Generic placeholder image

Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1573-4064
ISSN (Online): 1875-6638

Review Article

An Overview of Various Rifampicin Analogs against Mycobacterium tuberculosis and their Drug Interactions

Author(s): Mohammad Asif*, Naeem F. Qusty and Saad Alghamdi

Volume 20, Issue 3, 2024

Published on: 04 October, 2023

Page: [268 - 292] Pages: 25

DOI: 10.2174/0115734064260853230926080134

Price: $65

Abstract

The success of the TB control program is hampered by the major issue of drug-resistant tuberculosis (DR-TB). The situation has undoubtedly been made more difficult by the widespread and multidrug-resistant (XDR) strains of TB. The modification of existing anti-TB medications to produce derivatives that can function on resistant TB bacilli is one of the potential techniques to overcome drug resistance affordably and straightforwardly. In comparison to novel pharmaceuticals for drug research and progress, these may have a better half-life and greater bioavailability, be more efficient, and serve as inexpensive alternatives. Mycobacterium tuberculosis, which is drugsusceptible or drug-resistant, is effectively treated by several already prescribed medications and their derivatives. Due to this, the current review attempts to give a brief overview of the rifampicin derivatives that can overcome the parent drug's resistance and could, hence, act as useful substitutes. It has been found that one-third of the global population is affected by M. tuberculosis. The most common cause of infection-related death can range from latent TB to TB illness. Antibiotics in the rifamycin class, including rifampicin or rifampin (RIF), rifapentine (RPT), and others, have a special sterilizing effect on M. tuberculosis. We examine research focused on evaluating the safety, effectiveness, pharmacokinetics, pharmacodynamics, risk of medication interactions, and other characteristics of RIF analogs. Drug interactions are especially difficult with RIF because it must be taken every day for four months to treat latent TB infection. RIF continues to be the gold standard of treatment for drug-sensitive TB illness. RIF's safety profile is well known, and the two medicines' adverse reactions have varying degrees of frequency. The authorized once-weekly RPT regimen is insufficient, but greater dosages of either medication may reduce the amount of time needed to treat TB effectively.

Keywords: Multidrug resistance, Mycobacterium tuberculosis, rifampicin, rifampin, rifamycin, toxicity, metabolism, drugs.

Graphical Abstract
[1]
Sarkar, S.; Ganguly, A.; Sunwoo, H.H. Current overview of anti-tuberculosis drugs: Metabolism and toxicities. Mycobact. Dis., 2016, 6(2), 209.
[http://dx.doi.org/10.4172/2161-1068.1000209]
[2]
Strohmeier, G.R.; Fenton, M.J. Roles of lipoarabinomannan in the pathogenesis of tuberculosis. Microbes Infect., 1999, 1(9), 709-717.
[http://dx.doi.org/10.1016/S1286-4579(99)80072-0] [PMID: 10611748]
[3]
Canetti, G. The eradication of tuberculosis: Theoretical problems and practical solutions. Tubercle, 1962, 43(3), 301-321.
[http://dx.doi.org/10.1016/S0041-3879(62)80071-3] [PMID: 14018285]
[4]
Jindani, A.; Aber, V.R.; Edwards, E.A.; Mitchison, D.A. The early bactericidal activity of drugs in patients with pulmonary tuberculosis. Am. Rev. Respir. Dis., 1980, 121(6), 939-949.
[http://dx.doi.org/10.1164/arrd.1980.121.6.939] [PMID: 6774638]
[5]
Mitchison, D.A. Role of individual drugs in the chemotherapy of tuberculosis. Int. J. Tuberc. Lung Dis., 2000, 4(9), 796-806.
[PMID: 10985648]
[6]
World Health Organization. Treatment of Tuberculosis Guidelines, 4th ed; World Health Organization, 2010.
[7]
Prasad, R. MDR TB currentStatus. Indian J. Tuberc., 2005, 52, 121-131.
[8]
Paramasivan, C.N. Overview on drug resistant tuberculosis in India. Indian J. Tububerculosis, 1998, 45, 73-81.
[9]
Asif, M. Study of some analogue of currently clinically used antimycobacterial agents. Int. J. Epidemiol. Infect., 2013, 1(3), 33-44.
[http://dx.doi.org/10.12966/ijei.09.02.2013]
[10]
Nusrath U.A.; Hanna, L.E.; Swaminathan, S. A note on derivatives of isoniazid, rifampicin, and pyrazinamide showing activity against resistant mycobacterium tuberculosis. Chem. Biol. Drug Des., 2016, 87(4), 537-550.
[http://dx.doi.org/10.1111/cbdd.12684] [PMID: 26613382]
[11]
Asif, M. Study of clinically used and recently developed antimycobacterial agents. Orient. Pharm. Exp. Med., 2012, 12(1), 15-34.
[http://dx.doi.org/10.1007/s13596-011-0020-8]
[12]
World Health Organization. Strategic Framework to Decrease the Burden of TB/HIV Documents WHO/CDS/TB; World Health Organization, 2002, p. 296.
[13]
World Health Organization. Fact Sheet No. 104. 2007. Available From: http://www.who.int/mediacentre/factsheets/who104/en/index.html/.
[14]
WHO Report 2008: The stop TB strategy, casereports, treatment outcomes and estimates of TB burden. 2008. Available From: http://www.who.int/tb/publications/global_report/2008/annex_3/en/index. html.
[15]
Asif, M.; Siddiqui, A.A.; Husain, A. Quinolone derivatives as antitubercular drugs. Med. Chem. Res., 2013, 22(3), 1029-1042.
[http://dx.doi.org/10.1007/s00044-012-0101-3]
[16]
Kamal, A.; Azeeza, S.; Malik, M.S.; Shaik, A.A.; Rao, M.V. Efforts towards the development of new antitubercular agents: Potential for thiolactomycin based compounds. J. Pharm. Pharm. Sci., 2008, 11(2), 56.
[http://dx.doi.org/10.18433/J36K5K] [PMID: 19203471]
[17]
Nahid, P.; Pai, M.; Hopewell, P.C. Advances in the diagnosis and treatment of tuberculosis. Proc. Am. Thorac. Soc., 2006, 3(1), 103-110.
[http://dx.doi.org/10.1513/pats.200511-119JH] [PMID: 16493157]
[18]
Nguyen, L.; Thompson, C.J. Foundations of antibiotic resistance in bacterial physiology: The mycobacterial paradigm. Trends Microbiol., 2006, 14(7), 304-312.
[http://dx.doi.org/10.1016/j.tim.2006.05.005] [PMID: 16759863]
[19]
World Health Organization. Global Tuberculosis Control-Surveillance, Planning, Financing; World Health Organization, 2005.
[20]
World Health Organization (WHO). Treatment of Tuberculosis: Guidelines for National Programmes; World Health Organization: Geneva, 2003.
[21]
Tripathi, R.P.; Tewari, N.; Dwivedi, N.; Tiwari, V.K. Fighting tuberculosis: An old disease with new challenges. Med. Res. Rev., 2005, 25(1), 93-131.
[http://dx.doi.org/10.1002/med.20017] [PMID: 15389729]
[22]
Bastian, I.; Colebunders, R. Treatment and prevention of multidrug-resistant tuberculosis. Drugs, 1999, 58(4), 633-661.
[http://dx.doi.org/10.2165/00003495-199958040-00005] [PMID: 10551435]
[23]
Ahmad, Z.; Sharma, S.; Khuller, G.K.; Singh, P.; Faujdar, J.; Katoch, V.M. Antimycobacterial activity of econazole against multidrug-resistant strains of Mycobacterium tuberculosis. Int. J. Antimicrob. Agents, 2006, 28(6), 543-544.
[http://dx.doi.org/10.1016/j.ijantimicag.2006.07.028] [PMID: 17101262]
[24]
Aldrich, C.C.; Bosshoff, H.I.; Remmel, R.P. Antitubercular agents. In: Burger's Medicinal Chemistry and Drug Discovery; Wiley, 2010; 7, pp. 713-812.
[http://dx.doi.org/10.1002/0471266949.bmc231]
[25]
Management of MDR-TB. A field guide a companion document to guidelines for the programmatic management of drug-resistant tuberculosis. WHO/HTM/TB/2008.402, WHO library cataloguing-in-publication data; World Health Organization, 2009.
[26]
Cole, S.T.; Alzari, P.M. Towards new tuberculosis drugs. Biochem. Soc. Trans., 2007, 35(5), 1321-1324.
[http://dx.doi.org/10.1042/BST0351321] [PMID: 17956342]
[27]
Glickman, S.W.; Rasiel, E.B.; Hamilton, C.D.; Kubataev, A.; Schulman, K.A. Medicine. A portfolio model of drug development for tuber-culosis. Science, 2006, 311(5765), 1246-1247.
[http://dx.doi.org/10.1126/science.1119299] [PMID: 16513969]
[28]
Stahlmann, R.; Lode, H. Toxicity of quinolones. Drugs, 1999, 58(Suppl. 2), 37-42.
[http://dx.doi.org/10.2165/00003495-199958002-00007] [PMID: 10553703]
[29]
Rieder, H.L.; Arnadottir, T.; Trébucq, A.; Enarson, D.A. Tuberculosis treatment: Dangerous regimens? Int. J. Tuberc. Lung Dis., 2001, 5(1), 1-3.
[PMID: 11263509]
[30]
Russell, D.G. Mycobacterium tuberculosis: Here today, and here tomorrow. Nat. Rev. Mol. Cell Biol., 2001, 2(8), 569-578.
[http://dx.doi.org/10.1038/35085034] [PMID: 11483990]
[31]
Smith, C.V.; Sharma, V.; Sacchettini, J.C. TB drug discovery: Addressing issues of persistence and resistance. Tuberculosis, 2004, 84(1-2), 45-55.
[http://dx.doi.org/10.1016/j.tube.2003.08.019] [PMID: 14670345]
[32]
O’Brien, R.J.; Nunn, P.P. The need for new drugs against tuberculosis. Obstacles, opportunities, and next steps. Am. J. Respir. Crit. Care Med., 2001, 163(5), 1055-1058.
[http://dx.doi.org/10.1164/ajrccm.163.5.2007122] [PMID: 11316634]
[33]
Paramasivan, C.N.; Sulochana, S.; Kubendiran, G.; Venkatesan, P.; Mitchison, D.A. Bactericidal action of gatifloxacin, rifampin, and iso-niazid on logarithmic- and stationary-phase cultures of Mycobacterium tuberculosis. Antimicrob. Agents Chemother., 2005, 49(2), 627-631.
[http://dx.doi.org/10.1128/AAC.49.2.627-631.2005] [PMID: 15673743]
[34]
Somoskovi, A.; Parsons, L.M.; Salfinger, M. The molecular basis of resistance to isoniazid, rifampin, and pyrazinamide in Mycobacterium tuberculosis. Respir. Res., 2001, 2(3), 164-168.
[http://dx.doi.org/10.1186/rr54] [PMID: 11686881]
[35]
Farr, B.F. Rifamycins.Mandell, Douglas and Bennett’s Principles and Practice of Infectious Diseases, 5th ed; Mandell, G.L.; Bennett, J.E.; Dolin, R., Eds.; Churchill Livingstone, 2000, pp. 348-361.
[36]
Temple, M.E.; Nahata, M.C. Rifapentine: Its role in the treatment of tuberculosis. Ann. Pharmacother., 1999, 33(11), 1203-1210.
[http://dx.doi.org/10.1345/aph.18450] [PMID: 10573321]
[37]
Zhang, Y. Persistent and dormant tubercle bacilli and latent tuberculosis. Front. Biosci., 2004, 9(1-3), 1136-1156.
[http://dx.doi.org/10.2741/1291] [PMID: 14977534]
[38]
Baciewicz, A.M.; Self, T.H.; Bekemeyer, W.B. Update on rifampin drug interactions. Arch. Intern. Med., 1987, 147(3), 565-568.
[http://dx.doi.org/10.1001/archinte.1987.00370030169033] [PMID: 2881523]
[39]
Cauthen, G.M.; Kilburn, J.O.; Kelly, G.D.; Good, R.C. Resistance to antituberculosis drugs in patients with and withoutpriortreatment: Survey of 31 state and large city laboratories, 1982–1986. Am. Rev. Respir. Dis., 1988, 137(Suppl.), 260.
[40]
Wade, M.M.; Zhang, Y. Mechanisms of drug resistance in mycobacterium tuberculosis. Front. Biosci., 2004, 9(1-3), 975-994.
[http://dx.doi.org/10.2741/1289] [PMID: 14766424]
[41]
Zhang, Y.; Amzel, L. Tuberculosis drug targets. Curr. Drug Targets, 2002, 3(2), 131-154.
[http://dx.doi.org/10.2174/1389450024605391] [PMID: 11958297]
[42]
Zhang, Y.; Post-Martens, K.; Denkin, S. New drug candidates and therapeutic targets for tuberculosis therapy. Drug Discov. Today, 2006, 11(1-2), 21-27.
[http://dx.doi.org/10.1016/S1359-6446(05)03626-3] [PMID: 16478687]
[43]
Tomioka, H.; Namba, K. Development of antituberculous drugs: Current status and future prospects. Kekkaku, 2006, 81(12), 753-774.
[PMID: 17240921]
[44]
Zierski, M.; Bek, E. Side-effects of drug regimens used in short-course chemotherapy for pulmonary tuberculosis. A controlled clinical study. Tubercle, 1980, 61(1), 41-49.
[http://dx.doi.org/10.1016/0041-3879(80)90060-4] [PMID: 6989067]
[45]
Gray, M.A. Tuberculosis drugs. Orthop. Nurs., 1997, 16(4), 64-69.
[http://dx.doi.org/10.1097/00006416-199707000-00014] [PMID: 9287820]
[46]
Gangadharam, P.R. Isoniazid, rifampin, and hepatotoxicity. Am. Rev. Respir. Dis., 1986, 133(6), 963-965.
[http://dx.doi.org/10.1164/arrd.1986.133.6.963] [PMID: 3013057]
[47]
Warrington, R.J.; Hogg, G.R.; Paraskevas, F.; Tse, K.S. Insidious rifampin-associated renal failure with light-chain proteinuria. Arch. Intern. Med., 1977, 137(7), 927-930.
[http://dx.doi.org/10.1001/archinte.1977.03630190081021] [PMID: 406868]
[48]
Zhang, Y. The magic bullets and tuberculosis drug targets. Annu. Rev. Pharmacol. Toxicol., 2005, 45(1), 529-564.
[http://dx.doi.org/10.1146/annurev.pharmtox.45.120403.100120] [PMID: 15822188]
[49]
Garay, S.M. Tuberculosis; Lippincott Williams & Wilkins, 2004, pp. 345-394.
[50]
Gutierrez-Lugo, M.T.; Bewley, C.A. Natural products, small molecules, and genetics in tuberculosis drug development. J. Med. Chem., 2008, 51(9), 2606-2612.
[http://dx.doi.org/10.1021/jm070719i] [PMID: 18393405]
[51]
Janin, Y.L. Antituberculosis drugs: Ten years of research. Bioorg. Med. Chem., 2007, 15(7), 2479-2513.
[http://dx.doi.org/10.1016/j.bmc.2007.01.030] [PMID: 17291770]
[52]
Heifets, L.B. Antimycobacterial infection. Semin. Espir. Infect., 1994, 9, 84-103.
[53]
Stratton, M.A.; Reed, M.T. Short-course drug therapy for tuberculosis. Clin. Pharm., 1986, 5(12), 977-987.
[PMID: 3542345]
[54]
Figueiredo, R.; Moiteiro, C.; Medeiros, M.A.; Silva, P.A.; Ramos, D.; Spies, F.; Ribeiro, M.O.; Lourenço, M.C.S.; Júnior, I.N.; Gaspar, M.M.; Cruz, M.E.M.; Curto, M.J.M.; Franzblau, S.G.; Orozco, H.; Aguilar, D.; Hernandez-Pando, R.; Costa, M.C. Synthesis and evaluation of rifabutin analogs against Mycobacterium avium and H37Rv, MDR and NRP Mycobacterium tuberculosis. Bioorg. Med. Chem., 2009, 17(2), 503-511.
[http://dx.doi.org/10.1016/j.bmc.2008.12.006] [PMID: 19119013]
[55]
Dickinson, J.M.; Mitchison, D.A. In vitro observations on the suitability of new rifamycins for the intermittent chemotherapy of tubercu-losis. Tubercle, 1987, 68(3), 183-193.
[http://dx.doi.org/10.1016/0041-3879(87)90054-7] [PMID: 2834843]
[56]
Shoen, C.M.; DeStefano, M.S.; Cynamon, M.H. Durable cure for tuberculosis: Rifalazil in combination with isoniazid in a murine model of Mycobacterium tuberculosis infection. Clin. Infect. Dis., 2000, 30(Suppl. 3), S288-S290.
[http://dx.doi.org/10.1086/313876] [PMID: 10875802]
[57]
Moghazeh, S.L.; Pan, X.; Arain, T.; Stover, C.K.; Musser, J.M.; Kreiswirth, B.N. Comparative antimycobacterial activities of rifampin, rifapentine, and KRM-1648 against a collection of rifampin-resistant Mycobacterium tuberculosis isolates with known rpoB mutations. Antimicrob. Agents Chemother., 1996, 40(11), 2655-2657.
[http://dx.doi.org/10.1128/AAC.40.11.2655] [PMID: 8913484]
[58]
Hidaka, T. Current status and perspectives on the development of rifamycin derivative antibiotics. Kekkaku, 1999, 74(1), 53-61.
[PMID: 10067056]
[59]
Dooley, K.E.; Mitnick, C.D.; Ann DeGroote, M.; Obuku, E.; Belitsky, V.; Hamilton, C.D.; Makhene, M.; Shah, S.; Brust, J.C.; Durakovic, N.; Nuermberger, E. Efficacy subgroup, RESIST-TB. Old drugs, newpurpose: Retooling existing drugs for optimized treatment of re-sistanttuberculosis. Clin. Infect. Dis., 2012, 55(4), 572-581.
[http://dx.doi.org/10.1093/cid/cis487] [PMID: 22615332]
[60]
Cavusoglu, C.; Karaca-Derici, Y.; Bilgic, A. In-vitro activity of rifabutin against rifampicin-resistant Mycobacterium tuberculosis isolates with known rpoB mutations. Clin. Microbiol. Infect., 2004, 10(7), 662-665.
[http://dx.doi.org/10.1111/j.1469-0691.2004.00917.x] [PMID: 15214882]
[61]
Ginsberg, A.M. Drugs in development for tuberculosis. Drugs, 2010, 70(17), 2201-2214.
[http://dx.doi.org/10.2165/11538170-000000000-00000] [PMID: 21080738]
[62]
Diacon, A.H.; Patientia, R.F.; Venter, A.; van Helden, P.D.; Smith, P.J.; McIlleron, H.; Maritz, J.S.; Donald, P.R. Early bactericidal activity of high-dose rifampin in patients with pulmonary tuberculosis evidenced by positive sputum smears. Antimicrob. Agents Chemother., 2007, 51(8), 2994-2996.
[http://dx.doi.org/10.1128/AAC.01474-06] [PMID: 17517849]
[63]
Keung, A.C.; Owens, R.C.; Eller, M.G.; Weir, S.J.; Nicolau, D.P. Pharmacokinetics of rifapentine in subjects seropositive for the human immunodeficiency virus: A phase I study. Antimicrob. Agents Chemother., 1999, 43(5), 1230-1233.
[http://dx.doi.org/10.1128/AAC.43.5.1230] [PMID: 10223941]
[64]
Heifets, L.; Sanchez, T.; Vanderkolk, J.; Pham, V. Development of rifapentine susceptibility tests for Mycobacterium tuberculosis. Antimicrob. Agents Chemother., 1999, 43(1), 25-28.
[http://dx.doi.org/10.1128/AAC.43.1.25] [PMID: 9869560]
[65]
Dickinson, J.M.; Mitchison, D.A. In vitro activity of new rifamycins aganst rifampicin-resistant M. tuberculosis and MAIS-complex myco-bacteria. Tubercle, 1987, 68(3), 177-182.
[http://dx.doi.org/10.1016/0041-3879(87)90053-5] [PMID: 2834842]
[66]
Heifets, L.B.; Lindholm-Levy, P.J.; Flory, M.A. Bactericidal activity in vitro of various rifamycins against Mycobacterium avium and My-cobacterium tuberculosis. Am. Rev. Respir. Dis., 1990, 141(3), 626-630.
[http://dx.doi.org/10.1164/ajrccm/141.3.626] [PMID: 2155555]
[67]
Sharma, S. Antituberculosis drugs and hepatotoxicity. Infect. Genet. Evol., 2004, 4(2), 167-170.
[http://dx.doi.org/10.1016/j.meegid.2003.01.001] [PMID: 15157635]
[68]
Schoene, B.; Fleischmann, R.A.; Remmer, H.; von Oldershausen, H.F. Determination of drug metabolizing enzymes in needle biopsies of human liver. Eur. J. Clin. Pharmacol., 1972, 4(2), 65-73.
[http://dx.doi.org/10.1007/BF00562499] [PMID: 4144102]
[69]
Rae, J.M.; Johnson, M.D.; Lippman, M.E.; Flockhart, D.A. Rifampin is a selective, pleiotropic inducer of drug metabolism genes in human hepatocytes: Studies with cDNA and oligonucleotide expression arrays. J. Pharmacol. Exp. Ther., 2001, 299(3), 849-857.
[PMID: 11714868]
[70]
Hesse, L.M.; Sakai, Y.; Vishnuvardhan, D.; Li, A.P.; von Moltke, L.L.; Greenblatt, D.J. Effect of bupropion on CYP2B6 and CYP3A4 catalytic activity, immunoreactive protein and mRNA levels in primary human hepatocytes: Comparison with rifampicin. J. Pharm. Pharmacol., 2010, 55(9), 1229-1239.
[http://dx.doi.org/10.1211/0022357021657] [PMID: 14604466]
[71]
Greiner, B.; Eichelbaum, M.; Fritz, P.; Kreichgauer, H.P.; von Richter, O.; Zundler, J.; Kroemer, H.K. The role of intestinal P-glycoprotein in the interaction of digoxin and rifampin. J. Clin. Invest., 1999, 104(2), 147-153.
[http://dx.doi.org/10.1172/JCI6663] [PMID: 10411543]
[72]
Kim, Y.H.; Yoon, Y.R.; Kim, Y.W.; Shin, J.G.; Cha, I.J. Effects of rifampin on cyclosporine disposition in kidney recipients with tubercu-losis. Transplant. Proc., 1998, 30(7), 3570-3572.
[http://dx.doi.org/10.1016/S0041-1345(98)01139-7] [PMID: 9838563]
[73]
Davies, M.J. The oxidative environment and protein damage. Biochim. Biophys. Acta. Proteins Proteomics, 2005, 1703(2), 93-109.
[http://dx.doi.org/10.1016/j.bbapap.2004.08.007] [PMID: 15680218]
[74]
Walter-Sack, I.; Klotz, U. Influence of diet and nutritional status on drug metabolism. Clin. Pharmacokinet., 1996, 31(1), 47-64.
[http://dx.doi.org/10.2165/00003088-199631010-00004] [PMID: 8827399]
[75]
Hunt, C.M.; Westerkam, W.R.; Stave, G.M. Effect of age and gender on the activity of human hepatic CYP3A. Biochem. Pharmacol., 1992, 44(2), 275-283.
[http://dx.doi.org/10.1016/0006-2952(92)90010-G] [PMID: 1642641]
[76]
AIDS control and prevention (AIDSCAP) project of family health internal, the francois-xavier bagnoud center for public health and human rights of the harvard school of public health UNAIDS. The Status and Trends of the Global HIV/AIDS Pandemic. Final Report July 5-6; , 1996.
[77]
Raviglione, M.C.; Snider, D.E., Jr; Kochi, A. Global epidemiology of tuberculosis. Morbidity and mortality of a worldwide epidemic. JAMA, 1995, 273(3), 220-226.
[http://dx.doi.org/10.1001/jama.1995.03520270054031] [PMID: 7807661]
[78]
Lee, B.L.; Wong, D.; Benowitz, N.L.; Sullam, P.M. Altered patterns of drug metabolism in patients with acquired immunodeficiency syndrome. Clin. Pharmacol. Ther., 1993, 53(5), 529-535.
[http://dx.doi.org/10.1038/clpt.1993.66] [PMID: 8491064]
[79]
Floss, H.G.; Yu, T.W. Rifamycin-mode of action, resistance, and biosynthesis. Chem. Rev., 2005, 105(2), 621-632.
[http://dx.doi.org/10.1021/cr030112j] [PMID: 15700959]
[80]
Burman, W.J.; Gallicano, K.; Peloquin, C. Comparative pharmacokinetics and pharmacodynamics of the rifamycin antibacterials. Clin. Pharmacokinet., 2001, 40(5), 327-341.
[http://dx.doi.org/10.2165/00003088-200140050-00002] [PMID: 11432536]
[81]
Dorman, S.E.; Goldberg, S.; Stout, J.E.; Muzanyi, G.; Johnson, J.L.; Weiner, M.; Bozeman, L.; Heilig, C.M.; Feng, P.J.; Moro, R.; Narita, M.; Nahid, P.; Ray, S.; Bates, E.; Haile, B.; Nuermberger, E.L.; Vernon, A.; Schluger, N.W. Substitution of rifapentine for rifampin during intensive phase treatment of pulmonary tuberculosis: Study 29 of the tuberculosis trials consortium. J. Infect. Dis., 2012, 206(7), 1030-1040.
[http://dx.doi.org/10.1093/infdis/jis461] [PMID: 22850121]
[82]
Rosenthal, I.M.; Tasneen, R.; Peloquin, C.A.; Zhang, M.; Almeida, D.; Mdluli, K.E.; Karakousis, P.C.; Grosset, J.H.; Nuermberger, E.L. Dose-ranging comparison of rifampin and rifapentine in two pathologically distinct murine models of tuberculosis. Antimicrob. Agents Chemother., 2012, 56(8), 4331-4340.
[http://dx.doi.org/10.1128/AAC.00912-12] [PMID: 22664964]
[83]
Steingart, K.R.; Jotblad, S.; Robsky, K.; Deck, D.; Hopewell, P.C.; Huang, D.; Nahid, P. Higher-dose rifampin for the treatment of pulmonary tuberculosis: A systematic review. Int. J. Tuberc. Lung Dis., 2011, 15(3), 305-316.
[PMID: 21333096]
[84]
Egelund, E.F.; Alsultan, A.; Peloquin, C.A. Optimizing the clinical pharmacology of tuberculosis medications. Clin. Pharmacol. Ther., 2015, 98(4), 387-393.
[http://dx.doi.org/10.1002/cpt.180] [PMID: 26138226]
[85]
Arioli, V.; Berti, M.; Carniti, G.; Randisi, E.; Rossi, E.; Scotti, R. Antibacterial activity of DL 473, a new semisynthetic rifamycin deriva-tive. J. Antibiot., 1981, 34(8), 1026-1032.
[http://dx.doi.org/10.7164/antibiotics.34.1026] [PMID: 7319918]
[86]
Reith, K.; Keung, A.; Toren, P.C.; Cheng, L.; Eller, M.G.; Weir, S.J. Disposition and metabolism of 14C-rifapentine in healthy volunteers. Drug Metab. Dispos., 1998, 26(8), 732-738.
[PMID: 9698286]
[87]
Egelund, E.F.; Weiner, M.; Singh, R.P.; Prihoda, T.J.; Gelfond, J.A.L.; Derendorf, H.; Mac Kenzie, W.R.; Peloquin, C.A. Protein binding of rifapentine and its 25-desacetyl metabolite in patients with pulmonary tuberculosis. Antimicrob. Agents Chemother., 2014, 58(8), 4904-4910.
[http://dx.doi.org/10.1128/AAC.01730-13] [PMID: 24841270]
[88]
Roehr, B. Food and Drug Administration. FDA approves rifapentine for the treatment of pulmonary tuberculosis. J. Int. Assoc. Physicians AIDS Care, 1998, 4(8), 19-25.
[PMID: 11365728]
[89]
Centers for Disease Control and Prevention (CDC). Recommendations for use of an isoniazid-rifapentine regimen with direct observation to treat latent Mycobacterium tuberculosis infection. MMWR Morb. Mortal. Wkly. Rep., 2011, 60(48), 1650-1653.
[PMID: 22157884]
[90]
Boeree, M.J.; Diacon, A.H.; Dawson, R.; Narunsky, K.; du Bois, J.; Venter, A.; Phillips, P.P.; Gillespie, S.H.; McHugh, T.D.; Hoelscher, M.; Heinrich, N.; Rehal, S.; van Soolingen, D.; van Ingen, J.; Magis-Escurra, C.; Burger, D.; Plemper van Balen, G.; Aarnoutse, R.E. PanA-CEA consortium. A dose-ranging trial to optimize the dose of rifampin in the treatment of tuberculosis. Am. J. Respir. Crit. Care Med., 2015, 191(9), 1058-1065.
[http://dx.doi.org/10.1164/rccm.201407-1264OC] [PMID: 25654354]
[91]
Boeree, M.J.; Heinrich, N.; Aarnoutse, R.; Diacon, A.H.; Dawson, R.; Rehal, S.; Kibiki, G.S.; Churchyard, G.; Sanne, I.; Ntinginya, N.E.; Minja, L.T.; Hunt, R.D.; Charalambous, S.; Hanekom, M.; Semvua, H.H.; Mpagama, S.G.; Manyama, C.; Mtafya, B.; Reither, K.; Wallis, R.S.; Venter, A.; Narunsky, K.; Mekota, A.; Henne, S.; Colbers, A.; van Balen, G.P.; Gillespie, S.H.; Phillips, P.P.J.; Hoelscher, M. High-dose rifampicin, moxifloxacin, and SQ109 for treating tuberculosis: A multi-arm, multi-stage randomised controlled trial. Lancet Infect. Dis., 2017, 17(1), 39-49.
[http://dx.doi.org/10.1016/S1473-3099(16)30274-2] [PMID: 28100438]
[92]
Egelund, E.F.; Isaza, R.; Brock, A.P.; Alsultan, A.; An, G.; Peloquin, C.A. Population pharmacokinetics of rifampin in the treatment of Mycobacterium tuberculosis in Asian elephants. J. Vet. Pharmacol. Ther., 2015, 38(2), 137-143.
[http://dx.doi.org/10.1111/jvp.12156] [PMID: 25236765]
[93]
Verbist, L.; Gyselen, A. Antituberculous activity of rifampin in vitro and in vivo and the concentrations attained in human blood. Am. Rev. Respir. Dis., 1968, 98(6), 923-932.
[http://dx.doi.org/10.1164/arrd.1968.98.6.923] [PMID: 4972215]
[94]
Rastogi, N.; Goh, K.S.; Berchel, M.; Bryskier, A. Activity of rifapentine and its metabolite 25-O-desacetylrifapentine compared with rifampicin and rifabutin against Mycobacterium tuberculosis, Mycobacterium africanum, Mycobacterium bovis and M. bovis BCG. J. Antimicrob. Chemother., 2000, 46(4), 565-570.
[http://dx.doi.org/10.1093/jac/46.4.565] [PMID: 11020253]
[95]
Gumbo, T.; Louie, A.; Deziel, M.R.; Liu, W.; Parsons, L.M.; Salfinger, M.; Drusano, G.L. Concentration-dependent Mycobacterium tuber-culosis killing and prevention of resistance by rifampin. Antimicrob. Agents Chemother., 2007, 51(11), 3781-3788.
[http://dx.doi.org/10.1128/AAC.01533-06] [PMID: 17724157]
[96]
MacKenzie, F.M.; Gould, I.M. The post-antibiotic effect. J. Antimicrob. Chemother., 1993, 32(4), 519-537.
[http://dx.doi.org/10.1093/jac/32.4.519] [PMID: 8288494]
[97]
Jason, A.C.; MacKenzie, F.M.; Jason, D.; Gould, I.M. Automatic procedures for measuring post-antibiotic effect and determining random errors. J. Antimicrob. Chemother., 1994, 34(5), 669-678.
[http://dx.doi.org/10.1093/jac/34.5.669] [PMID: 7706162]
[98]
Acocella, G. Clinical pharmacokinetics of rifampicin. Clin. Pharmacokinet., 1978, 3(2), 108-127.
[http://dx.doi.org/10.2165/00003088-197803020-00002] [PMID: 346286]
[99]
Pargal, A.; Rani, S. Non-linear pharmacokinetics of rifampicin in healthy Asian Indian volunteers. Int. J. Tuberc. Lung Dis., 2001, 5(1), 70-79.
[PMID: 11263520]
[100]
Svensson, E.M.; Dosne, A-G.; Karlsson, M.O. Population pharmacokinetics of bedaquiline and metabolite M2 in patients with drug-resistant tuberculosis: The effect of time-varying weight and albumin. CPT Pharmacometrics Syst. Pharmacol., 2016, 5(12), 682-691.
[http://dx.doi.org/10.1002/psp4.12147] [PMID: 27863179]
[101]
Alsultan, A.; Peloquin, C.A. Therapeutic drug monitoring in the treatment of tuberculosis: An update. Drugs, 2014, 74(8), 839-854.
[http://dx.doi.org/10.1007/s40265-014-0222-8] [PMID: 24846578]
[102]
Milstein, M.; Lecca, L.; Peloquin, C.; Mitchison, D.; Seung, K.; Pagano, M.; Coleman, D.; Osso, E.; Coit, J.; Vargas, V.D.E.; Sanchez, G.E.; Calderon, R.; Contreras, C.; Davies, G.; Mitnick, C.D. Evaluation of high-dose rifampin in patients with new, smear-positive tuberculosis (HIRIF): Study protocol for a randomized controlled trial. BMC Infect. Dis., 2016, 16(1), 453.
[http://dx.doi.org/10.1186/s12879-016-1790-x] [PMID: 27567500]
[103]
Peloquin, C.A.; Namdar, R.; Singleton, M.D.; Nix, D.E. Pharmacokinetics of rifampin under fasting conditions, with food, and with antacids. Chest, 1999, 115(1), 12-18.
[http://dx.doi.org/10.1378/chest.115.1.12] [PMID: 9925057]
[104]
Chang, M.J.; Chae, J.; Yun, H.; Lee, J.I.; Choi, H.D.; Kim, J.; Park, J.S.; Cho, Y.J.; Yoon, H.I.; Lee, C.T.; Shin, W.G.; Lee, J.H. Effects of type 2 diabetes mellitus on the population pharmacokinetics of rifampin in tuberculosis patients. Tuberculosis, 2015, 95(1), 54-59.
[http://dx.doi.org/10.1016/j.tube.2014.10.013] [PMID: 25482224]
[105]
Gilljam, M.; Berning, S.E.; Peloquin, C.A.; Strandvik, B.; Larsson, L.O. Therapeutic drug monitoring in patients with cystic fibrosis and mycobacterial disease. Eur. Respir. J., 1999, 14(2), 347-351.
[http://dx.doi.org/10.1183/09031936.99.14234799] [PMID: 10515412]
[106]
Mukherjee, A.; Velpandian, T.; Singla, M.; Kanhiya, K.; Kabra, S.K.; Lodha, R. Pharmacokinetics of isoniazid, rifampicin, pyrazinamide and ethambutol in HIV-infected Indian children. Int. J. Tuberc. Lung Dis., 2016, 20(5), 666-672.
[http://dx.doi.org/10.5588/ijtld.15.0288] [PMID: 27084822]
[107]
Rockwood, N.; Meintjes, G.; Chirehwa, M.; Wiesner, L.; McIlleron, H.; Wilkinson, R.J.; Denti, P. HIV-1 coinfection does not reduce exposure to rifampin, isoniazid, and pyrazinamide in South African tuberculosis outpatients. Antimicrob. Agents Chemother., 2016, 60(10), 6050-6059.
[http://dx.doi.org/10.1128/AAC.00480-16] [PMID: 27480859]
[108]
Acocella, G. Pharmacokinetics and metabolism of rifampin in humans. Clin. Infect. Dis., 1983, 5(Suppl. 3), S428-S432.
[http://dx.doi.org/10.1093/clinids/5.Supplement_3.S428] [PMID: 6356276]
[109]
Prideaux, B.; Via, L.E.; Zimmerman, M.D.; Eum, S.; Sarathy, J.; O’Brien, P.; Chen, C.; Kaya, F.; Weiner, D.M.; Chen, P.Y.; Song, T.; Lee, M.; Shim, T.S.; Cho, J.S.; Kim, W.; Cho, S.N.; Olivier, K.N.; Barry, C.E., III; Dartois, V. The association between sterilizing activity and drug distribution into tuberculosis lesions. Nat. Med., 2015, 21(10), 1223-1227.
[http://dx.doi.org/10.1038/nm.3937] [PMID: 26343800]
[110]
Ellard, G.A.; Fourie, P.B. Rifampicin bioavailability: A review of its pharmacology and the chemotherapeutic necessity for ensuring optimal absorption. Int. J. Tuberc. Lung Dis., 1999, 3(11)(Suppl. 3), S301-S308.
[PMID: 10593709]
[111]
Smythe, W.; Khandelwal, A.; Merle, C.; Rustomjee, R.; Gninafon, M.; Bocar Lo, M.; Sow, O.B.; Olliaro, P.L.; Lienhardt, C.; Horton, J.; Smith, P.; McIlleron, H.; Simonsson, U.S.H. A semimechanistic pharmacokinetic-enzyme turnover model for rifampin autoinduction in adult tuberculosis patients. Antimicrob. Agents Chemother., 2012, 56(4), 2091-2098.
[http://dx.doi.org/10.1128/AAC.05792-11] [PMID: 22252827]
[112]
Baciewicz, A.M.; Chrisman, C.R.; Finch, C.K.; Self, T.H. Update on rifampin, rifabutin, and rifapentine drug interactions. Curr. Med. Res. Opin., 2013, 29(1), 1-12.
[http://dx.doi.org/10.1185/03007995.2012.747952] [PMID: 23136913]
[113]
Gallicano, K.D.; Sahai, J.; Shukla, V.K.; Seguin, I.; Pakuts, A.; Kwok, D.; Foster, B.C.; Cameron, D.W. Induction of zidovudine glucuroni-dation and amination pathways by rifampicin in HIV-infected patients. Br. J. Clin. Pharmacol., 1999, 48(2), 168-179.
[http://dx.doi.org/10.1046/j.1365-2125.1999.00987.x] [PMID: 10417493]
[114]
Alffenaar, J.W.C.; Nienhuis, W.A.; de Velde, F.; Zuur, A.T.; Wessels, A.M.A.; Almeida, D.; Grosset, J.; Adjei, O.; Uges, D.R.A.; van der Werf, T.S. Pharmacokinetics of rifampin and clarithromycin in patients treated for Mycobacterium ulcerans infection. Antimicrob. Agents Chemother., 2010, 54(9), 3878-3883.
[http://dx.doi.org/10.1128/AAC.00099-10] [PMID: 20585115]
[115]
Jeong, B.H.; Jeon, K.; Park, H.Y.; Moon, S.M.; Kim, S.Y.; Lee, S.Y.; Shin, S.J.; Daley, C.L.; Koh, W.J. Peak plasma concentration of azithromycin and treatment responses in Mycobacterium avium complex lung disease. Antimicrob. Agents Chemother., 2016, 60(10), 6076-6083.
[http://dx.doi.org/10.1128/AAC.00770-16] [PMID: 27480854]
[116]
Fox, W.; Ellard, G.A.; Mitchison, D.A. Studies on the treatment of tuberculosis undertaken by the British Medical Research Council tuber-culosis units, 1946-1986, with relevant subsequent publications. Int. J. Tuberc. Lung Dis., 1999, 3(10)(Suppl. 2), S231-S279.
[PMID: 10529902]
[117]
Sirgel, F.A.; Donald, P.R.; Odhiambo, J.; Githui, W.; Umapathy, K.C.; Paramasivan, C.N.; Tam, C.M.; Kam, K.M.; Lam, C.W.; Sole, K.M.; Mitchison, D.A. A multicentre study of the early bactericidal activity of anti-tuberculosis drugs. J. Antimicrob. Chemother., 2000, 45(6), 859-870.
[http://dx.doi.org/10.1093/jac/45.6.859] [PMID: 10837441]
[118]
van Ingen, J.; Aarnoutse, R.E.; Donald, P.R.; Diacon, A.H.; Dawson, R.; Plemper van Balen, G.; Gillespie, S.H.; Boeree, M.J. Why do we use 600 mg of rifampicin in tuberculosis treatment? Clin. Infect. Dis., 2011, 52(9), e194-e199.
[http://dx.doi.org/10.1093/cid/cir184] [PMID: 21467012]
[119]
Grosset, J.; Leventis, S. Adverse effects of rifampin. Clin. Infect. Dis., 1983, 5(Suppl. 3), S440-S446.
[http://dx.doi.org/10.1093/clinids/5.Supplement_3.S440] [PMID: 6356277]
[120]
Tostmann, A.; Boeree, M.J.; Aarnoutse, R.E.; de Lange, W.C.M.; van der Ven, A.J.A.M.; Dekhuijzen, R. Antituberculosis drug-induced hepatotoxicity: Concise up-to-date review. J. Gastroenterol. Hepatol., 2008, 23(2), 192-202.
[http://dx.doi.org/10.1111/j.1440-1746.2007.05207.x] [PMID: 17995946]
[121]
Mahmoudi, A.; Iseman, M.D. Pitfalls in the care of patients with tuberculosis. Common errors and their association with the acquisition of drug resistance. JAMA, 1993, 270(1), 65-68.
[http://dx.doi.org/10.1001/jama.1993.03510010071032] [PMID: 8510299]
[122]
Goldstein, B.P. Resistance to rifampicin: A review. J. Antibiot., 2014, 67(9), 625-630.
[http://dx.doi.org/10.1038/ja.2014.107] [PMID: 25118103]
[123]
Louw, G.E.; Warren, R.M.; Gey van Pittius, N.C.; McEvoy, C.R.E.; Van Helden, P.D.; Victor, T.C. A balancing act: Efflux/influx in myco-bacterial drug resistance. Antimicrob. Agents Chemother., 2009, 53(8), 3181-3189.
[http://dx.doi.org/10.1128/AAC.01577-08] [PMID: 19451293]
[124]
Sharma, S.K.; Sharma, A.; Kadhiravan, T.; Tharyan, P. Rifamycins (rifampicin, rifabutin and rifapentine) compared to isoniazid for pre-venting tuberculosis in HIV-negative people at risk of active TB. Cochrane Libr., 2013, 2013(7), CD007545.
[http://dx.doi.org/10.1002/14651858.CD007545.pub2] [PMID: 23828580]
[125]
Dickinson, J.M.; Mitchison, D.A. In vitro properties of rifapentine (MDL473) relevant to its use in intermittent chemotherapy of tuberculosis. Tubercle, 1987, 68(2), 113-118.
[http://dx.doi.org/10.1016/0041-3879(87)90026-2] [PMID: 3116733]
[126]
Mor, N.; Simon, B.; Mezo, N.; Heifets, L. Comparison of activities of rifapentine and rifampin against Mycobacterium tuberculosis residing in human macrophages. Antimicrob. Agents Chemother., 1995, 39(9), 2073-2077.
[http://dx.doi.org/10.1128/AAC.39.9.2073] [PMID: 8540718]
[127]
Dooley, K.E.; Bliven-Sizemore, E.E.; Weiner, M.; Lu, Y.; Nuermberger, E.L.; Hubbard, W.C.; Fuchs, E.J.; Melia, M.T.; Burman, W.J.; Dorman, S.E. Safety and pharmacokinetics of escalating daily doses of the antituberculosis drug rifapentine in healthy volunteers. Clin. Pharmacol. Ther., 2012, 91(5), 881-888.
[http://dx.doi.org/10.1038/clpt.2011.323] [PMID: 22472995]
[128]
Keung, A.; Eller, M.G.; McKenzie, K.A.; Weir, S.J. Single and multiple dose pharmacokinetics of rifapentine in man: Part II. Int. J. Tuberc. Lung Dis., 1999, 3(5), 437-444.
[PMID: 10331734]
[129]
Dooley, K.E.; Savic, R.M.; Park, J.G.; Cramer, Y.; Hafner, R.; Hogg, E.; Janik, J.; Marzinke, M.A.; Patterson, K.; Benson, C.A.; Hovind, L.; Dorman, S.E.; Haas, D.W. ACTG A5311 Study Team. Novel dosing strategies increase exposures of the potent antituberculosis drug rifapentine but arepoorlytolerated in healthyvolunteers. Antimicrob. Agents Chemother., 2015, 59(6), 3399-3405.
[http://dx.doi.org/10.1128/AAC.05128-14] [PMID: 25824215]
[130]
Savic, R.M.; Weiner, M.; MacKenzie, W.R.; Engle, M.; Whitworth, W.C.; Johnson, J.L.; Nsubuga, P.; Nahid, P.; Nguyen, N.V.; Peloquin, C.A.; Dooley, K.E.; Dorman, S.E. Defining the optimal dose of rifapentine for pulmonary tuberculosis: Exposure-response relations from two phase II clinical trials. Clin. Pharmacol. Ther., 2017, 102(2), 321-331.
[http://dx.doi.org/10.1002/cpt.634] [PMID: 28124478]
[131]
Zvada, S.P.; Van Der Walt, J.S.; Smith, P.J.; Fourie, P.B.; Roscigno, G.; Mitchison, D.; Simonsson, U.S.H.; McIlleron, H.M. Effects of four different meal types on the population pharmacokinetics of single-dose rifapentine in healthy male volunteers. Antimicrob. Agents Chemother., 2010, 54(8), 3390-3394.
[http://dx.doi.org/10.1128/AAC.00345-10] [PMID: 20516273]
[132]
Keung, A.C.F.; Eller, M.G.; Weir, S.J. Pharmacokinetics of rifapentine in patients with varying degrees of hepatic dysfunction. J. Clin. Pharmacol., 1998, 38(6), 517-524.
[http://dx.doi.org/10.1002/j.1552-4604.1998.tb05789.x] [PMID: 9650541]
[133]
Blake, M.J.; Abdel-Rahman, S.M.; Jacobs, R.F.; Lowery, N.K.; Sterling, T.R.; Kearns, G.L. Pharmacokinetics of rifapentine in children. Pediatr. Infect. Dis. J., 2006, 25(5), 405-409.
[http://dx.doi.org/10.1097/01.inf.0000214963.55217.9c] [PMID: 16645503]
[134]
Nakajima, A.; Fukami, T.; Kobayashi, Y.; Watanabe, A.; Nakajima, M.; Yokoi, T. Human arylacetamide deacetylase is responsible for deacetylation of rifamycins: Rifampicin, rifabutin, and rifapentine. Biochem. Pharmacol., 2011, 82(11), 1747-1756.
[http://dx.doi.org/10.1016/j.bcp.2011.08.003] [PMID: 21856291]
[135]
Jayakumar, A.; Savic, R.M.; Everett, C.K.; Benator, D.; Alland, D.; Heilig, C.M.; Weiner, M.; Friedrich, S.O.; Martinson, N.A.; Kerrigan, A.; Zamudio, C.; Goldberg, S.V.; Whitworth, W.C.; Davis, J.L.; Nahid, P. Xpert MTB/RIF assay shows faster clearance of Mycobacterium tuberculosis DNA with higher levels of rifapentine exposure. J. Clin. Microbiol., 2016, 54(12), 3028-3033.
[http://dx.doi.org/10.1128/JCM.01313-16] [PMID: 27733634]
[136]
Savic, R.M.; Lu, Y.; Bliven-Sizemore, E.; Weiner, M.; Nuermberger, E.; Burman, W.; Dorman, S.E.; Dooley, K.E. Population pharmacokinetics of rifapentine and desacetyl rifapentine in healthy volunteers: Nonlinearities in clearance and bioavailability. Antimicrob. Agents Chemother., 2014, 58(6), 3035-3042.
[http://dx.doi.org/10.1128/AAC.01918-13] [PMID: 24614383]
[137]
Keung, A.; Reith, K.; Eller, M.G.; McKenzie, K.A.; Cheng, L.; Weir, S.J. Enzyme induction observed in healthy volunteers after repeated administration of rifapentine and its lack of effect on steady-state rifapentine pharmacokinetics: Part I. Int. J. Tuberc. Lung Dis., 1999, 3(5), 426-436.
[PMID: 10331733]
[138]
Dooley, K.; Flexner, C.; Hackman, J.; Peloquin, C.A.; Nuermberger, E.; Chaisson, R.E.; Dorman, S.E. Repeated administration of high-dose intermittent rifapentine reduces rifapentine and moxifloxacin plasma concentrations. Antimicrob. Agents Chemother., 2008, 52(11), 4037-4042.
[http://dx.doi.org/10.1128/AAC.00554-08] [PMID: 18765687]
[139]
Conde, M.B.; Mello, F.C.Q.; Duarte, R.S.; Cavalcante, S.C.; Rolla, V.; Dalcolmo, M.; Loredo, C.; Durovni, B.; Armstrong, D.T.; Efron, A.; Barnes, G.L.; Marzinke, M.A.; Savic, R.M.; Dooley, K.E.; Cohn, S.; Moulton, L.H.; Chaisson, R.E.; Dorman, S.E. A phase 2 randomized trial of a rifapentine plus moxifloxacin-based regimen for treatment of pulmonary tuberculosis. PLoS One, 2016, 11(5), e0154778.
[http://dx.doi.org/10.1371/journal.pone.0154778] [PMID: 27159505]
[140]
Zvada, S.P.; Denti, P.; Geldenhuys, H.; Meredith, S.; van As, D.; Hatherill, M.; Hanekom, W.; Wiesner, L.; Simonsson, U.S.H.; Jindani, A.; Harrison, T.; McIlleron, H.M. Moxifloxacin population pharmacokinetics in patients with pulmonary tuberculosis and the effect of inter-mittent high-dose rifapentine. Antimicrob. Agents Chemother., 2012, 56(8), 4471-4473.
[http://dx.doi.org/10.1128/AAC.00404-12] [PMID: 22585223]
[141]
Weiner, M.; Savic, R.M.; Kenzie, W.R.; Wing, D.; Peloquin, C.A.; Engle, M.; Bliven, E.; Prihoda, T.J.; Gelfond, J.A.; Scott, N.A.; Abdel-Rahman, S.M.; Kearns, G.L.; Burman, W.J.; Sterling, T.R.; Villarino, M.E. Tuberculosis trials consortium PREVENT TB pharmacokinetic group. Rifapentine pharmacokinetics and tolerability in children and adults treated once weekly with rifapentine and isoniazid for latent tuberculosis infection. J. Pediatric Infect. Dis. Soc., 2014, 3(2), 132-145.
[http://dx.doi.org/10.1093/jpids/pit077] [PMID: 26625366]
[142]
Svensson, E.M.; Murray, S.; Karlsson, M.O.; Dooley, K.E. Rifampicin and rifapentine significantly reduce concentrations of bedaquiline, a new anti-TB drug. J. Antimicrob. Chemother., 2015, 70(4), 1106-1114.
[http://dx.doi.org/10.1093/jac/dku504] [PMID: 25535219]
[143]
Podany, A.T.; Bao, Y.; Swindells, S.; Chaisson, R.E.; Andersen, J.W.; Mwelase, T.; Supparatpinyo, K.; Mohapi, L.; Gupta, A.; Benson, C.A.; Kim, P.; Fletcher, C.V. Efavirenz pharmacokinetics and pharmacodynamics in HIV-infected persons receiving rifapentine and isoniazid for tuberculosis prevention. Clin. Infect. Dis., 2015, 61(8), 1322-1327.
[http://dx.doi.org/10.1093/cid/civ464] [PMID: 26082504]
[144]
Rosenthal, I.M.; Zhang, M.; Williams, K.N.; Peloquin, C.A.; Tyagi, S.; Vernon, A.A.; Bishai, W.R.; Chaisson, R.E.; Grosset, J.H.; Nuerm-berger, E.L. Daily dosing of rifapentine cures tuberculosis in three months or less in the murine model. PLoS Med., 2007, 4(12), e344.
[http://dx.doi.org/10.1371/journal.pmed.0040344] [PMID: 18092886]
[145]
Rosenthal, I.M.; Zhang, M.; Almeida, D.; Grosset, J.H.; Nuermberger, E.L. Isoniazid or moxifloxacin in rifapentine-based regimens for experimental tuberculosis? Am. J. Respir. Crit. Care Med., 2008, 178(9), 989-993.
[http://dx.doi.org/10.1164/rccm.200807-1029OC] [PMID: 18723432]
[146]
Jindani, A.; Harrison, T.S.; Nunn, A.J.; Phillips, P.P.J.; Churchyard, G.J.; Charalambous, S.; Hatherill, M.; Geldenhuys, H.; McIlleron, H.M.; Zvada, S.P.; Mungofa, S.; Shah, N.A.; Zizhou, S.; Magweta, L.; Shepherd, J.; Nyirenda, S.; van Dijk, J.H.; Clouting, H.E.; Coleman, D.; Bateson, A.L.E.; McHugh, T.D.; Butcher, P.D.; Mitchison, D.A. High-dose rifapentine with moxifloxacin for pulmonary tuberculosis. N. Engl. J. Med., 2014, 371(17), 1599-1608.
[http://dx.doi.org/10.1056/NEJMoa1314210] [PMID: 25337749]
[147]
Tam, C.M.; Chan, S.L.; Kam, K.M.; Goodall, R.L.; Mitchison, D.A. Rifapentine and isoniazid in the continuation phase of a 6-month regimen. Final report at 5 years: Prognostic value of various measures. Int. J. Tuberc. Lung Dis., 2002, 6(1), 3-10.
[PMID: 11931398]
[148]
Dorman, S.E.; Savic, R.M.; Goldberg, S.; Stout, J.E.; Schluger, N.; Muzanyi, G.; Johnson, J.L.; Nahid, P.; Hecker, E.J.; Heilig, C.M.; Bo-zeman, L.; Feng, P.J.I.; Moro, R.N.; MacKenzie, W.; Dooley, K.E.; Nuermberger, E.L.; Vernon, A.; Weiner, M. Daily rifapentine for treatment of pulmonary tuberculosis. A randomized, dose-ranging trial. Am. J. Respir. Crit. Care Med., 2015, 191(3), 333-343.
[http://dx.doi.org/10.1164/rccm.201410-1843OC] [PMID: 25489785]
[149]
Bock, N.N.; Sterling, T.R.; Hamilton, C.D.; Pachucki, C.; Wang, Y.C.; Conwell, D.S.; Mosher, A.; Samuels, M.; Vernon, A. A prospective, randomized, double-blind study of the tolerability of rifapentine 600, 900, and 1,200 mg plus isoniazid in the continuation phase of tuberculosis treatment. Am. J. Respir. Crit. Care Med., 2002, 165(11), 1526-1530.
[http://dx.doi.org/10.1164/rccm.200201-047OC] [PMID: 12045127]
[150]
Vernon, A.; Burman, W.; Benator, D.; Khan, A.; Bozeman, L. Acquired rifamycin monoresistance in patients with HIV-related tuberculosis treated with once-weekly rifapentine and isoniazid. Tuberculosis Trials Consortium Lancet, 1999, 353(9167), 1843-1847.
[http://dx.doi.org/10.1016/S0140-6736(98)11467-8] [PMID: 10359410]
[151]
Gao, X.F.; Li, J.; Yang, Z.W.; Li, Y.P. Rifapentine vs. rifampicin for the treatment of pulmonary tuberculosis: A systematic review. Int. J. Tuberc. Lung Dis., 2009, 13(7), 810-819.
[PMID: 19555529]
[152]
Bodmer, T.; Zürcher, G.; Imboden, P.; Telenti, A. Mutation position and type of substitution in the β-subunit of the RNA polymerase influence in-vitro activity of rifamycins in rifampicin-resistant Mycobacterium tuberculosis. J. Antimicrob. Chemother., 1995, 35(2), 345-348.
[http://dx.doi.org/10.1093/jac/35.2.345] [PMID: 7759399]
[153]
Williams, D.L.; Spring, L.; Collins, L.; Miller, L.P.; Heifets, L.B.; Gangadharam, P.R.J.; Gillis, T.P. Contribution of rpoB mutations to de-velopment of rifamycin cross-resistance in Mycobacterium tuberculosis. Antimicrob. Agents Chemother., 1998, 42(7), 1853-1857.
[http://dx.doi.org/10.1128/AAC.42.7.1853] [PMID: 9661035]
[154]
Wichelhaus, T.A.; Schäfer, V.; Brade, V.; Böddinghaus, B. Molecular characterization of rpoB mutations conferring cross-resistance to rifamycins on methicillin-resistant Staphylococcus aureus. Antimicrob. Agents Chemother., 1999, 43(11), 2813-2816.
[http://dx.doi.org/10.1128/AAC.43.11.2813] [PMID: 10543773]
[155]
Nuermberger, E.; Tyagi, S.; Williams, K.N.; Rosenthal, I.; Bishai, W.R.; Grosset, J.H. Rifapentine, moxifloxacin, or DNA vaccine improves treatment of latent tuberculosis in a mouse model. Am. J. Respir. Crit. Care Med., 2005, 172(11), 1452-1456.
[http://dx.doi.org/10.1164/rccm.200507-1047OC] [PMID: 16151038]
[156]
Sterling, T.R.; Moro, R.N.; Borisov, A.S.; Phillips, E.; Shepherd, G.; Adkinson, N.F.; Weis, S.; Ho, C.; Villarino, M.E. Flu-like and other systemic drug reactions among persons receiving weekly rifapentine plus isoniazid or daily isoniazid for treatment of latent tuberculosis infection in the PREVENT tuberculosis study. Clin. Infect. Dis., 2015, 61(4), 527-535.
[http://dx.doi.org/10.1093/cid/civ323] [PMID: 25904367]
[157]
Pease, C.; Hutton, B.; Yazdi, F.; Wolfe, D.; Hamel, C.; Quach, P.; Skidmore, B.; Moher, D.; Alvarez, G.G. Efficacy and completion rates of rifapentine and isoniazid (3HP) compared to other treatment regimens for latent tuberculosis infection: A systematic review with network meta-analyses. BMC Infect. Dis., 2017, 17(1), 265.
[http://dx.doi.org/10.1186/s12879-017-2377-x] [PMID: 28399802]
[158]
Alfarisi, O.; Alghamdi, W.A.; Al-Shaer, M.H.; Dooley, K.E.; Peloquin, C.A. Rifampin vs. rifapentine: What is the preferred rifamycin for tuberculosis? Expert Rev. Clin. Pharmacol., 2017, 10(10), 1027-1036.
[http://dx.doi.org/10.1080/17512433.2017.1366311] [PMID: 28803492]
[159]
Baciewicz, A.M.; Self, T.H. Rifampin drug interactions. Arch. Intern. Med., 1984, 144(8), 1667-1671.
[http://dx.doi.org/10.1001/archinte.144.8.1667] [PMID: 6380442]
[160]
Borcherding, S.M.; Baciewicz, A.M.; Self, T.H. Update on rifampin drug interactions. II. Arch. Intern. Med., 1992, 152(4), 711-716.
[http://dx.doi.org/10.1001/archinte.1992.00400160029007] [PMID: 1558427]
[161]
Strayhorn, V.A.; Baciewicz, A.M.; Self, T.H. Update on rifampin drug interactions, III. Arch. Intern. Med., 1997, 157(21), 2453-2458.
[http://dx.doi.org/10.1001/archinte.1997.00440420085007] [PMID: 9385296]
[162]
Schuetz, E.G.; Schinkel, A.H.; Relling, M.V.; Schuetz, J.D. P-glycoprotein: A major determinant of rifampicin-inducible expression of cytochrome P4503A in mice and humans. Proc. Natl. Acad. Sci. USA, 1996, 93(9), 4001-4005.
[http://dx.doi.org/10.1073/pnas.93.9.4001] [PMID: 8633005]
[163]
Brinkmann, U.; Roots, I.; Eichelbaum, M. Pharmacogenetics of the human drug-transporter gene MDR1: Impact of polymorphisms on pharmacotherapy. Drug Discov. Today, 2001, 6(16), 835-839.
[http://dx.doi.org/10.1016/S1359-6446(01)01892-X] [PMID: 11495756]
[164]
Hoffmeyer, S.; Burk, O.; von Richter, O.; Arnold, H.P.; Brockmöller, J.; Johne, A.; Cascorbi, I.; Gerloff, T.; Roots, I.; Eichelbaum, M.; Brinkmann, U. Functional polymorphisms of the human multidrug-resistance gene: Multiple sequence variations and correlation of one allele with P-glycoprotein expression and activity in vivo. Proc. Natl. Acad. Sci. USA, 2000, 97(7), 3473-3478.
[http://dx.doi.org/10.1073/pnas.97.7.3473] [PMID: 10716719]
[165]
Centers for Disease Control and Prevention (CDC). Human rabies--Texas and New Jersey, 1997. MMWR Morb. Mortal. Wkly. Rep., 1998, 47(1), 1-5.
[PMID: 9450721]
[166]
Markowitz, J.S.; DeVane, C.L. Rifampin-induced selective serotonin reuptake inhibitor withdrawal syndrome in a patient treated with sertraline. J. Clin. Psychopharmacol., 2000, 20(1), 109-110.
[http://dx.doi.org/10.1097/00004714-200002000-00023] [PMID: 10653222]
[167]
Venkatakrishnan, K.; von Moltke, L.L.; Greenblatt, D.J. Nortriptyline E-10-hydroxylation in vitro is mediated by human CYP2D6 (high affinity) and CYP3A4 (low affinity): Implications for interactions with enzyme-inducing drugs. J. Clin. Pharmacol., 1999, 39(6), 567-577.
[http://dx.doi.org/10.1177/00912709922008173] [PMID: 10354960]
[168]
Lamberg, T.S.; Kivistö, K.T.; Neuvonen, P.J. Concentrations and effects of buspirone are considerably reduced by rifampicin. Br. J. Clin. Pharmacol., 1998, 45(4), 381-385.
[http://dx.doi.org/10.1046/j.1365-2125.1998.t01-1-00698.x] [PMID: 9578186]
[169]
Kivistö, K.T.; Lamberg, T.S.; Neuvonen, P.J. Interactions of buspirone with itraconazole and rifampicin: Effects on the pharmacokinetics of the active 1-(2-pyrimidinyl)-piperazine metabolite of buspirone. Pharmacol. Toxicol., 1999, 84(2), 94-97.
[http://dx.doi.org/10.1111/j.1600-0773.1999.tb00880.x] [PMID: 10068153]
[170]
Joos, A.A.B.; Frank, U.G.; Kaschka, W.P. Pharmacokinetic interaction of clozapine and rifampicin in a forensic patient with an atypical mycobacterial infection. J. Clin. Psychopharmacol., 1998, 18(1), 83-85.
[http://dx.doi.org/10.1097/00004714-199802000-00015] [PMID: 9472849]
[171]
Villikka, K.; Kivistö, K.T.; Luurila, H.; Neuvonen, P.J. Rifampin reduces plasma concentrations and effects of zolpidem. Clin. Pharmacol. Ther., 1997, 62(6), 629-634.
[http://dx.doi.org/10.1016/S0009-9236(97)90082-5] [PMID: 9433391]
[172]
Backman, J.T.; Kivistö, K.T.; Olkkola, K.T.; Neuvonen, P.J. The area under the plasma concentration-time curve for oral midazolam is 400-fold larger during treatment with itraconazole than with rifampicin. Eur. J. Clin. Pharmacol., 1998, 54(1), 53-58.
[http://dx.doi.org/10.1007/s002280050420] [PMID: 9591931]
[173]
Gorski, J.C.; Craven, R.; Haehner-Daniels, B.; Clements, J.A.; Bruce, M.A.; Hall, S.D. The effect of rifampin on intestinal and hepatic CYP3A activity. Clin. Pharmacol. Ther., 2000, 67, 133. [Abstract].
[174]
Kyrklund, C.; Backman, J.T.; Kivistö, K.T.; Neuvonen, M.; Laitila, J.; Neuvonen, P.J. Rifampin greatly reduces plasma simvastatin and simvastatin acid concentrations. Clin. Pharmacol. Ther., 2000, 68(6), 592-597.
[http://dx.doi.org/10.1067/mcp.2000.111414] [PMID: 11180018]
[175]
Jokubaitis, L.A. Updated clinical safety experience with fluvastatin. Am. J. Cardiol., 1994, 73(14), D18-D24.
[http://dx.doi.org/10.1016/0002-9149(94)90628-9] [PMID: 8198019]
[176]
Dilger, K.; Greiner, B.; Fromm, M.F.; Hofmann, U.; Kroemer, H.K.; Eichelbaum, M. Consequences of rifampicin treatment on propafenone disposition in extensive and poor metabolizers of CYP2D6. Pharmacogenetics, 1999, 9(5), 551-560.
[http://dx.doi.org/10.1097/00008571-199910000-00002] [PMID: 10591535]
[177]
Dilger, K.; Hofmann, U.; Klotz, U. Enzyme induction in the elderly: Effect of rifampin on the pharmacokinetics and pharmacodynamics of propafenone. Clin. Pharmacol. Ther., 2000, 67(5), 512-520.
[http://dx.doi.org/10.1067/mcp.2000.106872] [PMID: 10824630]
[178]
Li, A.P.; Reith, M.K.; Rasmussen, A.; Gorski, J.C.; Hall, S.D.; Xu, L.; Kaminski, D.L.; Cheng, L.K. Primary human hepatocytes as a tool for the evaluation of structure—activity relationship in cytochrome P450 induction potential of xenobiotics: Evaluation of rifampin, rifapentine and rifabutin. Chem. Biol. Interact., 1997, 107(1-2), 17-30.
[http://dx.doi.org/10.1016/S0009-2797(97)00071-9] [PMID: 9402947]
[179]
Blaschke, T.F.; Skinner, M.H. The clinical pharmacokinetics of rifabutin. Clin. Infect. Dis., 1996, 22(Suppl. 1), S15-S22.
[http://dx.doi.org/10.1093/clinids/22.Supplement_1.S15] [PMID: 8785251]
[180]
Centers for Disease Control and Prevention (CDC). Updated guidelines for the use of rifabutin or rifampin for the treatment and prevention of tuberculosis among HIV-infected patients taking protease inhibitors or nonnucleoside reverse transcriptase inhibitors. MMWR Morb. Mortal. Wkly. Rep., 2000, 49(9), 185-189.
[PMID: 11795500]
[181]
Guidelines for the use of antiretroviral agents in HIV-infected adults and adolescents; Dept of Health and Human Services and the Henry J Kaiser Family Foundation: Washington, DC, and San Francisco, California, 2001.
[182]
Polk, R.E.; Brophy, D.F.; Israel, D.S.; Patron, R.; Sadler, B.M.; Chittick, G.E.; Symonds, W.T.; Lou, Y.; Kristoff, D.; Stein, D.S. Pharmacokinetic interaction between amprenavir and rifabutin or rifampin in healthy males. Antimicrob. Agents Chemother., 2001, 45(2), 502-508.
[http://dx.doi.org/10.1128/AAC.45.2.502-508.2001] [PMID: 11158747]
[183]
Spradling, P.; McLaughlin, S.; Drociuk, D.; Ridzon, R.; Pozsik, C.; Onorato, I. Concurrent use of rifabutin and HAART: Evidence for re-duced efficacy. 13th International AIDS Conference, Durban, South Africa,July 9-14, 2000.
[184]
Narita, M.; Stambaugh, J.J.; Hollender, E.S.; Jones, D.; Pitchenik, A.E.; Ashkin, D. Use of rifabutin with protease inhibitors for human immunodeficiency virus-infected patients with tuberculosis. Clin. Infect. Dis., 2000, 30(5), 779-783.
[http://dx.doi.org/10.1086/313771] [PMID: 10816148]
[185]
Montvale, N.J. Medical economics books. Mycobutin package insert; , 1999, pp. 2501-2502.
[186]
De Gast, M.; Burger, D.; De Lange, W.; Van Crevel, R. Double trouble: APharmacokinetic study of indinavir/ritonavir (800+100-mgBid) and rifampin for patients co-infected with TB and HIV. Second International Workshop on Clinical Pharmacology of H.I.V. Therapy, April 2-4, Noordwijk, the Netherlands 2001.
[187]
Lopez-Cortex, L.F.; Ruiz, R.; Viciana, A. Pharmacokinetic interactions between rifampin and efavirenz in patients with tuberculosis and HIV infection. Eighth Conference on Retroviruses and Opportunistic Infections, Chicago, IL, Feb 4, 2001.
[188]
Hung, C.C.; Chen, M.Y.; Hsieh, S.M.; Yang, S.J.; Lo, P.Y.; Chang, S.C. Efficacy of highly active antiretroviral therapy combined with rifamycin-containing antituberculous therapy in HIV-1 infected patients with tuberculosis. Eighth Conference on Retroviruses and Oppor-tunistic Infections,, Chicago, IL, February 4-8, 2001.
[189]
Gatti, G.; Merighi, M.; Hossein, J.; Travaini, S.; Casazza, R.; Karlsson, M.; Cruciani, M.; Bassetti, D. Population pharmacokinetics of dapsone administered biweekly to human immunodeficiency virus-infected patients. Antimicrob. Agents Chemother., 1996, 40(12), 2743-2748.
[http://dx.doi.org/10.1128/AAC.40.12.2743] [PMID: 9124833]
[190]
Hafner, R.; Bethel, J.; Standiford, H.C.; Follansbee, S.; Cohn, D.L.; Polk, R.E.; Mole, L.; Raasch, R.; Kumar, P.; Mushatt, D.; Drusano, G. DATRI 001B Study Group. Tolerance and pharmacokineticinteractions of rifabutin and azithromycin. Antimicrob. Agents Chemother., 2001, 45(5), 1572-1577.
[http://dx.doi.org/10.1128/AAC.45.5.1572-1577.2001] [PMID: 11302832]
[191]
Apseloff, G.; Foulds, G.; LaBoy-Goral, L.; Willavize, S.; Vincent, J. Comparison of azithromycin and clarithromycin in their interactions with rifabutin in healthy volunteers. J. Clin. Pharmacol., 1998, 38(9), 830-835.
[PMID: 9753212]
[192]
Hafner, R.; Bethel, J.; Power, M.; Landry, B.; Banach, M.; Mole, L.; Standiford, H.C.; Follansbee, S.; Kumar, P.; Raasch, R.; Cohn, D.; Mushatt, D.; Drusano, G. Tolerance and pharmacokinetic interactions of rifabutin and clarithromycin in human immunodeficiency virus-infected volunteers. Antimicrob. Agents Chemother., 1998, 42(3), 631-639.
[http://dx.doi.org/10.1128/AAC.42.3.631] [PMID: 9517944]
[193]
Jordan, M.K.; Polis, M.A.; Kelly, G.; Narang, P.K.; Masur, H.; Piscitelli, S.C. Effects of fluconazole and clarithromycin on rifabutin and 25-O-desacetylrifabutin pharmacokinetics. Antimicrob. Agents Chemother., 2000, 44(8), 2170-2172.
[http://dx.doi.org/10.1128/AAC.44.8.2170-2172.2000] [PMID: 10898693]
[194]
Jaruratanasirikul, S.; Sriwiriyajan, S. Effect of rifampicin on the pharmacokinetics of itraconazole in normal volunteers and AIDS patients. Eur. J. Clin. Pharmacol., 1998, 54(2), 155-158.
[http://dx.doi.org/10.1007/s002280050437] [PMID: 9626920]
[195]
Hebert, M.F.; Fisher, R.M.; Marsh, C.L.; Dressler, D.; Bekersky, I. Effects of rifampin on tacrolimus pharmacokinetics in healthy volunteers. J. Clin. Pharmacol., 1999, 39(1), 91-96.
[http://dx.doi.org/10.1177/00912709922007499] [PMID: 9987705]
[196]
Chenhsu, R.Y.; Loong, C.C.; Chou, M.H.; Lin, M.F.; Yang, W.C. Renal allograft dysfunction associated with rifampin-tacrolimus interaction. Ann. Pharmacother., 2000, 34(1), 27-31.
[http://dx.doi.org/10.1345/aph.19069] [PMID: 10669182]
[197]
Freitag, V.L.; Skifton, R.D.; Lake, K.D. Effect of short-term rifampin on stable cyclosporine concentrations. Ann. Pharmacother., 1999, 33(7-8), 871-872.
[http://dx.doi.org/10.1345/aph.19044] [PMID: 10466920]
[198]
Velayati, A.A.; Masjedi, M.R.; Farnia, P.; Tabarsi, P.; Ghanavi, J.; ZiaZarifi, A.H.; Hoffner, S.E. Emergence of new forms of totally drug-resistant Tuberculosis bacilli: Super extensively drug-resistant tuberculosis or totally drug-resistant strains in iran. Chest, 2009, 136(2), 420-425.
[http://dx.doi.org/10.1378/chest.08-2427] [PMID: 19349380]
[199]
Vinšová, J.; Krátký, M. Tuberculosis-the development of new MDR-TB Drugs. Drug-resistant tuberculosis, causes, diagnosis and treatments; Nguy, S.; K’ung, Z., Eds.; Nova Science Publishers: New York, 2010, pp. 59-141.
[200]
Berning, S.E. The role of fluoroquinolones in tuberculosis today. Drugs, 2001, 61(1), 9-18.
[http://dx.doi.org/10.2165/00003495-200161010-00002] [PMID: 11217874]
[201]
Pasqualoto, K.F.; Ferreira, E.I. An approach for the rational design of new antituberculosis agents. Curr. Drug Targets, 2001, 2(4), 427-437.
[http://dx.doi.org/10.2174/1389450013348227] [PMID: 11732641]
[202]
Katz, A.; Caufield, C. Structure-based design approaches to cell wall biosynthesis inhibitors. Curr. Pharm. Des., 2003, 9(11), 857-866.
[http://dx.doi.org/10.2174/1381612033455305] [PMID: 12678870]
[203]
Blanchard, J.S. Molecular mechanisms of drug resistance in Mycobacterium tuberculosis. Annu. Rev. Biochem., 1996, 65(1), 215-239.
[http://dx.doi.org/10.1146/annurev.bi.65.070196.001243] [PMID: 8811179]
[204]
Corbett, E.L.; Watt, C.J.; Walker, N.; Maher, D.; Williams, B.G.; Raviglione, M.C.; Dye, C. The growing burden of tuberculosis: Global trends and interactions with the HIV epidemic. Arch. Intern. Med., 2003, 163(9), 1009-1021.
[http://dx.doi.org/10.1001/archinte.163.9.1009] [PMID: 12742798]
[205]
Espinal, M.A. The global situation of MDR-TB. Tuberculosis, 2003, 83(1-3), 44-51.
[http://dx.doi.org/10.1016/S1472-9792(02)00058-6] [PMID: 12758188]
[206]
Chauhan, P.M.S.; Sunduru, N.; Sharma, M. Recent advances in the design and synthesis of heterocycles as anti-tubercular agents. Future Med. Chem., 2010, 2(9), 1469-1500.
[http://dx.doi.org/10.4155/fmc.10.227] [PMID: 21426140]
[207]
Lienhardt, C.; Vernon, A.; Raviglione, M.C. New drugs and new regimens for the treatment of tuberculosis: Review of the drug development pipeline and implications for national programmes. Curr. Opin. Pulm. Med., 2010, 16(3), 1.
[http://dx.doi.org/10.1097/MCP.0b013e328337580c] [PMID: 20216421]
[208]
Lilienkampf, A.; Pieroni, M.; Wan, B.; Wang, Y.; Franzblau, S.G.; Kozikowski, A.P. Rational design of 5-phenyl-3-isoxazolecarboxylic acid ethyl esters as growth inhibitors of Mycobacterium tuberculosis. a potent and selective series for further drug development. J. Med. Chem., 2010, 53(2), 678-688.
[http://dx.doi.org/10.1021/jm901273n] [PMID: 20000577]
[209]
Duncan, K. Progress in TB drug development and what is still needed. Tuberculosis (Edinb.), 2003, 83(1-3), 201-207.
[http://dx.doi.org/10.1016/S1472-9792(02)00076-8] [PMID: 12758212]
[210]
Nusrath Unissa, A. Rational drug designing strategies for mycobacterium tuberculosis. Int. J. Pharm. Biol. Sci., 2011, 1, 534-555.
[211]
Kana, B.D.; Mizrahi, V. Molecular genetics of Mycobacterium tuberculosis in relation to the discovery of novel drugs and vaccines. Tuberculosis, 2004, 84(1-2), 63-75.
[http://dx.doi.org/10.1016/j.tube.2003.08.006] [PMID: 14670347]
[212]
Cole, S.T.; Brosch, R.; Parkhill, J.; Garnier, T.; Churcher, C.; Harris, D.; Gordon, S.V.; Eiglmeier, K.; Gas, S.; Barry, C.E., III; Tekaia, F.; Badcock, K.; Basham, D.; Brown, D.; Chillingworth, T.; Connor, R.; Davies, R.; Devlin, K.; Feltwell, T.; Gentles, S.; Hamlin, N.; Holroyd, S.; Hornsby, T.; Jagels, K.; Krogh, A.; McLean, J.; Moule, S.; Murphy, L.; Oliver, K.; Osborne, J.; Quail, M.A.; Rajandream, M.A.; Rogers, J.; Rutter, S.; Seeger, K.; Skelton, J.; Squares, R.; Squares, S.; Sulston, J.E.; Taylor, K.; Whitehead, S.; Barrell, B.G. Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature, 1998, 393(6685), 537-544.
[http://dx.doi.org/10.1038/31159] [PMID: 9634230]
[213]
Zhang, H.; Li, D.; Zhao, L.; Fleming, J.; Lin, N.; Wang, T.; Liu, Z.; Li, C.; Galwey, N.; Deng, J.; Zhou, Y.; Zhu, Y.; Gao, Y.; Wang, T.; Wang, S.; Huang, Y.; Wang, M.; Zhong, Q.; Zhou, L.; Chen, T.; Zhou, J.; Yang, R.; Zhu, G.; Hang, H.; Zhang, J.; Li, F.; Wan, K.; Wang, J.; Zhang, X.E.; Bi, L. Genome sequencing of 161 Mycobacterium tuberculosis isolates from China identifies genes and intergenic regions associated with drug resistance. Nat. Genet., 2013, 45(10), 1255-1260.
[http://dx.doi.org/10.1038/ng.2735] [PMID: 23995137]
[214]
Asif, M. Rifampin and their analogs: A development of antitubercular drugs. World J. Org. Chem., 2013, 1(2), 14-19.
[http://dx.doi.org/10.12691/wjoc-1-2-2]
[215]
Finch, C.K.; Chrisman, C.R.; Baciewicz, A.M.; Self, T.H. Rifampin and rifabutin drug interactions: An update. Arch. Intern. Med., 2002, 162(9), 985-992.
[http://dx.doi.org/10.1001/archinte.162.9.985] [PMID: 11996607]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy