Generic placeholder image

Current Nutrition & Food Science

Editor-in-Chief

ISSN (Print): 1573-4013
ISSN (Online): 2212-3881

Research Article

The Effect of Chrysin-nanocrystal on Oxidative Stress Indices and Histopathological changes in Kidney Tissue of Rats Exposed to Chlorpyrifos

Author(s): Shahnaz Rajabi, Effat Alemzadeh, Fatemeh Ahrari, Babak Roshanravan, Michael Aschner, Saeed Samarghandian and Tahereh Farkhondeh*

Volume 20, Issue 8, 2024

Published on: 05 October, 2023

Page: [1006 - 1012] Pages: 7

DOI: 10.2174/0115734013251779230920151549

Price: $65

Open Access Journals Promotions 2
Abstract

Aims: The current study looked at the effect of nanocrystal chrysin on the effects of chlorpyrifos on kidney function, as well as the histopathological changes in this tissue and its potential as an antioxidant in the kidneys of adult male rats.

Background: The effect of nanocrystal chrysin on the kidneys of rats exposed to chlorpyrifos has not been fully understood.

Objective: The safety and efficacy of nanocrystal chrysin was evaluated.

Methods: The rats were randomly divided into six groups of six rats each: 1) a control group treated with corn oil, 2) a group treated with chrysin nanocrystals (5 mg/kg), 3) a group treated with chrysin nanocrystals (10 mg/kg), 4) a group treated with chrysin nanocrystals (5 mg/kg) + chlorpyrifos (30 mg/kg), 5) a group treated with chrysin nanocrystals (10 mg/kg) + chlorpyrifos (30 mg/kg). After the intervention, serum and kidney tissue samples were separated.

Results: Histology and biochemical factors at the serum level did not reveal any significant changes in all treated groups versus the control group. Additionally, the morphology of the renal tubules in all groups, including the glomeruli, was normal. There was no inflammation, congestion, necrosis, or degeneration.

Conclusion: In this study, the serum levels of urea, creatinine, bilirubin, and albumin, which are indicators of kidney function, as well as oxidative stress indices and kidney morphology in animals given doses of 5 mg/kg and 10 mg/kg of chrysin nanocrystals did not change. This study suggests that chrysin nanocrystals with an average diameter of 155 nm may be a safe and efficient antioxidant.

Keywords: Chrysin, nanocrystals, chlorpyrifos, kidney, oxidative stress, rat.

Graphical Abstract
[1]
Saoudi M, Badraoui R, Rahmouni F, Jamoussi K, El Feki A. Antioxidant and protective effects of Artemisia campestris essential oil against chlorpyrifos-induced kidney and liver injuries in rats. Front Physiol 2021; 12: 618582.
[http://dx.doi.org/10.3389/fphys.2021.618582] [PMID: 33716767]
[2]
Damalas CA, Eleftherohorinos IG. Pesticide exposure, safety issues, and risk assessment indicators. Int J Environ Res Public Health 2011; 8(5): 1402-19.
[http://dx.doi.org/10.3390/ijerph8051402] [PMID: 21655127]
[3]
Tudi M, Li H, Li H, et al. Exposure routes and health risks associated with pesticide application. Toxics 2022; 10(6): 335.
[http://dx.doi.org/10.3390/toxics10060335] [PMID: 35736943]
[4]
Kasner EJ, Prado JB, Yost MG, Fenske RA. Examining the role of wind in human illness due to pesticide drift in Washington state, 2000–2015. Environ Health 2021; 20(1): 26.
[http://dx.doi.org/10.1186/s12940-021-00693-3] [PMID: 33722241]
[5]
Kaur R, Kaur K. Occupational pesticide exposure, impaired DNA repair, and diseases. Indian J Occup Environ Med 2018; 22(2): 74-81.
[http://dx.doi.org/10.4103/ijoem.IJOEM_45_18] [PMID: 30319227]
[6]
Pesticides A, Authority VM. Reconsideration of chlorpyrifos. Toxicology 2015.
[7]
Trang A, Khandhar PB. Physiology, acetylcholinesterase. Treasure Island (FL): StatPearls 2021.
[8]
Oruç EÖ. Oxidative stress, steroid hormone concentrations and acetylcholinesterase activity in Oreochromis niloticus exposed to chlorpyrifos. Pestic Biochem Physiol 2010; 96(3): 160-6.
[http://dx.doi.org/10.1016/j.pestbp.2009.11.005]
[9]
Abolaji AO, Ojo M, Afolabi TT, Arowoogun MD, Nwawolor D, Farombi EO. Protective properties of 6-gingerol-rich fraction from Zingiber officinale (Ginger) on chlorpyrifos-induced oxidative damage and inflammation in the brain, ovary and uterus of rats. Chem Biol Interact 2017; 270: 15-23.
[http://dx.doi.org/10.1016/j.cbi.2017.03.017] [PMID: 28373059]
[10]
Singh V, Panwar R. In vivo antioxidative and neuroprotective effect of 4-Allyl-2-methoxyphenol against chlorpyrifos-induced neurotoxicity in rat brain. Mol Cell Biochem 2014; 388(1-2): 61-74.
[http://dx.doi.org/10.1007/s11010-013-1899-9] [PMID: 24292926]
[11]
Li AA, Lowe KA, McIntosh LJ, Mink PJ. Evaluation of epidemiology and animal data for risk assessment: Chlorpyrifos developmental neurobehavioral outcomes. J Toxicol Environ Health B Crit Rev 2012; 15(2): 109-84.
[http://dx.doi.org/10.1080/10937404.2012.645142] [PMID: 22401178]
[12]
Li D, Huang Q, Lu M, et al. The organophosphate insecticide chlorpyrifos confers its genotoxic effects by inducing DNA damage and cell apoptosis. Chemosphere 2015; 135: 387-93.
[http://dx.doi.org/10.1016/j.chemosphere.2015.05.024] [PMID: 26002045]
[13]
Sule RO, Condon L, Gomes AV. A common feature of pesticides: Oxidative stress-the role of oxidative stress in pesticide-induced toxicity. Oxid Med Cell Longev 2022; 2022: 1-31.
[http://dx.doi.org/10.1155/2022/5563759] [PMID: 35096268]
[14]
Kaur M, Jindal R. Oxidative stress response in liver, kidney and gills of Ctenopharyngodon idellus (Cuvier & Valenciennes) exposed to chlorpyrifos. MOJ Biol Med 2017; 1(4): 103-12.
[http://dx.doi.org/10.15406/mojbm.2017.01.00021]
[15]
Samarghandian S, Samini F, Azimi-Nezhad M, Farkhondeh T. Anti-oxidative effects of safranal on immobilization-induced oxidative damage in rat brain. Neurosci Lett. 2017; 659:26-32. doi: 10.1016/j.neulet.2017.08.065.
[16]
Dhalaria R, Verma R, Kumar D, et al. Bioactive compounds of edible fruits with their anti-aging properties: A comprehensive review to prolong human life. Antioxidants 2020; 9(11): 1123.
[http://dx.doi.org/10.3390/antiox9111123] [PMID: 33202871]
[17]
Samarghandian S, Azimi-Nezhad M, Samini F. Preventive effect of safranal against oxidative damage in aged male rat brain. Exp Anim. 2015;64(1):65-71. doi: 10.1538/expanim.14-0027.
[18]
Sultana S, Verma K, Khan R. Nephroprotective efficacy of chrysin against cisplatin-induced toxicity via attenuation of oxidative stress. J Pharm Pharmacol 2012; 64(6): 872-81.
[http://dx.doi.org/10.1111/j.2042-7158.2012.01470.x] [PMID: 22571266]
[19]
Rashid S, Ali N, Nafees S, et al. Alleviation of doxorubicin-induced nephrotoxicity and hepatotoxicity by chrysin in Wistar rats. Toxicol Mech Methods 2013; 23(5): 337-45.
[http://dx.doi.org/10.3109/15376516.2012.759306] [PMID: 23256457]
[20]
Ali BH, Adham SA, Al Za’abi M, et al. Ameliorative effect of chrysin on adenine-induced chronic kidney disease in rats. PLoS One 2015; 10(4): e0125285.
[http://dx.doi.org/10.1371/journal.pone.0125285] [PMID: 25909514]
[21]
Baykalir BG, Arslan AS, Mutlu SI, Ak TP, Seven I, Seven PT, et al. The protective effect of chrysin against carbon tetrachloride-induced kidney and liver tissue damage in rats. Int J Vitam Nutr Res 2020; 91(5-6): 427-38.
[PMID: 32349632]
[22]
Soliman MM, Aldhahrani A, Gaber A, et al. Ameliorative impacts of chrysin against gibberellic acid-induced liver and kidney damage through the regulation of antioxidants, oxidative stress, inflammatory cytokines, and apoptosis biomarkers. Toxicol Res 2022; 11(1): 235-44.
[http://dx.doi.org/10.1093/toxres/tfac003] [PMID: 35237428]
[23]
Tekeli MY, Çakır Bayram L, Eraslan G, Sarıca Z. The protective effect of chrysin against oxidative stress and organ toxicity in rats exposed to propetamphos. Drug Chem Toxicol 2022; 45(6): 2664-77.
[http://dx.doi.org/10.1080/01480545.2021.1981479] [PMID: 34587847]
[24]
Tekeli MY, Eraslan G, Bayram LÇ, Aslan C, Çalımlı S. The protective effects of baicalin and chrysin against emamectin benzoate-induced toxicity in Wistar albino rats. Environ Sci Pollut Res Int 2023; 30(18): 53997-4021.
[http://dx.doi.org/10.1007/s11356-023-26110-5] [PMID: 36869176]
[25]
Zeinali M, Meybodi NT, Rezaee SA, Rafatpanah H, Hosseinzadeh H. Protective effects of chrysin on sub-acute diazinon-induced biochemical, hematological, histopathological alterations, and genotoxicity indices in male BALB/c mice. Drug Chem Toxicol 2018; 41(3): 270-80.
[http://dx.doi.org/10.1080/01480545.2017.1384834] [PMID: 29092670]
[26]
Shaterzadeh-Yazdi H, Noorbakhsh MF, Hayati F, Samarghandian S, Farkhondeh T. Immunomodulatory and anti-inflammatory effects of thymoquinone. Cardiovascular & Haematological Disorders-Drug Targets (Formerly Current Drug Targets-Cardiovascular & Hematological Disorders). 2018 Apr 1;18(1):52-60.
[http://dx.doi.org/10.1038/s41598-022-20010-3] [PMID: 36114367]
[27]
Juberg DR, Hoberman AM, Marty S, Picut CA, Stump DG. Letter to the editor regarding “safety of safety evaluation of pesticides: Developmental neurotoxicity of chlorpyrifos and chlorpyrifos-methyl” by Mie et al. (environmental health. 2018. 17: 77). Environ Health 2019; 18: 1-6.
[28]
Taheri E, Amin MM, Daniali SS, Abdollahpour I, Fatehizadeh A, Kelishadi R. Health risk assessment of exposure to chlorpyrifos in pregnant women using deterministic and probabilistic approaches. PLoS One 2022; 17(1): e0262127.
[http://dx.doi.org/10.1371/journal.pone.0262127] [PMID: 35051200]
[29]
Tanvir EM, Afroz R, Chowdhury MAZ, et al. A model of chlorpyrifos distribution and its biochemical effects on the liver and kidneys of rats. Hum Exp Toxicol 2016; 35(9): 991-1004.
[http://dx.doi.org/10.1177/0960327115614384] [PMID: 26519480]
[30]
Gujar K, Wairkar S. Nanocrystal technology for improving therapeutic efficacy of flavonoids. Phytomedicine 2020; 71: 153240.
[http://dx.doi.org/10.1016/j.phymed.2020.153240] [PMID: 32450461]
[31]
Kakran M, Sahoo NG, Li L, Judeh Z. Fabrication of quercetin nanoparticles by anti-solvent precipitation method for enhanced dissolution. Powder Technol 2012; 223: 59-64.
[http://dx.doi.org/10.1016/j.powtec.2011.08.021]
[32]
Poovala VS, Huang H, Salahudeen AK. Role of reactive oxygen metabolites in organophosphate-bidrin-induced renal tubular cytotoxicity. J Am Soc Nephrol 1999; 10(8): 1746-52.
[http://dx.doi.org/10.1681/ASN.V1081746] [PMID: 10446942]
[33]
Possamai FP, Fortunato JJ, Feier G, et al. Oxidative stress after acute and sub-chronic malathion intoxication in Wistar rats. Environ Toxicol Pharmacol 2007; 23(2): 198-204.
[http://dx.doi.org/10.1016/j.etap.2006.09.003] [PMID: 21783758]
[34]
Takayasu T, Ishida Y, Nosaka M, et al. High concentration of methidathion detected in a fatal case of organophosphate-poisoning. Leg Med 2012; 14(5): 263-6.
[http://dx.doi.org/10.1016/j.legalmed.2012.04.007] [PMID: 22704879]
[35]
Thiermann H, Eyer F, Felgenhauer N, et al. Pharmacokinetics of obidoxime in patients poisoned with organophosphorus compounds. Toxicol Lett 2010; 197(3): 236-42.
[http://dx.doi.org/10.1016/j.toxlet.2010.06.005] [PMID: 20542100]
[36]
Yurumez Y, Ikizceli I, Sozuer EM, et al. Effect of interleukin-10 on tissue damage caused by organophosphate poisoning. Basic Clin Pharmacol Toxicol 2007; 100(5): 323-7.
[http://dx.doi.org/10.1111/j.1742-7843.2007.00049.x] [PMID: 17448118]
[37]
Pizzino G, Irrera N, Cucinotta M, et al. Oxidative stress: Harms and benefits for human health. Oxid Med Cell Longev 2017; 2017: 1-13.
[http://dx.doi.org/10.1155/2017/8416763] [PMID: 28819546]
[38]
Gyurászová M, Gurecká R, Bábíčková J, Tóthová Ľ. Oxidative stress in the pathophysiology of kidney disease: Implications for noninvasive monitoring and identification of biomarkers. Oxid Med Cell Longev 2020; 2020: 5478708.
[39]
Ismail AA, Hendy O, Abdel Rasoul G, Olson JR, Bonner MR, Rohlman DS. Acute and cumulative effects of repeated exposure to chlorpyrifos on the liver and kidney function among egyptian adolescents. Toxics 2021; 9(6): 137.
[http://dx.doi.org/10.3390/toxics9060137] [PMID: 34200920]
[40]
Xue X, Ali YF, Luo W, Liu C, Zhou G, Liu NA. Biological effects of space hypomagnetic environment on circadian rhythm. Front Physiol 2021; 12: 643943.
[http://dx.doi.org/10.3389/fphys.2021.643943] [PMID: 33767637]
[41]
Nasr HM, El-Demerdash FM, El-Nagar WA. Neuro and renal toxicity induced by chlorpyrifos and abamectin in rats. Environ Sci Pollut Res Int 2016; 23(2): 1852-9.
[http://dx.doi.org/10.1007/s11356-015-5448-9] [PMID: 26403246]
[42]
Ozturk Kurt B, Ozdemir S. Selenium heals the chlorpyrifos-induced oxidative damage and antioxidant enzyme levels in the rat tissues. Biol Trace Elem Res 2023; 201(4): 1772-80.
[PMID: 35522419]
[43]
Connell DW, Yu QJ, Verma V. Influence of exposure time on toxicity-An overview. Toxicology 2016; 355-356: 49-53.
[http://dx.doi.org/10.1016/j.tox.2016.05.015] [PMID: 27216426]
[44]
Alipanah H, Kabi Doraghi H, Sayadi M, Nematollahi A, Soltani Hekmat A, Nejati R. Subacute toxicity of chlorpyrifos on histopathological damages, antioxidant activity, and pro-inflammatory cytokines in the rat model. Environ Toxicol 2022; 37(4): 880-8.
[http://dx.doi.org/10.1002/tox.23451] [PMID: 34985812]
[45]
Ashrafizadeh M, Ahmadi Z, Kotla NG, Afshar EG, Samarghandian S, Mandegary A, Pardakhty A, Mohammadinejad R, Sethi G. Nanoparticles targeting STATs in cancer therapy. Cells. 2019 Sep 27;8(10):1158.
[http://dx.doi.org/10.1016/0378-5173(95)00122-Y]
[46]
Pelikh O, Stahr PL, Huang J, et al. Nanocrystals for improved dermal drug delivery. Eur J Pharm Biopharm 2018; 128: 170-8.
[http://dx.doi.org/10.1016/j.ejpb.2018.04.020] [PMID: 29680482]
[47]
Zhou Y, Du J, Wang L, Wang Y. Nanocrystals technology for improving bioavailability of poorly soluble drugs: A mini-review. J Nanosci Nanotechnol 2017; 17(1): 18-28.
[http://dx.doi.org/10.1166/jnn.2017.13108] [PMID: 29616786]
[48]
Noyes AA, Whitney WR. The rate of solution of solid substances in their own solutions. J Am Chem Soc 1897; 19(12): 930-4.
[http://dx.doi.org/10.1021/ja02086a003]
[49]
Yue P, Zhou W, Huang G, et al. Nanocrystals based pulmonary inhalation delivery system: Advance and challenge. Drug Deliv 2022; 29(1): 637-51.
[http://dx.doi.org/10.1080/10717544.2022.2039809] [PMID: 35188021]
[50]
Gülsün T, Gürsoy RN, Öner L. Nanocrystal technology for oral delivery of poorly water-soluble drugs. FABAD J Pharmaceut Sci 2009; 34(1): 55.
[51]
Parmar PK, Wadhawan J, Bansal AK. Pharmaceutical nanocrystals: A promising approach for improved topical drug delivery. Drug Discov Today 2021; 26(10): 2329-49.
[http://dx.doi.org/10.1016/j.drudis.2021.07.010] [PMID: 34265460]
[52]
Mishra PR, Shaal LA, Müller RH, Keck CM. Production and characterization of Hesperetin nanosuspensions for dermal delivery. Int J Pharm 2009; 371(1-2): 182-9.
[http://dx.doi.org/10.1016/j.ijpharm.2008.12.030] [PMID: 19162147]
[53]
Pyo S, Meinke M, Keck C, Müller R. Rutin—Increased antioxidant activity and skin penetration by nanocrystal technology (smartCrystals). Cosmetics 2016; 3(1): 9.
[http://dx.doi.org/10.3390/cosmetics3010009]
[54]
Yang YL, Gordon CJ. Possible role of vasopressin in the thermoregulatory response to chlorpyrifos in the rat. Pharmacol Toxicol 2002; 90(6): 311-6.
[http://dx.doi.org/10.1034/j.1600-0773.2002.900604.x] [PMID: 12403052]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy