—N3‐(4‐methoxyfumaroyl)‐(S)‐2,3‐ diaminopropanoic acid—synthesis and antimicrobial activity. J Pep Sci., 2019, e3226.
[69]
Tang, S.; Chen, J.; Cannon, J.; Cao, Z.; Baker, J.R., Jr; Wang, S.H. Dendrimer-based posaconazole nanoplatform for antifungal therapy. Drug Deliv., 2021, 28(1), 2150-2159.
[http://dx.doi.org/10.1080/10717544.2021.1986605] [PMID: 34617850]
[70]
Hutnick, M.A.; Ahsanuddin, S.; Guan, L.; Lam, M.; Baron, E.D.; Pokorski, J.K. PEGylated dendrimers as drug delivery vehicles for the photosensitizer silicon phthalocyanine pc 4 for candidal infections. Biomacromolecules, 2017, 18(2), 379-385.
[http://dx.doi.org/10.1021/acs.biomac.6b01436]
[71]
Azizi-Lalabadi, M.; Hashemi, H.; Feng, J.; Jafari, S.M. Carbon nanomaterials against pathogens; the antimicrobial activity of carbon nanotubes, graphene/graphene oxide, fullerenes, and their nanocomposites. Adv. Colloid Interface Sci., 2020, 284, 102250.
[http://dx.doi.org/10.1016/j.cis.2020.102250] [PMID: 32966964]
[72]
Rahamathulla, M.; Bhosale, R.R.; Osmani, R.A.M.; Mahima, K.C.; Johnson, A.P.; Hani, U.; Ghazwani, M.; Begum, M.Y.; Alshehri, S.; Ghoneim, M.M.; Shakeel, F.; Gangadharappa, H.V. Carbon nanotubes: Current perspectives on diverse applications in targeted drug delivery and therapies. Materials (Basel), 2021, 14(21), 6707.
[http://dx.doi.org/10.3390/ma14216707] [PMID: 34772234]
[73]
Wang, X.; Zhou, Z.; Chen, F. Surface modification of carbon nanotubes with an enhanced antifungal activity for the control of plant fungal pathogen. Materials (Basel), 2017, 10(12), 1375.
[http://dx.doi.org/10.3390/ma10121375] [PMID: 29189733]
[74]
Fosso-Kankeu, E.; De Klerk, C.M.; Botha, T.A.; Waanders, F.; Phoku, J.; Pandey, S. The Antifungal activities of multi-walled carbon nanotubes decorated with silver, copper and zinc oxide particles. Conference: International Conference on Advances in Science, Engineering, Technology and Natural Resources (ICASETNR- 16) At: Parys, South Africa,
[75]
Qaiser, M.; Shahzad, Q.; Hamza, M.; Hussain, S. Antifungal drugs loaded nanosponges to improve bioavailability of antifungal drugs; a review. Pharm. Res., 2021, 5(4), 000255.
[76]
Ahmed, M.M.; Fatima, F.; Anwer, M.K.; Ibnouf, E.O.; Kalam, M.A.; Alshamsan, A.; Aldawsari, M.F.; Alalaiwe, A.; Ansari, M.J. Formulation and in vitro evaluation of topical nanosponge-based gel containing butenafine for the treatment of fungal skin infection. Saudi Pharm. J., 2021, 29(5), 467-477.
[http://dx.doi.org/10.1016/j.jsps.2021.04.010] [PMID: 34135673]
[77]
Kumar, A.S.; Sheri, P.S.; Kuriachan, M.A. Formulation and evaluation of antifungal nanosponge loaded hydrogel for topical delivery. Int. J. Pharm. Pharm. Sci., 2018, 13(1), 362-379.
[78]
Shaikh, A.N.; Pawar, A.Y. Formulation and evaluation nanosponges loaded hydrogel of luliconazole. Inter. J. Sci. Develop. Res., 2020, 5(8), 215-226.
[79]
List of Topical Antifungals + Uses, Types & Side Effects - Drugs.com (Accessed on 4 July, 2023).
[80]
Krishna, A.V.M.; Gowda, V.D.P.; Karki, R. Formulation and evaluation of nanosponges loaded bifonazole for fungal infection. Antiinfect. Agents, 2021, 19(1), 64-75.
[http://dx.doi.org/10.2174/2211352518999200711164437]
[81]
Bachhav, Y.G.; Mondon, K.; Kalia, Y.N.; Gurny, R.; Möller, M. Novel micelle formulations to increase cutaneous bioavailability of azole antifungals. J. Control. Release, 2011, 153(2), 126-132.
[http://dx.doi.org/10.1016/j.jconrel.2011.03.003] [PMID: 21397643]
[82]
Lapteva, M.; Mondon, K.; Möller, M.; Gurny, R.; Kalia, Y.N. Polymeric micelle nanocarriers for the cutaneous delivery of tacrolimus: a targeted approach for the treatment of psoriasis. Mol. Pharm., 2014, 11(9), 2989-3001.
[http://dx.doi.org/10.1021/mp400639e] [PMID: 25057896]
[83]
Yassin, G. Formulation and evaluation of optimized clotrimazole Emulgel formulations. Br. J. Pharm. Res., 2014, 4(9), 1014-1030.
[http://dx.doi.org/10.9734/BJPR/2014/8495]
[84]
Tadić, V.M.; Žugić, A.; Martinović, M.; Stanković, M.; Maksimović, S.; Frank, A.; Nešić, I. Enhanced skin performance of emulgel vs. cream as systems for topical delivery of herbal actives (immortelle extract and hemp oil). Pharmaceutics, 2021, 13(11), 1919.
[http://dx.doi.org/10.3390/pharmaceutics13111919] [PMID: 34834334]
[85]
Kaewbanjong, J.; Heng, P.V.S.; Boonme, P. Clotrimazole microemulsion and microemulsion-based gel: evaluation of buccal drug delivery and irritancy using chick chorioallantoic membrane as the model. Royal Pharmaceutical Society. J. Phar. Pharmacol, 2017, 1-8.
[86]
Kaewbanjong, J.; Amnuaikit, T.; Souto, E.B.; Boonme, P. Antidermatophytic activity and skin retention of clotrimazole microemulsion and microemulsion-based gel in comparison to conventional cream. Skin Pharmacol. Physiol., 2018, 31(6), 292-297.
[http://dx.doi.org/10.1159/000491756] [PMID: 30130753]
[87]
Bachhav, Y.G.; Patravale, V.B. Microemulsion-based vaginal gel of clotrimazole: formulation, in vitro evaluation, and stability studies. AAPS PharmSciTech, 2009, 10(2), 476-481.
[http://dx.doi.org/10.1208/s12249-009-9233-2] [PMID: 19381825]
[88]
Kumari, B.; Kesavan, K. Effect of chitosan coating on microemulsion for effective dermal clotrimazole delivery. Pharm. Dev. Technol., 2017, 22(4), 617-626.
[http://dx.doi.org/10.1080/10837450.2016.1230629] [PMID: 27574791]
[89]
Cevc, G.; Blume, G. Lipid vesicles penetrate into intact skin owing to the transdermal osmotic gradients and hydration force. Biochim. Biophys. Acta Biomembr., 1992, 1104(1), 226-232.
[http://dx.doi.org/10.1016/0005-2736(92)90154-E] [PMID: 1550849]
[90]
Garg, V.; Singh, H.; Bimbrawh, S.; Singh, S.K.; Gulati, M.; Vaidya, Y.; Kaur, P. Ethosomes and transfersomes: Principles, perspectives and practices. Curr. Drug Deliv., 2017, 14(5), 613-633.
[PMID: 27199229]
[91]
Bouwstra, J.A.; Honeywell-Nguyen, P.L. Skin structure and mode of action of vesicles. Adv. Drug Deliv. Rev., 2002, 54(Suppl. 1), S41-S55.
[http://dx.doi.org/10.1016/S0169-409X(02)00114-X] [PMID: 12460715]
[92]
Touitou, E.; Dayan, N.; Bergelson, L.; Godin, B.; Eliaz, M. Ethosomes — novel vesicular carriers for enhanced delivery: characterization and skin penetration properties. J. Control. Release, 2000, 65(3), 403-418.
[http://dx.doi.org/10.1016/S0168-3659(99)00222-9] [PMID: 10699298]
[93]
Verma, S.; Utreja, P. Vesicular nanocarrier based treatment of skin fungal infections: Potential and emerging trends in nanoscale pharmacotherapy. Asian Journal of Pharmaceutical Sciences, 2019, 14(2), 117-129.
[http://dx.doi.org/10.1016/j.ajps.2018.05.007] [PMID: 32104444]
[94]
Sinico, C.; Fadda, A.M. Vesicular carriers for dermal drug delivery. Expert Opin. Drug Deliv., 2009, 6(8), 813-825.
[http://dx.doi.org/10.1517/17425240903071029] [PMID: 19569979]
[95]
Rapalli, V.K.; Singhvi, G. Dermato-pharmacokinetic: Assessment tools for topically applied dosage forms; Taylor & Francis, 2020.
[96]
Chella, N.; Shastri, N.R. Lipid carriers: Role and applications in nano drug delivery, particulate technology for delivery of therapeutics; Springer, 2017, pp. 253-289.
[http://dx.doi.org/10.1007/978-981-10-3647-7_8]
[97]
Alberti, I.; Kalia, Y.N.; Naik, A.; Bonny, J.D.; Guy, R.H. Effect of ethanol and isopropyl myristate on the availability of topical terbinafine in human stratum corneum, in vivo. Int. J. Pharm., 2001, 219(1-2), 11-19.
[http://dx.doi.org/10.1016/S0378-5173(01)00616-0] [PMID: 11337162]
[98]
Sabale, V.; Vora, S. Formulation and evaluation of microemulsion-based hydrogel for topical delivery. Int. J. Pharm. Investig., 2012, 2(3), 140-149.
[http://dx.doi.org/10.4103/2230-973X.104397] [PMID: 23373005]
[99]
Plempel, M.; Regel, E.; Büchel, K.H. Antimycotic efficacy of bifonazole in vitro and in vivo. Arzneimittelforschung, 1983, 33(4), 517-524.
[PMID: 6683530]
[100]
Patel, D.; Patel, D.; Prajapati, J.; Patel, U.; Patel, V. Formulation of thermoresponsive and buccal adhesive in situ gel for treatment of oral thrush containing poorly water soluble drug bifonazole. J. Pharm. Bioallied Sci., 2012, 4(5)(Suppl. 1), 116.
[http://dx.doi.org/10.4103/0975-7406.94163] [PMID: 23066185]
[101]
Alhakamy, N.A.; Hosny, K.M. Nano-vesicular delivery system loaded by Bifonazole: Preparation, optimization, and assessment of pharmacokinetic and antifungal activity. J. Drug Deliv. Sci. Technol., 2019, 49, 316-322.
[http://dx.doi.org/10.1016/j.jddst.2018.11.020]
[102]
Aggarwal, N.; Goindi, S. Preparation and evaluation of antifungal efficacy of griseofulvin loaded deformable membrane vesicles in optimized guinea pig model of Microsporum canis—Dermatophytosis. Int. J. Pharm., 2012, 437(1-2), 277-287.
[http://dx.doi.org/10.1016/j.ijpharm.2012.08.015] [PMID: 22939964]
[103]
Aggarwal, N.; Goindi, S. Preparation and in vivo evaluation of solid lipid nanoparticles of griseofulvin for dermal use. J. Biomed. Nanotechnol., 2013, 9(4), 564-576.
[http://dx.doi.org/10.1166/jbn.2013.1569] [PMID: 23621015]
[104]
Siddiqui, L.; Mishra, H.; Talegaonkar, S.; Rai, M. Nanoformulations: Opportunities and challenges. In: Nanoformulations in Human Health; Talegaonkar, S.; Rai, M., Eds.; Springer, 2020; pp. 3-12.
[http://dx.doi.org/10.1007/978-3-030-41858-8_1]
[105]
Adam, R.Z.; Khan, S.B. Antimicrobial efficacy of silver nanoparticles against Candida albicans. Materials (Basel), 2022, 15(16), 5666.
[http://dx.doi.org/10.3390/ma15165666] [PMID: 36013803]
[106]
De Matteis, V.; Cascione, M.; Toma, C.C.; Albanese, G.; De Giorgi, M.L.; Corsalini, M.; Rinaldi, R. Silver nanoparticles addition in poly (methyl methacrylate) dental matrix: topographic and antimycotic studies. Int. J. Mol. Sci., 2019, 20(19), 4691.
[http://dx.doi.org/10.3390/ijms20194691] [PMID: 31546661]
[107]
Menon, S.; Liang, X.; Vartak, R.; Patel, K.; Di Stefano, A.; Cacciatore, I.; Marinelli, L.; Billack, B. Antifungal activity of novel formulations based on terpenoid prodrugs against C. albicans in a mouse model. Pharmaceutics, 2021, 13(5), 633.
[http://dx.doi.org/10.3390/pharmaceutics13050633] [PMID: 33946740]
[108]
Kumar, V.; Gupta, P.K.; Pawar, V.K.; Verma, A.; Khatik, R.; Tripathi, P.; Shukla, P.; Yadav, B.; Parmar, J.; Dixit, R.; Mishra, P.R.; Dwivedi, A.K. In-vitro and in-vivo studies on novel chitosan-g-pluronic F-127 copolymer based nanocarrier of amphotericin b for improved antifungal activity. J. Biomater. Tissue Eng., 2014, 4(3), 210-216.
[http://dx.doi.org/10.1166/jbt.2014.1160]
[109]
Farzanegan, A.; Roudbary, M.; Falahati, M.; Khoobi, M.; Gholibegloo, E.; Farahyar, S.; Karimi, P.; Khanmohammadi, M. Synthesis, characterization and antifungal activity of a novel formulated nanocomposite containing Indolicidin and Graphene oxide against disseminated candidiasis. J. Mycol. Med., 2018, 28(4), 628-636.
[http://dx.doi.org/10.1016/j.mycmed.2018.07.009] [PMID: 30126717]
[110]
Apip, C.; Martínez, A.; Meléndrez, M.; Domínguez, M.; Marzialetti, T.; Báez, R.; Sánchez-Sanhueza, G.; Jaramillo, A.; Catalán, A. An in vitro study on the inhibition and ultrastructural alterations of Candida albicans biofilm by zinc oxide nanowires in a PMMA matrix. Saudi Dent. J., 2021, 33(8), 944-953.
[http://dx.doi.org/10.1016/j.sdentj.2021.08.006] [PMID: 34938036]
[111]
Méndez-Serrano, J.; Velazquez-Enriquez, U.; Contreras-Bulnes, R.; De La Rosa-Gómez, I.; Sawada, T.; Yamaguchi, R. Adhesion of candida albicans and streptococcus mutans to silver nanoparticle-modified polymethylmethacrylate. Interciencia, 2020, 45(1), 23-27.
[112]
Chatterjee, K.; Taneja, J.; Khullar, S.; Pandey, A.K. Antifungal activity of silver nanoparticles on fungal isolates from patients of suspected mucormycosis. Int. Microbiol., 2022, 26(1), 143-147.
[http://dx.doi.org/10.1007/s10123-022-00280-7] [PMID: 36251128]
[113]
Observational Study of Efficacy and Safety of Travogen Cream and Travocort Cream in the Treatment of Mycoses NCT00722189, 2008.
[114]
Clinical assessment of voriconazole self nano emulsifying drug delivery system intermediate gel. NCT04110860, 2019.
[115]
Clinical assessment of itraconazole self nano emulsifying drug delivery system intermediate gel. NCT04110834, 2019.
[116]
Thyme and carvacroll nanoparticle effect on fungi. NCT04431804, 2019.
[117]
PLGA nanoparticles entrapping ciprofloxacin to treat e-fecalis infections in endodontics. NCT05475444, 2022.
[118]
Antifungal material. JP2013515679A,
[119]
Silica-based antibacterial and antifungal nanoformulation. EP2367552B1,
[120]
Nanostructured calcium-silver phosphate composite powder, method for obtaining same, and bactericidal and fungicidal uses thereof. EP2380687A1,
[121]
Nanoemulsions for treating fungal, yeast and mold infections. EP2293787A1,
[122]
Nanoemulsions for treating fungal, yeast and filamentous fungal infections. JP2011518844A
[123]
Silica-based antibacterial and antifungal nanoformulation. US8632811B1,
[124]
Sinha, B.; Mukherjee, B.; Pattnaik, G. Poly-lactide-co-glycolide nanoparticles containing voriconazole for pulmonary delivery: in vitro and in vivo study. Nanomedicine, 2013, 9(1), 94-104.
[http://dx.doi.org/10.1016/j.nano.2012.04.005] [PMID: 22633899]
[125]
Butani, D.; Yewale, C.; Misra, A. Amphotericin B topical microemulsion: Formulation, characterization and evaluation. Colloids Surf. B Biointerfaces, 2014, 116, 351-358.
[http://dx.doi.org/10.1016/j.colsurfb.2014.01.014] [PMID: 24521698]
[126]
Takalkar, D.; Desai, N. Nanolipid Gel of an Antimycotic Drug for Treating Vulvovaginal Candidiasis—Development and Evaluation. AAPS PharmSciTech, 2018, 19(3), 1297-1307.
[http://dx.doi.org/10.1208/s12249-017-0918-7] [PMID: 29340981]
[127]
Winnicka, K.; Wroblewska, M.; Wieczorek, P.; Sacha, P.T.; Tryniszewska, E. Hydrogel of ketoconazole and PAMAM dendrimers: formulation and antifungal activity. Molecules, 2012, 17(4), 4612-4624.
[http://dx.doi.org/10.3390/molecules17044612] [PMID: 22513487]
[128]
Huang, J.F.; Zhong, J.; Chen, G.P.; Lin, Z.T.; Deng, Y.; Liu, Y.L.; Cao, P.Y.; Wang, B.; Wei, Y.; Wu, T.; Yuan, J.; Jiang, G.B. A hydrogel-based hybrid theranostic contact lens for fungal keratitis. ACS Nano, 2016, 10(7), 6464-6473.
[http://dx.doi.org/10.1021/acsnano.6b00601] [PMID: 27244244]
[129]
Mathpal, D.; Garg, T.; Rath, G.; Goyal, A. Development and characterization of spray dried microparticles for pulmonary delivery of antifungal drug. Curr. Drug Deliv., 2015, 12(4), 464-471.
[http://dx.doi.org/10.2174/1567201812666150326110821] [PMID: 25808185]
[130]
Ning, M.; Gu, Z.; Pan, H.; Yu, H.; Xiao, K. Preparation and in vitro evaluation of liposomal/niosomal delivery systems for antifungal drug clotrimazole. Indian J. Exp. Biol., 2005, 43(2), 150-157.
[PMID: 15782815]
[131]
Mohammed, N.; Rejinold, N.S.; Mangalathillam, S.; Biswas, R.; Nair, S.V.; Jayakumar, R. Fluconazole loaded chitin nanogels as a topical ocular drug delivery agent for corneal fungal infections. J. Biomed. Nanotechnol., 2013, 9(9), 1521-1531.
[http://dx.doi.org/10.1166/jbn.2013.1647] [PMID: 23980500]
[132]
Moustafa, M.A.; Elnaggar, Y.S.R.; El-Refaie, W.M.; Abdallah, O.Y. Hyalugel-integrated liposomes as a novel ocular nanosized delivery system of fluconazole with promising prolonged effect. Int. J. Pharm., 2017, 534(1-2), 14-24.
[http://dx.doi.org/10.1016/j.ijpharm.2017.10.007] [PMID: 28987453]
[133]
Salem, F.; Ahammed, S.M.; Hassaballah, A.S.; Omar, M.M. Targeting brain cells with glutathione-modulated nanoliposomes: in vitro and in vivo study. Drug Des. Devel. Ther., 2015, 9, 3705-3727.
[http://dx.doi.org/10.2147/DDDT.S85302] [PMID: 26229435]
[134]
Svetlichny, G.; Külkamp-Guerreiro, I.C.; Cunha, S.L.; Silva, F.E.K.; Bueno, K.; Pohlmann, A.R.; Fuentefria, A.M.; Guterres, S.S. Solid lipid nanoparticles containing copaiba oil and allantoin: development and role of nanoencapsulation on the antifungal activity. Pharmazie, 2015, 70(3), 155-164.
[PMID: 25980176]
[135]
Kalita, S.; Kandimalla, R.; Devi, B.; Kalita, B.; Kalita, K.; Deka, M.; Chandra Kataki, A.; Sharma, A.; Kotoky, J. Dual delivery of chloramphenicol and essential oil by poly-ε-caprolactone–Pluronic nanocapsules to treat MRSA-Candida co-infected chronic burn wounds. RSC Advances, 2017, 7(3), 1749-1758.
[http://dx.doi.org/10.1039/C6RA26561H]
[136]
Fernandes Costa, A.; Evangelista Araujo, D.; Santos Cabral, M.; Teles Brito, I.; Borges de Menezes Leite, L.; Pereira, M.; Correa Amaral, A. Development, characterization, and in vitro–in vivo evaluation of polymeric nanoparticles containing miconazole and farnesol for treatment of vulvovaginal candidiasis. Med. Mycol., 2019, 57(1), 52-62.
[http://dx.doi.org/10.1093/mmy/myx155] [PMID: 29361177]
[137]
Vitonyte, J.; Manca, M.L.; Caddeo, C.; Valenti, D.; Peris, J.E.; Usach, I.; Nacher, A.; Matos, M.; Gutiérrez, G.; Orrù, G.; Fernàndez-Busquets, X.; Fadda, A.M.; Manconi, M. Bifunctional viscous nanovesicles co-loaded with resveratrol and gallic acid for skin protection against microbial and oxidative injuries. Eur. J. Pharm. Biopharm., 2017, 114, 278-287.
[http://dx.doi.org/10.1016/j.ejpb.2017.02.004] [PMID: 28192250]
[138]
Richter, A.R.; Feitosa, J.P.A.; Paula, H.C.B.; Goycoolea, F.M.; de Paula, R.C.M. Pickering emulsion stabilized by cashew gum-poly-l-lactide copolymer nanoparticles: Synthesis, characterization and amphotericin B encapsulation. Colloids Surf. B Biointerfaces, 2018, 164, 201-209.
[http://dx.doi.org/10.1016/j.colsurfb.2018.01.023] [PMID: 29413597]
[139]
Nahar, M.; Mishra, D.; Dubey, V.; Jain, N.K. Development, characterization and toxicity evaluation of amphotericin Bloaded gelatin nanoparticles. Nanomed, (Lond.), 2008, 4(3), 252-261.
[140]
Diezi, T.A.; Kwon, G. Amphotericin B/sterol co-loaded PEG-phospholipid micelles: effects of sterols on aggregation state and hemolytic activity of amphotericin B. Pharm. Res., 2012, 29(7), 1737-1744.
[http://dx.doi.org/10.1007/s11095-011-0626-z] [PMID: 22130733]
[141]
Martín, M.J.; Calpena, A.C.; Fernández, F.; Mallandrich, M.; Gálvez, P.; Clares, B. Development of alginate microspheres as nystatin carriers for oral mucosa drug delivery. Carbohydr. Polym., 2015, 117, 140-149.
[http://dx.doi.org/10.1016/j.carbpol.2014.09.032] [PMID: 25498619]
[142]
Wei, S.; Xu, P.; Yao, Z.; Cui, X.; Lei, X.; Li, L.; Dong, Y.; Zhu, W.; Guo, R.; Cheng, B. A composite hydrogel with co-delivery of antimicrobial peptides and platelet-rich plasma to enhance healing of infected wounds in diabetes. Acta Biomater., 2021, 124, 205-218.
[http://dx.doi.org/10.1016/j.actbio.2021.01.046] [PMID: 33524559]
[143]
Chen, X.; Jiang, Z.; Lin, Y.; Yu, C.; Nie, X.; Xu, G.; Xu, W.; Jiang, Y.; Luan, Y. Tumor lysates-constructed hydrogel to potentiate tumor immunotherapy. J. Control. Release, 2023, 358, 345-357.
[http://dx.doi.org/10.1016/j.jconrel.2023.05.005] [PMID: 37150404]
[144]
Aparna, V.; Melge, A.R.; Rajan, V.K.; Biswas, R.; Jayakumar, R.; Gopi Mohan, C. Carboxymethylated ɩ-carrageenan conjugated amphotericin B loaded gelatin nanoparticles for treating intracellular Candida glabrata infections. Int. J. Biol. Macromol., 2018, 110, 140-149.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.11.126] [PMID: 29169943]
[145]
Gupta, M.; Vaidya, B.; Mishra, N.; Vyas, S.P. Effect of surfactants on the characteristics of fluconazole niosomes for enhanced cutaneous delivery. Artif. Cells Blood Substit. Immobil. Biotechnol., 2011, 39(6), 376-384.
[http://dx.doi.org/10.3109/10731199.2011.611476] [PMID: 21951195]
[146]
Kumar, S.; Kaur, P.; Bernela, M.; Rani, R.; Thakur, R. Ketoconazole encapsulated in chitosan-gellan gum nanocomplexes exhibits prolonged antifungal activity. Int. J. Biol. Macromol., 2016, 93(Pt A), 988-994.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.09.042]
[147]
Song, S.H.; Lee, K.M.; Kang, J.B.; Lee, S.G.; Kang, M.J.; Choi, Y.W. Improved skin delivery of voriconazole with a nanostructured lipid carrier-based hydrogel formulation. Chem. Pharm. Bull. (Tokyo), 2014, 62(8), 793-798.
[http://dx.doi.org/10.1248/cpb.c14-00202] [PMID: 25087631]
[148]
El-Hadidy, G.N.; Ibrahim, H.K.; Mohamed, M.I.; El-Milligi, M.F. Microemulsions as vehicles for topical administration of voriconazole: formulation and in vitro evaluation. Drug Dev. Ind. Pharm., 2012, 38(1), 64-72.
[http://dx.doi.org/10.3109/03639045.2011.590731] [PMID: 21696340]
[149]
Cuming, R.S.; Abarca, E.M.; Duran, S.; Wooldridge, A.A.; Stewart, A.J.; Ravis, W.; Babu, R.J.; Lin, Y.J.; Hathcock, T. Development of a sustained-release voriconazol-containing thermogel for subconjunctival injection in horses. Invest. Ophthalmol. Vis. Sci., 2017, 58(5), 2746-2754.
[http://dx.doi.org/10.1167/iovs.16-20899] [PMID: 28549089]
[150]
FDA approves new antifungal as concerns grow over drug-resistant fungus | BioPharma Dive Available from: https://www.biopharmadive.com/news/fda-new-antigunfal-cidara-melinta-rezzayo/645846/ (Accessed July 1, 2023).

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy