Generic placeholder image

Current Nanomedicine

Editor-in-Chief

ISSN (Print): 2468-1873
ISSN (Online): 2468-1881

Review Article

Nanostructured Lipid Carrier for Dermatological Application: A Comprehensive Review and Future Perspective

Author(s): Bhawana Singh, Manish Kumar, Prabhat Kumar Upadhyay* and Amit Kumar Singh

Volume 14, Issue 3, 2024

Published on: 04 October, 2023

Page: [188 - 199] Pages: 12

DOI: 10.2174/0124681873274871230927105142

Price: $65

Open Access Journals Promotions 2
Abstract

Dermatological disease states have psychological impacts that affect a patient’s life. In the management of such disorders, topical delivery has an important role. However, the conventional topical delivery systems suffer from various limitations, like skin irritation, a minute quantity of drugs reaching disease sites, and over and under medication, which leads to an adverse reaction and therapeutic failure, respectively. Therefore, researchers continuously search for an alternate delivery system for treating skin disease. In recent years, nanostructured lipid carriers (NLC) have emanated as promising carrier systems for topical delivery. The current review provides an in-depth insight into topical administration for treating a variety of dermatological issues using NLCs as a carrier. This review highlights the suitability of NLCs as carriers for topical delivery, their method of preparation, and their characterization. In the present review, the main emphasis has been given to the management of various dermatological problems by using NLCs as a carrier; a plethora of literature investigating NLC as the carrier for topical delivery has been included in this review. In this paper, an attempt has been made to provide a summary of the research carried out in this field that will encourage further research in this arena.

Keywords: NLC, topical delivery, dermatological problem, skin, atopic dermatitis, cosmetic agent.

Graphical Abstract
[1]
Gelfuso GM, Cunha-Filho MSS, Gratieri T. Nanostructured lipid carriers for targeting drug delivery to the epidermal layer. Ther Deliv 2016; 7(11): 735-7.
[http://dx.doi.org/10.4155/tde-2016-0059] [PMID: 27790946]
[2]
Mahant S, Kumar S, Nanda S, Rao R. Microsponges for dermatological applications: Perspectives and challenges. Asian J Pharmaceut Sci 2020; 15(3): 273-91.
[http://dx.doi.org/10.1016/j.ajps.2019.05.004] [PMID: 32636947]
[3]
Song SH, Lee KM, Kang JB, Lee SG, Kang MJ, Choi YW. Improved skin delivery of voriconazole with a nanostructured lipid carrier-based hydrogel formulation. Chem Pharm Bull 2014; 62(8): 793-8.
[http://dx.doi.org/10.1248/cpb.c14-00202] [PMID: 25087631]
[4]
Ashwini M, Srividya R, Johl S. Topical and transdermal benefits of nanostructured lipid carriers. Curr Trends Biotechnol Pharm 2019; 13(2): 199-211.
[5]
Agayev FG, Trukhanov SV, Trukhanov AV, et al. Study of structural features and thermal properties of barium hexaferrite upon indium doping. J Therm Anal Calorim 2022; 147(24): 14107-14.
[http://dx.doi.org/10.1007/s10973-022-11742-5]
[6]
Zdorovets MV, Kozlovskiy AL, Shlimas DI, Borgekov DB. Phase transformations in FeCo - Fe2CoO4/Co3O4-spinel nanostructures as a result of thermal annealing and their practical application. J Mater Sci Mater Electron 2021; 32(12): 16694-705.
[http://dx.doi.org/10.1007/s10854-021-06226-5]
[7]
Verma S, Utreja P. Vesicular nanocarrier based treatment of skin fungal infections: Potential and emerging trends in nanoscale pharmacotherapy. Asian J Pharmaceut Sci 2019; 14(2): 117-29.
[http://dx.doi.org/10.1016/j.ajps.2018.05.007] [PMID: 32104444]
[8]
Manzoor S, Trukhanov SV, Ansari MN, et al. Flowery ln2MnSe4 novel electrocatalyst developed Via anion exchange strategy for efficient water splitting. Nanomaterials 2022; 12(13): 2209.
[http://dx.doi.org/10.3390/nano12132209] [PMID: 35808045]
[9]
Dukenbayev K, Korolkov I, Tishkevich D, et al. Fe3O4 nanoparticles for complex targeted delivery and boron neutron capture therapy. Nanomaterials 2019; 9(4): 494.
[http://dx.doi.org/10.3390/nano9040494] [PMID: 30935156]
[10]
Tishkevich DI, Korolkov IV, Kozlovskiy AL, et al. Immobilization of boron-rich compound on Fe3O4 nanoparticles: Stability and cytotoxicity. J Alloys Compd 2019; 797: 573-81.
[http://dx.doi.org/10.1016/j.jallcom.2019.05.075]
[11]
Kong X, Zhao Y, Quan P, Fang L. Development of a topical ointment of betamethasone dipropionate loaded nanostructured lipid carrier. Asian J Pharmaceut Sci 2016; 11(2): 248-54.
[http://dx.doi.org/10.1016/j.ajps.2015.07.005]
[12]
Upadhyay PK, Singh AK, Kumar M. Viability of nanostructured lipid carrier system in overcoming the barriers associated with chemotherapeutic delivery. Curr Nanosci 2022; 18(5): 587-603.
[http://dx.doi.org/10.2174/1573413717666210921153442]
[13]
Tiwari A, Palaria B, Tiwari V, et al. Nanostructured lipid carriers: A promising carrier in targeted drug delivery system. Curr Nanomater 2023; 8(1): 23-43.
[http://dx.doi.org/10.2174/2405461507666220221094925]
[14]
Rajinikanth P, Chellian J. Development and evaluation of nanostructured lipid carrier-based hydrogel for topical delivery of 5-fluorouracil. Int J Nanomedicine 2016; 11: 5067-77.
[http://dx.doi.org/10.2147/IJN.S117511] [PMID: 27785014]
[15]
Hassan M, Slimani Y, Gondal MA, et al. Structural parameters, energy states and magnetic properties of the novel Se-doped NiFe2O4 ferrites as highly efficient electrocatalysts for HER. Ceram Int 2022; 48(17): 24866-76.
[http://dx.doi.org/10.1016/j.ceramint.2022.05.140]
[16]
Upreti T, Senthil V. Nanostructured lipid carrier system for treatment of skin disease: A review. JSM Nanotechnol Nanomed 2017; 5: 1059.
[17]
Patel DK, Tripathi S, Kesharvani R. Nanostructured lipid carrier(NLC) a modern approach for topical delivery. WJPPS 2013; 2: 921-38.
[18]
Kadyrzhanov KK, Shlimas DI, Kozlovskiy AL, Zdorovets MV. Research of the shielding effect and radiation resistance of composite CuBi2O4 films as well as their practical applications. J Mater Sci Mater Electron 2020; 31(14): 11729-40.
[http://dx.doi.org/10.1007/s10854-020-03724-w]
[19]
El-Shater RE, El Shimy H, Saafan SA, et al. Fabrication of doped ferrites and exploration of their structure and magnetic behavior. Mater Adv 2023; 4(13): D3MA00105A.
[http://dx.doi.org/10.1039/D3MA00105A]
[20]
Uner M. Preparation, characterization and physico-chemical properties of solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC): Their benefits as colloidal drug carrier systems. Pharmazie 2006; 61(5): 375-86.
[PMID: 16724531]
[21]
Jounaki K, Makhmalzadeh BS, Feghhi M, Heidarian A. Topical ocular delivery of vancomycin loaded cationic lipid nanocarriers as a promising and non-invasive alternative approach to intravitreal injection for enhanced bacterial endophthalmitis management. Eur J Pharm Sci 2021; 167: 105991.
[http://dx.doi.org/10.1016/j.ejps.2021.105991] [PMID: 34517103]
[22]
Cirri M, Maestrini L, Maestrelli F, et al. Design, characterization and in vivo evaluation of nanostructured lipid carriers (NLC) as a new drug delivery system for hydrochlorothiazide oral administration in pediatric therapy. Drug Deliv 2018; 25(1): 1910-21.
[http://dx.doi.org/10.1080/10717544.2018.1529209 ] [PMID: 30451015]
[23]
Li Q, Cai T, Huang Y, Xia X, Cole S, Cai Y. A review of the structure, preparation, and application of NLCs, PNPs, and PLNs. Nanomaterials 2017; 7(6): 122.
[http://dx.doi.org/10.3390/nano7060122] [PMID: 28554993]
[24]
Puglia C, Blasi P, Rizza L, et al. Lipid nanoparticles for prolonged topical delivery: An in vitro and in vivo investigation. Int J Pharm 2008; 357(1-2): 295-304.
[http://dx.doi.org/10.1016/j.ijpharm.2008.01.045]
[25]
Müller RH, Radtke M, Wissing SA. Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) in cosmetic and dermatological preparations. Adv Drug Deliv Rev 2002; 54 (Suppl. 1): S131-55.
[http://dx.doi.org/10.1016/S0169-409X(02)00118-7 ] [PMID: 12460720]
[26]
Kozlovskiy AL, Zdorovets MV. Effect of doping of Ce4+/3+ on optical, strength and shielding properties of (0.5-x)TeO2-0.25MoO-0.25Bi2O3-xCeO2 glasses. Mater Chem Phys 2021; 263: 124444.
[http://dx.doi.org/10.1016/j.matchemphys.2021.124444]
[27]
Khan SA, Ali I, Hussain A, et al. Synthesis and characterization of composites with y-hexaferrites for electromagnetic interference shielding applications. Magnetochemistry 2022; 8(12): 186.
[http://dx.doi.org/10.3390/magnetochemistry8120186]
[28]
Urban K, Chu S, Scheufele C, et al. The global, regional, and national burden of fungal skin diseases in 195 countries and territories: A cross-sectional analysis from the Global Burden of Disease Study 2017. JAAD Int 2021; 2: 22-7.
[http://dx.doi.org/10.1016/j.jdin.2020.10.003] [PMID: 34409349]
[29]
Ameen M. Epidemiology of superficial fungal infections. Clin Dermatol 2010; 28(2): 197-201.
[http://dx.doi.org/10.1016/j.clindermatol.2009.12.005 ] [PMID: 20347663]
[30]
Aditya KG, Jennifer ER, Melody C, Elizabeth AC. Dermatophytosis: The management of fungal infections. Skinmed 2005; 4(5): 305-10.
[http://dx.doi.org/10.1111/j.1540-9740.2005.03435.x ] [PMID: 16282753]
[31]
Lee CM, Maibach HI. Deep percutaneous penetration into muscles and joints. J Pharm Sci 2006; 95(7): 1405-13.
[http://dx.doi.org/10.1002/jps.20666] [PMID: 16729269]
[32]
Kauffman CA, Bustamante B, Chapman SW, Pappas PG. Clinical practice guidelines for the management of sporotrichosis: 2007 update by the Infectious Diseases Society of America. Clin Infect Dis 2007; 45(10): 1255-65.
[33]
de Lima Barros MB, Schubach AO, de Vasconcellos Carvalhaes R, Martins EB, Teixeira JL, Wanke B. Treatment of cutaneous sporotrichosis with itraconazole--study of 645 patients. Clin Infect Dis 2011; 52(12): e200-6.
[http://dx.doi.org/10.1093/cid/cir245] [PMID: 21628477]
[34]
Kumar N, Goindi S. Statistically designed nonionic surfactant vesicles for dermal delivery of itraconazole: Characterization and in vivo evaluation using a standardized Tineapedis infection model. Int J Pharm 2014; 472(1-2): 224-40.
[35]
Passos JS, de Martino LC, Dartora VF, de Araujo GL, Ishida K, Lopes LB. Development, skin targeting, and antifungal efficacy of topical lipid nanoparticles containing itraconazole. Eur J Pharm Sci 2020; 149: 105296.
[http://dx.doi.org/10.1016/j.ejps.2020.105296]
[36]
Waghule T, Rapalli VK, Singhvi G, et al. Voriconazole loaded nanostructured lipid carriers based topical delivery system: QbD based designing, characterization, in-vitro and ex-vivo evaluation. J Drug Deliv Sci Technol 2019; 52: 303-15.
[http://dx.doi.org/10.1016/j.jddst.2019.04.026]
[37]
Mahmood A, Rapalli VK, Gorantla S, Waghule T, Singhvi G. Dermatokinetic assessment of luliconazole-loaded nanostructured lipid carriers (NLCs) for topical delivery: QbD-driven design, optimization, and in vitro and ex vivo evaluations. Drug Deliv Transl Res 2022; 12(5): 1118-35.
[http://dx.doi.org/10.1007/s13346-021-00986-7] [PMID: 33895936]
[38]
Raut S, Gargate N, Ugale S, Gujar KN, Kapare H. Formulation and development of hyaluronic acid based gel with ketoconazole-loaded nanostructured lipid carriers in fungal infection. Pharm Nanotechnol 2023; 11(4): 344-54.
[http://dx.doi.org/10.2174/2211738511666230310103017 ] [PMID: 36896905]
[39]
Apple A, Bodemer MD. Integrative Medicine. (4th ed.). 2018; p. 726.
[40]
Kowshik K. Nikita Sehgal. Development of nano structured lipid carrier based hydrogel for the treatment of psoriasis. Int J Res Pharmaceut Sci 2019; 10(3): 1711-9.
[http://dx.doi.org/10.26452/ijrps.v10i3.1360]
[41]
Tripathi PK, Gorain B, Choudhury H, Srivastava A, Kesharwani P. Dendrimer entrapped microsponge gel of dithranol for effective topical treatment. Heliyon 2019; 5(3): e01343.
[http://dx.doi.org/10.1016/j.heliyon.2019.e01343] [PMID: 30957038]
[42]
Sathe P, Saka R, Kommineni N, Raza K, Khan W. Dithranol-loaded nanostructured lipid carrier-based gel ameliorate psoriasis in imiquimod-induced mice psoriatic plaque model. Drug Dev Ind Pharm 2019; 45(5): 826-38.
[http://dx.doi.org/10.1080/03639045.2019.1576722 ] [PMID: 30764674]
[43]
Chutoprapat R, Kopongpanich P, Chan LW. A mini-review on solid lipid nanoparticles and nanostructured lipid carriers: Topical delivery of phytochemicals for the treatment of acne vulgaris. Molecules 2022; 27(11): 3460.
[http://dx.doi.org/10.3390/molecules27113460] [PMID: 35684396]
[44]
Malik DS, Kaur G. Exploring therapeutic potential of azelaic acid loaded NLCs for the treatment of acne vulgaris. J Drug Deliv Sci Technol 2020; 55: 101418.
[http://dx.doi.org/10.1016/j.jddst.2019.101418]
[45]
Latter G, Grice JE, Mohammed Y, Roberts MS, Benson HAE. Targeted topical delivery of retinoids in the management of acne vulgaris: Current formulations and novel delivery systems. Pharmaceutics 2019; 11(10): 490.
[http://dx.doi.org/10.3390/pharmaceutics11100490 ] [PMID: 31554188]
[46]
Samadi A, Sartipi Z, Nasrollahi SA, et al. Efficacy assessments of tretinoin-loaded nano lipid carriers in acne vulgaris: A double-blind, split-face randomized clinical study. Arch Dermatol Res 2021; 19: 1-9.
[PMID: 34146120]
[47]
Weidinger S, Novak N. Atopic dermatitis. Lancet 2016; 387(10023): 1109-22.
[http://dx.doi.org/10.1016/S0140-6736(15)00149-X ] [PMID: 26377142]
[48]
Atherton DJ. Topical corticosteroids in atopic dermatitis. BMJ 2003; 327(7421): 942-3.
[http://dx.doi.org/10.1136/bmj.327.7421.942] [PMID: 14576221]
[49]
Nicol NH. Efficacy and safety considerations in topical treatments for atopic dermatitis. Pediatr Nurs 2011; 37(6): 295-301.
[PMID: 22256690]
[50]
Patel PB, Patel TK. Efficacy and safety of aceclofenac in osteoarthritis: A meta-analysis of randomized controlled trials. Eur J Rheumatol 2017; 4(1): 11-8.
[http://dx.doi.org/10.5152/eurjrheum.2017.160080 ] [PMID: 28293447]
[51]
Phatak AA, Chaudhari PD. Development and evaluation of Nanostructured Lipid Carrier (NLC) based topical delivery of an anti-inflammatory drug. J Pharm Res 2013; 7(8): 677-85.
[http://dx.doi.org/10.1016/j.jopr.2013.08.020]
[52]
Moghddam SMM, Ahad A, Aqil M, Imam SS, Sultana Y. Optimization of nanostructured lipid carriers for topical delivery of nimesulide using Box–Behnken design approach. Artif Cells Nanomed Biotechnol 2017; 45(3): 617-24.
[http://dx.doi.org/10.3109/21691401.2016.1167699 ] [PMID: 27050533]
[53]
Ghate VM, Lewis SA, Prabhu P, Dubey A, Patel N. Nanostructured lipid carriers for the topical delivery of tretinoin. Eur J Pharm Biopharm 2016; 108: 253-61.
[http://dx.doi.org/10.1016/j.ejpb.2016.07.026] [PMID: 27519827]
[54]
Jain A, Garg NK, Jain A, et al. A synergistic approach of adapalene-loaded nanostructured lipid carriers, and vitamin C co-administration for treating acne. Drug Dev Ind Pharm 2016; 42(6): 897-905.
[http://dx.doi.org/10.3109/03639045.2015.1104343 ] [PMID: 26577703]
[55]
Kassem AA, Asfour MH, Abd El-Alim SH, Khattab MA, Salama A. Topical caffeine-loaded nanostructured lipid carriers for enhanced treatment of cellulite: A 32 full factorial design optimization and in vivo evaluation in rats. Int J Pharm 2023; 643: 123271.
[http://dx.doi.org/10.1016/j.ijpharm.2023.123271] [PMID: 37499772]
[56]
Zhu S, Zhao Z, Qin W, et al. The Nanostructured lipid carrier gel of Oroxylin A reduced UV-induced skin oxidative stress damage. Colloids Surf B Biointerfaces 2022; 216: 112578.
[http://dx.doi.org/10.1016/j.colsurfb.2022.112578] [PMID: 35636325]
[57]
Trukhanov SV. Investigation of stability of ordered manganites. J Exp Theor Phys 2005; 101(3): 513-20.
[http://dx.doi.org/10.1134/1.2103220]
[58]
Kozlovskiy AL, Alina A, Zdorovets MV. Study of the effect of ion irradiation on increasing the photocatalytic activity of WO3 microparticles. J Mater Sci Mater Electron 2021; 32(3): 3863-77.
[http://dx.doi.org/10.1007/s10854-020-05130-8]
[59]
Jaiswal P, Gidwani B, Vyas A. Nanostructured lipid carriers and their current application in targeted drug delivery. Artif Cells Nanomed Biotechnol 2016; 44(1): 27-40.
[http://dx.doi.org/10.3109/21691401.2014.909822] [PMID: 24813223]
[60]
Naseri N, Valizadeh H, Zakeri-Milani P. Solid lipid nanoparticles and nanostructured lipid carriers: Structure, preparation and application. Adv Pharm Bull 2015; 5(3): 305-13.
[http://dx.doi.org/10.15171/apb.2015.043] [PMID: 26504751]
[61]
Chauhan I, Yasir M, Verma M, Singh AP. Nanostructured lipid carriers: A groundbreaking approach for transdermal drug delivery. Adv Pharm Bull 2020; 10(2): 150-65.
[http://dx.doi.org/10.34172/apb.2020.021] [PMID: 32373485]
[62]
Trukhanov SV. Peculiarities of the magnetic state in the system La0. 70Sr0. 30MnO3− γ (0≤ γ≤ 0.25). J Exp Theor Phys 2005; 100(1): 95-105.
[63]
Kozlovskiy A, Egizbek K, Zdorovets MV, et al. Evaluation of the efficiency of detection and capture of manganese in aqueous solutions of FeCeOx nanocomposites doped with Nb2O5. Sensors 2020; 20(17): 4851.
[http://dx.doi.org/10.3390/s20174851] [PMID: 32867214]
[64]
Gaba B, Fazil M, Khan S, Ali A, Baboota S, Ali J. Nanostructured lipid carrier system for topical delivery of terbenfine hydrochloride.Bull. FacPharmCario Univ 2015; 53(2): 147-59.
[65]
Khosa A, Reddi S, Saha RN. Nanostructured lipid carriers for site-specific drug delivery. Biomed Pharmacother 2018; 103: 598-613.
[http://dx.doi.org/10.1016/j.biopha.2018.04.055] [PMID: 29677547]
[66]
Beloqui A, Solinís MÁ, Rodríguez-Gascón A, Almeida AJ, Préat V. Nanostructured lipid carriers: Promising drug delivery systems for future clinics. Nanomedicine 2016; 12(1): 143-61.
[http://dx.doi.org/10.1016/j.nano.2015.09.004] [PMID: 26410277]
[67]
Fang CL, Al-Suwayeh SA, Fang JY. Nanostructured lipid carriers (NLCs) for drug delivery and targeting. Recent Pat Nanotechnol 2013; 7(1): 41-55.
[http://dx.doi.org/10.2174/187221013804484827] [PMID: 22946628]
[68]
Yakovenko OS, Matzui LY, Vovchenko LL, et al. Electromagnetic properties of carbon nanotube/BaFe12− xGaxO19/epoxy composites with random and oriented filler distributions. Nanomaterials 2021; 11(11): 2873.
[http://dx.doi.org/10.3390/nano11112873] [PMID: 34835638]
[69]
Trukhanov AV, Tishkevich DI, Podgornaya SV, et al. Impact of the nanocarbon on magnetic and electrodynamic properties of the ferrite/polymer composites. Nanomaterials 2022; 12(5): 868.
[http://dx.doi.org/10.3390/nano12050868] [PMID: 35269356]
[70]
Souto EB, Wissing SA, Barbosa CM, Müller RH. Development of a controlled release formulation based on SLN and NLC for topical clotrimazole delivery. Int J Pharm 2004; 278(1): 71-7.
[http://dx.doi.org/10.1016/j.ijpharm.2004.02.032] [PMID: 15158950]
[71]
Agrawal Y, Petkar KC, Sawant KK. Development, evaluation and clinical studies of acitretin-loaded nanostructured lipid carriers for topical treatment of psoriasis. Int J Pharm 2010; 401(1-2): 93-102.
[http://dx.doi.org/10.1016/j.ijpharm.2010.09.007]
[72]
Gupta M, Vyas SP. Development, characterization and in vivo assessment of effective lipidic nanoparticles for dermal delivery of fluconazole against cutaneous candidiasis. Chem Phys Lipids 2012; 165(4): 454-61.
[http://dx.doi.org/10.1016/j.chemphyslip.2012.01.006 ] [PMID: 22309657]
[73]
Ravani L, Esposito E, Bories C, et al. Clotrimazole-loaded nanostructured lipid carrier hydrogels: Thermal analysis and in vitro studies. Int J Pharm 2013; 454(2): 695-702.
[http://dx.doi.org/10.1016/j.ijpharm.2013.06.015] [PMID: 23792467]
[74]
Pinto MF, Moura CC, Nunes C, Segundo MA, Costa Lima SA, Reis S. A new topical formulation for psoriasis: Development of methotrexate-loaded nanostructured lipid carriers. Int J Pharm 2014; 477(1-2): 519-26.
[http://dx.doi.org/10.1016/j.ijpharm.2014.10.067] [PMID: 25445970]
[75]
Kumari S, Pandita D, Poonia N, Lather V. Nanostructured lipid carriers for topical delivery of an anti-acne drug: Characterization and ex vivo evaluation. Pharm Nanotechnol 2015; 3(2): 122-33.
[http://dx.doi.org/10.2174/221173850302151116124757]
[76]
Pradhan M, Singh D, Murthy SN, Singh MR. Design, characterization and skin permeating potential of Fluocinolone acetonide loaded nanostructured lipid carriers for topical treatment of psoriasis. Steroids 2015; 101: 56-63.
[http://dx.doi.org/10.1016/j.steroids.2015.05.012] [PMID: 26049018]
[77]
Kelidari HR, Saeedi M, Hajheydari Z, et al. Spironolactone loaded nanostructured lipid carrier gel for effective treatment of mild and moderate acne vulgaris: A randomized, double-blind, prospective trial. Colloids Surf B Biointerfaces 2016; 146: 47-53.
[http://dx.doi.org/10.1016/j.colsurfb.2016.05.042] [PMID: 27248464]
[78]
Chen P, Zhang H, Cheng S, Zhai G, Shen C. Development of curcumin loaded nanostructured lipid carrier based thermosensitive in situ gel for dermal delivery. Colloids Surf A Physicochem Eng Asp 2016; 506: 356-62.
[http://dx.doi.org/10.1016/j.colsurfa.2016.06.054]
[79]
Pradhan M, Singh D, Singh MR. Fabrication, optimization and characterization of Triamcinolone acetonide loaded nanostructured lipid carriers for topical treatment of psoriasis: Application of Box Behnken design, in vitro and ex vivo studies. J Drug Deliv Sci Technol 2017; 41: 325-33.
[http://dx.doi.org/10.1016/j.jddst.2017.07.024]
[80]
Palei NN, Mohanta BC, Das MK, Sabapathi ML. Lornoxicam loaded nanostructured lipid carriers for topical delivery: Optimization, skin uptake and in vivo studies. J Drug Deliv Sci Technol 2017; 39: 490-500.
[http://dx.doi.org/10.1016/j.jddst.2017.05.001]
[81]
Moradi A, Sadat Farboud E, Ahmad Nasrollahi S. Tretinoin loaded nanostructured lipid carrier (NLC): Safe and effective drug delivery system. Nanosci Nanotechnol Asia 2017; 7(2): 221-9.
[82]
Tripathi P, Kumar A, Jain PK, Patel JR. Carbomer gel bearing methotrexate loaded lipid nanocontainers shows improved topical delivery intended for effective management of psoriasis. Int J Biol Macromol 2018; 120(Pt A): 1322-34.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.08.136] [PMID: 30171962]
[83]
Kaur N, Sharma K, Bedi N. Topical nanostructured lipid carrier based hydrogel of mometasone furoate for the treatment of psoriasis. Pharm Nanotechnol 2018; 6(2): 133-43.
[http://dx.doi.org/10.2174/2211738506666180523112513 ] [PMID: 29788899]
[84]
Elmowafy M, Shalaby K, Ali HM, et al. Impact of nanostructured lipid carriers on dapsone delivery to the skin: In vitro and n vivo studies. Int J Pharm 2019; 572: 118781.
[http://dx.doi.org/10.1016/j.ijpharm.2019.118781]
[85]
Savić V, Ilić T, Nikolić I, et al. Tacrolimus-loaded lecithin-based nanostructured lipid carrier and nanoemulsion with propylene glycol monocaprylate as a liquid lipid: Formulation characterization and assessment of dermal delivery compared to referent ointment. Int J Pharm 2019; 569: 118624.
[86]
Fatima N, Rehman S, Nabi B, Baboota S, Ali J. Harnessing nanotechnology for enhanced topical delivery of clindamycin phosphate. J Drug Deliv Sci Technol 2019; 54: 101253.
[http://dx.doi.org/10.1016/j.jddst.2019.101253]
[87]
da Rocha PBR, Souza BS, Andrade LM, et al. Enhanced asiaticoside skin permeation by Centella asiatica-loaded lipid nanoparticles: Effects of extract type and study of stratum corneum lipid dynamics. J Drug Deliv Sci Technol 2019; 50: 305-12.
[http://dx.doi.org/10.1016/j.jddst.2019.01.016]
[88]
Kesharwani D, Das Paul S, Paliwal R, Satapathy T. Development, QbD based optimization and in vitro characterization of Diacerein loaded nanostructured lipid carriers for topical applications. J Radiation Res Appl Sci 2023; 16(2): 100565.
[http://dx.doi.org/10.1016/j.jrras.2023.100565]
[89]
Wairkar S, Patel D, Singh A. Nanostructured lipid carrier based dermal gel of cyclosporine for atopic dermatitis-in vitro and in vivo evaluation. J Drug Deliv Sci Technol 2022; 72: 103365.
[http://dx.doi.org/10.1016/j.jddst.2022.103365]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy