Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Review Article

Recent Contributions on Heteropoly Compounds as Suitable Catalysts in Selective Oxidation of Organic Substrates

Author(s): Valeria Palermo, José J. Martinez and Gustavo Pablo Romanelli*

Volume 27, Issue 14, 2023

Published on: 04 October, 2023

Page: [1230 - 1254] Pages: 25

DOI: 10.2174/0113852728256659230920071856

Price: $65

conference banner
Abstract

Organic transformations under suitable environment-friendly conditions have a great impact on the Green Chemistry area. In this context, heteropoly compounds (HPCs) have received considerable attention due to their ability to act as solid catalysts, with the advantage of being used and reused for different organic transformations without appreciable loss of their catalytic activity. In this review article, we report the recent results (2010-2022) obtained for the selective oxidation of organic substrates using a clean oxidant, such as oxygen or aqueous hydrogen peroxide, and HPCs as catalysts. Some of the investigated substrates correspond to the families of hydrocarbons, alcohols, phenols, aldehydes, ketones, amines, and sulfides, among others.

Keywords: Heteropoly compound catalyst, oxidation reaction, selective oxidation, organic substrates, oxygen, hydrogen peroxide.

Graphical Abstract
[1]
Rezvani, M.A.; Oveisi, M.; Nia Asli, M.A. Phosphotungestovanadate immobilized on PVA as an efficient and reusable nano catalyst for oxidative desulphurization of gasoline. J. Mol. Catal. Chem., 2015, 410, 121-132.
[http://dx.doi.org/10.1016/j.molcata.2015.09.010]
[2]
Gong, S.; Lu, J.; Wang, H.; Liu, L.; Zhang, Q. Biodiesel production via esterification of oleic acid catalyzed by picolinic acid modified 12-tungstophosphoric acid. Appl. Energy, 2014, 134, 283-289.
[http://dx.doi.org/10.1016/j.apenergy.2014.07.099]
[3]
Dey, K.C.; Sharma, V. Study of the heteropoly metal oxide complexes: Principle of their synthesis, structure and applications. Int. J. Chem. Tech, 2010, 2, 368-375.
[4]
Nikbakht, E.; Yadollahi, B.; Farsani, M.R. Green oxidation of alcohols in water by a polyoxometalate nano capsule as catalyst. Inorg. Chem. Commun., 2015, 55, 135-138.
[http://dx.doi.org/10.1016/j.inoche.2015.03.030]
[5]
Nishimoto, Y.; Yokogawa, D.; Yoshikawa, H.; Awaga, K.; Irle, S. Super-reduced polyoxometalates: Excellent molecular cluster battery components and semipermeable molecular capacitors. J. Am. Chem. Soc., 2014, 136(25), 9042-9052.
[http://dx.doi.org/10.1021/ja5032369] [PMID: 24885348]
[6]
Herrmann, S.; Kostrzewa, M.; Wierschem, A.; Streb, C. Polyoxometalate ionic liquids as self-repairing acid-resistant corrosion protection. Angew. Chem. Int. Ed., 2014, 53(49), 13596-13599.
[http://dx.doi.org/10.1002/anie.201408171] [PMID: 25332068]
[7]
Weinstock, I.A.; Atalla, R.H.; Reiner, R.S.; Moen, M.A.; Hammel, K.E.; Houtman, C.J.; Hill, C.L.; Harrup, M.K. A new environmentally benign technology for transforming wood pulp into paper. Engineering polyoxometalates as catalysts for multiple processes. J. Mol. Catal. Chem., 1997, 116(1-2), 59-84.
[http://dx.doi.org/10.1016/S1381-1169(96)00074-X]
[8]
Saraiva, M.; Gamelas, J.A.; Mendes de Sousa, A.; Reis, B.; Amaral, J.; Ferreira, P. A new approach for the modification of paper surface properties using polyoxometalates. Materials., 2010, 3(1), 201-215.
[http://dx.doi.org/10.3390/ma3010201]
[9]
Leal Marchena, C.; Lerici, L.; Renzini, S.; Pierella, L.; Pizzio, L. Synthesis and characterization of a novel tungstosilicic acid immobilized on zeolites catalyst for the photodegradation of methyl orange. Appl. Catal. B, 2016, 188, 23-30.
[http://dx.doi.org/10.1016/j.apcatb.2016.01.064]
[10]
Gorsd, M.; Sathicq, G.; Romanelli, G.; Pizzio, L.; Blanco, M. Tungstophosphoric acid supported on core-shell polystyrene-silica microspheres or hollow silica spheres catalyzed trisubstituted imidazole synthesis by multicomponent reaction. J. Mol. Catal. Chem., 2016, 420, 294-302.
[http://dx.doi.org/10.1016/j.molcata.2016.04.010]
[11]
Tanabe, K.; Misono, M.; Hattori, H.; Ono, Y. New solid acids and bases their catalytic properties; Elsevier: Amsterdam, 1989.
[12]
Corma, A. Inorganic solid acids and their use in acid-catalyzed hydrocarbon reactions. Chem. Rev., 1995, 95(3), 559-614.
[http://dx.doi.org/10.1021/cr00035a006]
[13]
Romanelli, G.; Autino, J. Recent applications of heteropolyacids and related compounds in heterocycle synthesis. Mini Rev. Org. Chem., 2009, 6(4), 359-366.
[http://dx.doi.org/10.2174/157019309789371578]
[14]
Sanchez, L.M.; Thomas, H.J.; Climent, M.J.; Romanelli, G.P.; Iborra, S. Heteropolycompounds as catalysts for biomass product transformations. Catal. Rev., Sci. Eng., 2016, 58(4), 497-586.
[http://dx.doi.org/10.1080/01614940.2016.1248721]
[15]
Sanchez, L.M.; Thomas, H.J.; Romanelli, G.P. Suitable multicomponent organic synthesis using heteropolycompounds as catalysts. Mini Rev. Org. Chem., 2015, 12, 115-126.
[http://dx.doi.org/10.2174/1570193X1202150225152213]
[16]
Palermo, V.; Sathicq, A.G.; Romanelli, G.P. Suitable transformation of compounds present in biomass using heteropolycompounds as catalysts. Curr. Opin. Green Sustain. Chem., 2020, 25, 100362.
[http://dx.doi.org/10.1016/j.cogsc.2020.100362]
[17]
Heravi, M.M.; Sadjadi, S. Recent developments in use of heteropolyacids, their salts and polyoxometalates in organic synthesis. J. Indian Chem. Soc., 2009, 6(1), 1-54.
[http://dx.doi.org/10.1007/BF03246501]
[18]
Heravi, M.M.; Vazin Fard, M.; Faghihi, Z. Heteropoly acids-catalyzed organic reactions in water: Doubly green reactions. Green Chem. Lett. Rev., 2013, 6(4), 282-300.
[http://dx.doi.org/10.1080/17518253.2013.846415]
[19]
Wang, S.S.; Yang, G.Y. Recent advances in polyoxometalate-catalyzed reactions. Chem. Rev., 2015, 115(11), 4893-4962.
[http://dx.doi.org/10.1021/cr500390v] [PMID: 25965251]
[20]
Kamiya, Y.; Okuhara, T.; Misono, M.; Miyaji, A.; Tsuji, K.; Nakajo, T. Catalytic chemistry of supported heteropolyacids and their applications as solid acids to industrial processes. Catal. Surv. Asia, 2008, 12(2), 101-113.
[http://dx.doi.org/10.1007/s10563-008-9043-7]
[21]
Heravi, M.M. Applications of heteropoly acids in industries. Heteropolyacids as highly efficiend and green catalysts applied in organic transformations;Adv Green Sustain. Chem., 2022, 305-375.
[http://dx.doi.org/10.1016/B978-0-323-88441-9.00005-3]
[22]
Anastas, P.T.; Warner, J.C. Green Chemistry: Theory and Practice; Oxford University Press, 1998.
[23]
Marcì, G.; García-López, E.I.; Palmisano, L. Heteropolyacid-based materials as heterogeneous photocatalysts. Eur. J. Inorg. Chem., 2014, 2014(1), 21-35.
[http://dx.doi.org/10.1002/ejic.201300883]
[24]
Coronel, N.C.; da Silva, M.J.; Jose, M. Lacunar Keggin heteropolyacid salts: Soluble, solid and solid-supported catalysts. J. Cluster Sci., 2018, 29(2), 195-205.
[http://dx.doi.org/10.1007/s10876-018-1343-0]
[25]
Villabrille, P.; Romanelli, G.; Vázquez, P.; Cáceres, C. Vanadium-substituted keggin heteropolycompounds as catalysts for ecofriendly liquid phase oxidation of 2,6-dimethylphenol to 2,6-dimethyl-1,4-benzoquinone. Appl. Catal. A Gen., 2004, 270(1-2), 101-111.
[http://dx.doi.org/10.1016/j.apcata.2004.04.028]
[26]
Tundo, P.; Romanelli, G.; Vázquez, P. New heteropolyacids as catalysts for the selective oxidation of sulfides to sulfoxides with hydrogen peroxide. Synlett, 2005, 2005(1), 75-78.
[http://dx.doi.org/10.1055/s-2004-837195]
[27]
Sathicq, A.G.; Romanelli, G.P.; Palermo, V.; Vázquez, P.G.; Thomas, H.J. Heterocyclic amine salts of Keggin heteropolyacids used as catalyst for the selective oxidation of sulfides to sulfoxides. Tetrahedron Lett., 2008, 49(9), 1441-1444.
[http://dx.doi.org/10.1016/j.tetlet.2008.01.009]
[28]
Egusquiza, M.G.; Romanelli, G.P.; Cabello, C.I.; Botto, I.L.; Thomas, H.J. Arene and phenol oxidation with hydrogen peroxide using ‘sandwich’ type substituted polyoxometalates as catalysts. Catal. Commun., 2008, 9(1), 45-50.
[http://dx.doi.org/10.1016/j.catcom.2007.04.026]
[29]
Villabrille, P.; Romanelli, G.; Vázquez, P.; Cáceres, C. Supported heteropolycompounds as ecofriendly catalysts for 2,6-dimethylphenol oxidation to 2,6-dimethyl-1,4-benzoquinone. Appl. Catal. A Gen., 2008, 334(1-2), 374-380.
[http://dx.doi.org/10.1016/j.apcata.2007.10.025]
[30]
Tundo, P.; Romanelli, G.; Vázquez, P.; Loris, A.; Aricò, F. Multiphase oxidation of aniline to nitrosobenzene with hydrogen peroxide catalyzed by heteropolyacids. Synlett, 2008, 2008(7), 967-970.
[http://dx.doi.org/10.1055/s-2008-1072502]
[31]
Palacio, M.; Villabrille, P.I.; Romanelli, G.P.; Vázquez, P.G.; Cáceres, C.V. Ecofriendly liquid phase oxidation with hydrogen peroxide of 2,6-dimethylphenol to 2,6-dimethyl-1,4-benzoquinone catalyzed by TiO2-CeO2 mixed xerogels. Appl. Catal. A Gen., 2009, 359(1-2), 62-68.
[http://dx.doi.org/10.1016/j.apcata.2009.02.032]
[32]
Palermo, V.; Romanelli, G.P.; Vázquez, P.G. Simple and friendly sulfones synthesis using aqueous hydrogen peroxide with a reusable keggin molybdenum heteropolyacid, immobilized on aminopropyl-functionalized silica. Phosphorus Sulfur Silicon Relat. Elem., 2009, 184(12), 3258-3268.
[http://dx.doi.org/10.1080/10426500903299885]
[33]
Neumann, R. Activation of molecular oxygen, polyoxometalates, and liquid-phase catalytic oxidation. Inorg. Chem., 2010, 49(8), 3594-3601.
[http://dx.doi.org/10.1021/ic9015383] [PMID: 20380461]
[34]
Paul, S.; Le Courtois, V.; Vanhove, D. Kinetic investigation of isobutane selective oxidation over a heteropolyanion catalyst. Ind. Eng. Chem. Res., 1997, 36(8), 3391-3399.
[http://dx.doi.org/10.1021/ie960683k]
[35]
Benaissa, H.; Davey, P.; Khimyak, Y.; Kozhevnikov, I. Heteropoly compounds as catalysts for hydrogenation of propanoic acid. J. Catal., 2008, 253(2), 244-252.
[http://dx.doi.org/10.1016/j.jcat.2007.11.011]
[36]
Nakka, L.; Molinari, J.E.; Wachs, I.E. Surface and bulk aspects of mixed oxide catalytic nanoparticles: Oxidation and dehydration of CH(3)OH by polyoxometallates. J. Am. Chem. Soc., 2009, 131(42), 15544-15554.
[http://dx.doi.org/10.1021/ja904957d] [PMID: 19807071]
[37]
Khenkin, A.M.; Leitus, G.; Neumann, R. Electron transfer-oxygen transfer oxygenation of sulfides catalyzed by the H5PV2Mo10O40 polyoxometalate. J. Am. Chem. Soc., 2010, 132(33), 11446-11448.
[http://dx.doi.org/10.1021/ja105183w] [PMID: 20669975]
[38]
Efremenko, I.; Neumann, R. Computational insight into the initial steps of the Mars-van Krevelen mechanism: Electron transfer and surface defects in the reduction of polyoxometalates. J. Am. Chem. Soc., 2012, 134(51), 20669-20680.
[http://dx.doi.org/10.1021/ja308625q] [PMID: 23210519]
[39]
Liu, C.G.; Chu, Y.J. Activation mechanism of hydrogen peroxide by a divanadium-substituted polyoxometalate [γ-PV2W10O38(μ-OH)2]3-: A computational study. J. Mol. Graph. Model., 2018, 85, 56-67.
[http://dx.doi.org/10.1016/j.jmgm.2018.07.009] [PMID: 30077051]
[40]
Janik, M.J.; Campbell, K.A.; Bardin, B.B.; Davis, R.J.; Neurock, M. A computational and experimental study of anhydrous phosphotungstic acid and its interaction with water molecules. Appl. Catal. A Gen., 2003, 256(1-2), 51-68.
[http://dx.doi.org/10.1016/S0926-860X(03)00388-0]
[41]
Janik, M.J.; Davis, R.J.; Neurock, M. Anhydrous and water-assisted proton mobility in phosphotungstic acid. J. Am. Chem. Soc., 2005, 127(14), 5238-5245.
[http://dx.doi.org/10.1021/ja042742o] [PMID: 15810859]
[42]
Chen, W.; Tan, C.H.; Wang, H.; Ye, X. Molybdenum/tungsten-based heteropoly salts in oxidations. Chem. Asian J., 2021, 16(19), 2753-2772.
[http://dx.doi.org/10.1002/asia.202100686] [PMID: 34286908]
[43]
Liu, M.; Yu, F.; Yuan, B.; Xie, C.; Yu, S. Oxidation of 1-propanol to propionic acid with hydrogen peroxide catalysed by heteropolyoxometalates. BMC Chem., 2021, 15(1), 23.
[http://dx.doi.org/10.1186/s13065-021-00750-5] [PMID: 33794972]
[44]
Tayebee, R. Simple heteropoly acids as water-tolerant catalysts in the oxidation of alcohols with 34% hydrogen peroxide, a mechanistic approach. J. Kor. Chem. Soc., 2008, 52(1), 23-29.
[http://dx.doi.org/10.5012/jkcs.2008.52.1.023]
[45]
Weng, Z.; Wang, J.; Jian, X. A reusable and active lacunary derivative [PW11O39]7− as benzyl alcohol oxidation catalyst with hydrogen peroxide. Catal. Commun., 2008, 9(8), 1688-1691.
[http://dx.doi.org/10.1016/j.catcom.2007.11.017]
[46]
Vilanculo, C.B.; da Silva, M.J. Can Brønsted acids catalyze the epoxidation of allylic alcohols with H2O2? With a little help from the proton, the H3PMo12O40 acid did it and well. Molecular Catalysis, 2021, 512, 111780.
[http://dx.doi.org/10.1016/j.mcat.2021.111780]
[47]
Ingle, R.H.; Raj, N.K.K. Lacunary Keggin type polyoxotungstates in conjunction with a phase transfer catalyst: An effective catalyst system for epoxidation of alkenes with aqueous H2O2. J. Mol. Catal. Chem., 2008, 294(1-2), 8-13.
[http://dx.doi.org/10.1016/j.molcata.2008.07.003]
[48]
Ranveer, A.C.; Ranade, S.; Mistry, C. Selective oxidation of alcohols to aldehydes by using hydrogen peroxide as an oxidant: A review. Int. J. Adv. Res. Sci. Eng., 2015, 4, 277-288.
[49]
Rahman, A.; Pullabhotla, V.S.R.R.; Jonnalagadda, S.B. Selective oxidation of p-nitrobenzyl alcohol to p-nitrobenzaldehyde with 10% Ni silica with 30% H2O2 in acetonitrile solvent. Catal. Commun., 2008, 9(14), 2417-2421.
[http://dx.doi.org/10.1016/j.catcom.2008.06.004]
[50]
Palermo, V.; Villabrille, P.; Vázquez, P.G.; Cáceres, C.; Tundo, P.; Romanelli, G.P. Role of vanadium and pyridine in heteropolycompounds for selective oxidation of alcohols with hydrogen peroxide. J. Chem. Sci., 2013, 125(6), 1375-1383.
[http://dx.doi.org/10.1007/s12039-013-0523-6]
[51]
Tundo, P.; Romanelli, G.P.; Vázquez, P.G.; Aricò, F. Multiphase oxidation of alcohols and sulfides with hydrogen peroxide catalyzed by heteropolyacids. Catal. Commun., 2010, 11(15), 1181-1184.
[http://dx.doi.org/10.1016/j.catcom.2010.06.015]
[52]
Kashyap, N.; Das, S.; Borah, R. Solvent responsive self-separation behaviour of Brønsted acidic ionic liquid-polyoxometalate hybrid catalysts on H2O2 mediated oxidation of alcohols. Polyhedron, 2021, 196, 114993.
[http://dx.doi.org/10.1016/j.poly.2020.114993]
[53]
Li, X.; Zhen, N.; Liu, C.; Zhang, D.; Dong, J.; Chi, Y.; Hu, C. Controllable assembly of vanadium-containing polyoxoniobate-based materials and their electrocatalytic activity for selective benzyl alcohol oxidation. Molecules, 2022, 27(9), 2862.
[http://dx.doi.org/10.3390/molecules27092862] [PMID: 35566213]
[54]
Díaz, J.; Pizzio, L.R.; Pecchi, G.; Campos, C.H.; Azócar, L.; Briones, R.; Romero, R.; Henríquez, A.; Gaigneaux, E.M.; Contreras, D. Tetrabutyl ammonium salts of Keggin-type vanadium-substituted phosphomolybdates and phosphotungstates for selective aerobic catalytic oxidation of benzyl alcohol. Catalysts, 2022, 12(5), 507.
[http://dx.doi.org/10.3390/catal12050507]
[55]
Aghayi, M.; Yadollahi, B.; Farsani, M.R. Zinc substituted Keggin-type polyoxometalate on Dowex: a green heterogeneous catalyst for oxidation of alcohols in water. J. Indian Chem. Soc., 2020, 17(11), 2895-2900.
[http://dx.doi.org/10.1007/s13738-020-01963-6]
[56]
Choi, J.H.; Kim, J.K.; Park, S.; Song, J.H.; Song, I.K. Redox properties and oxidation catalysis of potassium salts of transition metal-substituted α2-K8P2W17O61(M•OH2) (M=MnII, ZnII, FeII, CoII, CuII, and NiII) Wells-Dawson heteropolyacids. Appl. Catal. A Gen., 2012, 427-428, 79-84.
[http://dx.doi.org/10.1016/j.apcata.2012.03.036]
[57]
Dong, X.; Yu, C.; Wang, D.; Zhang, Y.; Wu, P.; Hu, H.; Xue, G. Cu and Fe-doped monolacunary tungstosilicate catalysts with efficient catalytic activity for benzyl alcohol oxidation and simulation gasoline desulfurization. Mater. Res. Bull., 2017, 85, 152-160.
[http://dx.doi.org/10.1016/j.materresbull.2016.09.014]
[58]
Ghaffarzadeh Anari, F.; Aghabozorg, H.R.; Fouladi, S. Preparation of Keggin-type H3−xMx[PW11CrO40]/SiO2 (M=Co or Fe) and their catalytic activity in oxidation of benzyl alcohol. Iran. J. Sci. Technol. Trans. A Sci., 2022, 46(1), 129-136.
[http://dx.doi.org/10.1007/s40995-021-01228-8]
[59]
Wu, L.; An, S.; Song, Y.F. Heteropolyacids-immobilized graphitic carbon nitride: highly efficient photo-oxidation of benzyl alcohol in the aqueous phase. Engineering, 2021, 7(1), 94-102.
[http://dx.doi.org/10.1016/j.eng.2020.07.025]
[60]
Zheng, M.; He, H.; Li, X.; Yin, D. Imidazolized activated carbon anchoring phosphotungstic acid as a recyclable catalyst for oxidation of alcohols with aqueous hydrogen peroxide. Front Chem., 2022, 10, 925622.
[http://dx.doi.org/10.3389/fchem.2022.925622] [PMID: 35844654]
[61]
Nejat, R.; Najminejad, Z.; Fazlali, F.; Shahraki, S.; Khazaee, Z. g-C3N4/H3PW4Mo8O40 S-scheme photocatalyst with enhanced photocatalytic oxidation of alcohols and sulfides. Inorg. Chem. Commun., 2021, 132, 108842.
[http://dx.doi.org/10.1016/j.inoche.2021.108842]
[62]
Ma, B.; Zhang, Y.; Ding, Y.; Zhao, W. A water-soluble dilacunary silicotungstate as an effective catalyst for oxidation alcohols in water with hydrogen peroxide. Catal. Commun., 2010, 11(9), 853-857.
[http://dx.doi.org/10.1016/j.catcom.2010.02.022]
[63]
Dong, X.; Wang, D.; Li, K.; Zhen, Y.; Hu, H.; Xue, G. Vanadium-substituted heteropolyacids immobilized on amine- functionalized mesoporous MCM-41: A recyclable catalyst for selective oxidation of alcohols with H2O2. Mater. Res. Bull., 2014, 57, 210-220.
[http://dx.doi.org/10.1016/j.materresbull.2014.05.041]
[64]
Meng, L.Y.; Zhai, S.R.; Li, S.; Zhai, B.; An, Q-D.; Song, X.W. Synthesis and characterization of tungstophosphoric acid/pentaethylenehexamine/ZrSBA-15 and its use in the selective oxidation of benzyl alcohol under solvent-free conditions. Eur. J. Inorg. Chem., 2014, 2014(14), 2337-2344.
[http://dx.doi.org/10.1002/ejic.201402028]
[65]
Leng, Y.; Liu, J.; Jiang, P.; Wang, J. Heteropolyanion-based polymeric hybrids: Highly efficient and recyclable catalysts for oxidation of alcohols with H2O2. RSC Adv., 2012, 2(31), 11653-11656.
[http://dx.doi.org/10.1039/c2ra22348a]
[66]
Wang, S.; Li, S.; Shi, R.; Zou, X.; Zhang, Z.; Fu, G.; Li, L.; Luo, F. A nanohybrid self-assembled from exfoliated layered vanadium oxide nanosheets and Keggin Al13 for selective catalytic oxidation of alcohols. Dalton Trans., 2020, 49(8), 2559-2569.
[http://dx.doi.org/10.1039/C9DT04485J] [PMID: 32025689]
[67]
Chilivery, R.; Chaitanya, V.; Nayak, J.; Seth, S.; Rana, R.K. Heterogenization of phosphotungstate clusters into magnetic microspheres: Catalyst for selective oxidation of alcohol in water. ACS Sustain. Chem. Eng., 2022, 10(21), 6925-6933.
[http://dx.doi.org/10.1021/acssuschemeng.1c07285]
[68]
Zou, Y.; Li, H.; Zhao, X.; Song, J.; Wang, Y.; Ma, P.; Niu, J.; Wang, J. Ru(III) -based polyoxometalate tetramers as highly efficient heterogeneous catalysts for alcohol oxidation reactions at room temperature. Dalton Trans., 2021, 50(36), 12664-12673.
[http://dx.doi.org/10.1039/D1DT01819A] [PMID: 34545885]
[69]
Coronel, N.C.; da Silva, M.J.; Ferreira, S.O.; da Silva, R.C.; Natalino, R. K5PW11NiO39-catalyzed oxidation of benzyl alcohol with hydrogen peroxide. ChemistrySelect, 2019, 4(1), 302-310.
[http://dx.doi.org/10.1002/slct.201802616]
[70]
Sawant, J.D.; Patil, K.K.; Gokavi, G.S. Kinetics and mechanism of oxidation of chloramphenicol by 12-Tungstocobaltate(III) in an Acidic Medium, Malaysian. Malay. J. Chem., 2021, 23(3), 12-22.
[http://dx.doi.org/10.55373/mjchem.v23i3.1072]
[71]
Rodikova, Y.; Zhizhina, E. Catalytic oxidation of 5-hydroxymethylfurfural into 2,5-diformylfuran using V-containing heteropoly acid catalysts. React. Kinet. Mech. Catal., 2020, 130(1), 403-415.
[http://dx.doi.org/10.1007/s11144-020-01782-z]
[72]
Liu, D.; Chen, B.; Li, J.; Lin, Z.; Li, P.; Zhen, N.; Chi, Y.; Hu, C. Imidazole-functionalized polyoxometalate catalysts for the oxidation of 5-hydroxymethylfurfural to 2,5-diformylfuran using atmospheric O2. Inorg. Chem., 2021, 60(6), 3909-3916.
[http://dx.doi.org/10.1021/acs.inorgchem.0c03698] [PMID: 33593056]
[73]
Xue, Y.; Chen, J.; Shao, J.; Han, L.; Li, W.; Sui, C. Synthesis, catalytic activity and the structural transformation of dimeric mono-Fe (Ⅲ)-substituted Keggin-type polyoxotungstates in the oxidation of cyclohexanol with H2O2. Molecular Catalysis, 2020, 492, 111010.
[http://dx.doi.org/10.1016/j.mcat.2020.111010]
[74]
Othman, M.F.; Adam, A.; Najafi, G.; Mamat, R. Green fuel as alternative fuel for diesel engine: A review. Renew. Sustain. Energy Rev., 2017, 80, 694-709.
[http://dx.doi.org/10.1016/j.rser.2017.05.140]
[75]
Mohd Zaid, H.F.; Chong, F.K.; Abdul Mutalib, M.I. Extractive deep desulfurization of diesel using choline chloride-glycerol eutectic-based ionic liquid as a green solvent. Fuel, 2017, 192, 10-17.
[http://dx.doi.org/10.1016/j.fuel.2016.11.112]
[76]
Díaz-Álvarez, A.E.; Francos, J.; Lastra-Barreira, B.; Crochet, P.; Cadierno, V. Glycerol and derived solvents: New sustainable reaction media for organic synthesis. Chem. Commun., 2011, 47(22), 6208-6227.
[http://dx.doi.org/10.1039/c1cc10620a] [PMID: 21451852]
[77]
Kumar, N.; Srivastava, V.C. Glycerol as a green solvent in organic reactions. Mat. Res. Found., 2019, 54, 202-223.
[http://dx.doi.org/10.21741/9781644900314-9]
[78]
Tao, M.; Yi, X.; Delidovich, I.; Palkovits, R.; Shi, J.; Wang, X. Hetropolyacid-catalyzed oxidation of glycerol into lactic acid under mild base-free conditions. ChemSusChem, 2015, 8(24), 4195-4201.
[http://dx.doi.org/10.1002/cssc.201501200] [PMID: 26611678]
[79]
Tao, M.; Sun, N.; Li, Y.; Tong, T.; Wielicako, M.; Wang, S.; Wang, X. Heteropolyacids embedded in a lipid bilayer covalently bonded to graphene oxide for the facile one-pot conversion of glycerol to lactic acid. J. Mater. Chem. A Mater. Energy Sustain., 2017, 5(18), 8325-8333.
[http://dx.doi.org/10.1039/C7TA01334E]
[80]
Li, X.; Zhang, Y. Oxidative dehydration of glycerol to acrylic acid over vanadium-substituted cesium salts of Keggin-type heteropolyacids. ACS Catal., 2016, 6(5), 2785-2791.
[http://dx.doi.org/10.1021/acscatal.6b00213]
[81]
Yuan, M.; Li, D.; Zhao, X.; Ma, W.; Kong, K.; Ni, W.; Gu, Q.; Hou, Z. Selective oxidation of glycerol with hydrogen peroxide using silica- encapsulated heteropolyacid catalyst. Acta Phys. Chim. Sin., 2018, 34(8), 886-895.
[http://dx.doi.org/10.3866/PKU.WHXB201711151]
[82]
Franz, G.; Sheldon, R.A. Oxidation, ullmann’s encycl. Ind. Chem., 2012, 543-600.
[83]
Carey, F.A.; Sundberg, R.J. Advanced organic chemistry part B: Reactions and synthesis. Synthesis, 2007, 2001(16), 2527.
[http://dx.doi.org/10.1055/s-2001-18785]
[84]
Collivignarelli, M.; Vaccari, M.; Abbà, A.; Canato, M.; Sorlini, S. Wet oxidation of fine soil contaminated with petroleum hydrocarbons: A way towards a remediation cycle. Environments, 2018, 5(6), 69.
[http://dx.doi.org/10.3390/environments5060069]
[85]
Mizuno, N.; Kamata, K. Catalytic oxidation of hydrocarbons with hydrogen peroxide by vanadium-based polyoxometalates. Coord. Chem. Rev., 2011, 255(19-20), 2358-2370.
[http://dx.doi.org/10.1016/j.ccr.2011.01.041]
[86]
Jing, L.; Zhang, F.; Zhong, Y.; Zhu, W. Hydroxylation of benzene to phenol by H2O2 over an inorganic-organic dual modified heteropolyacid. Chin. J. Chem. Eng., 2014, 22(11-12), 1220-1225.
[http://dx.doi.org/10.1016/j.cjche.2014.09.041]
[87]
Leng, Y.; Wang, J.; Zhu, D.; Shen, L.; Zhao, P.; Zhang, M. Heteropolyanion-based ionic hybrid solid: A green bulk-type catalyst for hydroxylation of benzene with hydrogen peroxide. Chem. Eng. J., 2011, 173(2), 620-626.
[http://dx.doi.org/10.1016/j.cej.2011.08.013]
[88]
Leng, Y.; Liu, J.; Jiang, P.; Wang, J. Carboxylic acid-functionalized phosphovanadomolybdate-paired ionic polymer as a green heterogeneous catalyst for hydroxylation of benzene. Catal. Commun., 2013, 40, 84-87.
[http://dx.doi.org/10.1016/j.catcom.2013.06.004]
[89]
Kamata, K.; Yamaura, T.; Mizuno, N. Chemo- and regioselective direct hydroxylation of arenes with hydrogen peroxide catalyzed by a divanadium-substituted phosphotungstate. Angew. Chem. Int. Ed., 2012, 51(29), 7275-7278.
[http://dx.doi.org/10.1002/anie.201201605] [PMID: 22685078]
[90]
Cui, W.J.; Zhao, Q.; Zhu, H.T.; Hu, N.; Ma, Y.Y.; Han, Z.G.; Li, Y.G. Keggin-type polyoxometalate-based supramolecular complex for selective oxidation of styrene to benzaldehyde. J. Coord. Chem., 2020, 73(17-19), 2521-2532.
[http://dx.doi.org/10.1080/00958972.2020.1821881]
[91]
Pathan, S.; Patel, A. Novel heterogeneous catalyst, supported undecamolybdophosphate: Synthesis, physico-chemical characterization and solvent-free oxidation of styrene. Dalton Trans., 2011, 40(2), 348-355.
[http://dx.doi.org/10.1039/C0DT01187H] [PMID: 21113531]
[92]
Shringarpure, P.A.; Patel, A. Supported dodecaphosphotungstate and undecaphosphotungstate: A study on the kinetic behavior for the oxidation of styrene. React. Kinet. Mech. Catal., 2011, 103(1), 165-180.
[http://dx.doi.org/10.1007/s11144-011-0297-0]
[93]
Viswanadham, B.; Chary, K.V.R. Eco-friendly vapor phase aerobic selective oxidation of styrene to benzaldehyde over sba-15 supported vanadium modified heteropolyacid catalyst. Catal. Lett., 2022, 152(11), 3447-3452.
[http://dx.doi.org/10.1007/s10562-022-03920-9]
[94]
Shi, S.Y.; Bai, D.; Du, H.X.; Jiang, W.; Zhang, J.; Cui, X.B. Two novel catalysts constituted by transition metal-oxide-based cluster cation frameworks with big ellipse cavities accommodated with {PMo12O40} cluster anions for multifunctional catalytic properties. J. Cluster Sci., 2020, 31(6), 1221-1232.
[http://dx.doi.org/10.1007/s10876-019-01729-y]
[95]
Benadji, S.; Eloy, P.; Leonard, A.; Su, B.L.; Rabia, C.; Gaigneaux, E.M. Characterization of H3+xPMo12−xVxO40 heteropolyacids supported on HMS mesoporous molecular sieve and their catalytic performance in propene oxidation. Microporous Mesoporous Mater., 2012, 154, 153-163.
[http://dx.doi.org/10.1016/j.micromeso.2012.01.002]
[96]
Boudjema, S.; Vispe, E.; Choukchou-Braham, A.; Mayoral, J.A.; Bachir, R.; Fraile, J.M. Preparation and characterization of activated montmorillonite clay supported 11-molybdo-vanado-phosphoric acid for cyclohexene oxidation. RSC Adv., 2015, 5(9), 6853-6863.
[http://dx.doi.org/10.1039/C4RA13604G]
[97]
Radman, R.; Aouissi, A.; Al-Kahtani, A.A.; Mekhamer, W.K.; Ahmed, A.Y.B.H. Activated carbon supported Co15PW12O40 as efficient catalyst for the production of 1, 2 cyclohexane diol by oxidation of cyclohexene with H2O2 in the presence of CO2. Green Chem. Lett. Rev., 2020, 13(4), 265-274.
[http://dx.doi.org/10.1080/17518253.2020.1813811]
[98]
Soares, J.C.S.; Gonçalves, A.H.A.; Zotin, F.M.Z.; de Araújo, L.R.R.; Gaspar, A.B. Cyclohexene to adipic acid synthesis using heterogeneous polyoxometalate catalysts. Molec. Catal., 2018, 458, 223-229.
[http://dx.doi.org/10.1016/j.mcat.2018.02.020]
[99]
Soares, J.C.S.; Gonçalves, A.H.A.; Zotin, F.M.Z.; de Araújo, L.R.R.; Gaspar, A.B. Influence of reactional parameters in the adipic acid synthesis from cyclohexene using heterogeneous polyoxometalates. Catal. Today, 2021, 381, 143-153.
[http://dx.doi.org/10.1016/j.cattod.2020.07.052]
[100]
Liu, G.; Chen, M.; Jin, X.; Song, C.; He, F.; Huang, Q. Combination of H3PW12O40-TiO2 catalysts for photo-thermal oxidation of cyclohexene to adipic acid by 30% H2O2. J. Environ. Chem. Eng., 2021, 9(4), 105422.
[http://dx.doi.org/10.1016/j.jece.2021.105422]
[101]
Wu, Y.; Su, M.; Xiao, Y.; Guang, B.; Liu, Y. Heteropolyacid-based poly(ionic liquid)s for the selective oxidation of cyclohexene to 2-cyclohexene-1-one. Ind. Eng. Chem. Res., 2022, 61(1), 299-306.
[http://dx.doi.org/10.1021/acs.iecr.1c04108]
[102]
Luo, Y.; Liu, C.; Yue, H.; Tang, S.; Zhu, Y.; Liang, B. Selective oxidation of cyclopentene with H2O2 by using H3PW12O40 and TBAB as a phase transfer catalyst. Chin. J. Chem. Eng., 2019, 27(8), 1851-1856.
[http://dx.doi.org/10.1016/j.cjche.2018.10.014]
[103]
Karcz, R.; Niemiec, P.; Pamin, K. Połtowicz, J.; Kryściak-Czerwenka, J.; Napruszewska, B.D.; Michalik-Zym, A.; Witko, M.; Tokarz-Sobieraj, R.; Serwicka, E.M. Effect of cobalt location in Keggin-type heteropoly catalysts on aerobic oxidation of cyclooctane: Experimental and theoretical study. Appl. Catal. A Gen., 2017, 542, 317-326.
[http://dx.doi.org/10.1016/j.apcata.2017.05.035]
[104]
Kamata, K.; Yonehara, K.; Nakagawa, Y.; Uehara, K.; Mizuno, N. Efficient stereo- and regioselective hydroxylation of alkanes catalysed by a bulky polyoxometalate. Nat. Chem., 2010, 2(6), 478-483.
[http://dx.doi.org/10.1038/nchem.648] [PMID: 20489717]
[105]
Zhang, L.; Dumeignil, F.; Paul, S.; Katryniok, B. Supported Rb- or Cs-containing HPA catalysts for the selective oxidation of isobutane. Appl. Catal. A Gen., 2021, 628, 118400.
[http://dx.doi.org/10.1016/j.apcata.2021.118400]
[106]
Cai, X.; Ma, Y.; Chu, W.; Yang, W. Selective oxidation of isobutane to methacrylic acid by metal-substituted ammonium salts of molybdovanadophosphoric Acid. Catal. Lett., 2022, 152(8), 2412-2420.
[http://dx.doi.org/10.1007/s10562-021-03821-3]
[107]
Cai, X.; Ma, Y.; Zhou, Q.; Zhang, Z.; Chu, W.; Yang, W. Synergistic effects of phases in the selective oxidation of isobutane over supported (NH4)3HPMo11VO40 catalysts. React. Kinet. Mech. Catal., 2021, 133(1), 293-308.
[http://dx.doi.org/10.1007/s11144-021-01967-0]
[108]
Lv, Y.; Kong, A.; Zhang, H.; Yang, W.; Chen, Y.; Liu, M.; Fu, Y.; Zhang, J.; Li, W. Electrocatalytic oxidation of toluene into benzaldehyde based on molecular oxygen activation over oxygen vacancy of heteropoly acid. Appl. Surf. Sci., 2022, 599, 153916.
[http://dx.doi.org/10.1016/j.apsusc.2022.153916]
[109]
Wang, Y.; Xu, N.; Zhang, Y.; Zhang, T.; Zhang, Z.; Li, X.H.; Wang, X.L. A Keggin-type polyoxometalate-based metal-organic complex as a highly efficient heterogeneous catalyst for the selective oxidation of alkylbenzenes. Dalton Trans., 2022, 51(6), 2331-2337.
[http://dx.doi.org/10.1039/D1DT03823K] [PMID: 35043136]
[110]
Zheng, Y.; Shen, Q.; Li, Z.; Jing, X.; Duan, C. Two copper-containing polyoxometalate-based metal-organic complexes as heterogeneous catalysts for the c-h bond oxidation of benzylic compounds and olefin epoxidation. Inorg. Chem., 2022, 61(29), 11156-11164.
[http://dx.doi.org/10.1021/acs.inorgchem.2c01073] [PMID: 35799381]
[111]
Vilanculo, C.B.; Da Silva, M.J.; Teixeira, M.G.; Villarreal, J.A. One-pot synthesis at room temperature of epoxides and linalool derivative pyrans in monolacunary Na7PW11O39-catalyzed oxidation reactions by hydrogen peroxide. RSC Advances, 2020, 10(13), 7691-7697.
[http://dx.doi.org/10.1039/D0RA00047G] [PMID: 35492183]
[112]
Graser, L.R.; Jürgens, S.; Wilhelm, M.E.; Cokoja, M.; Herrmann, W.A.; Kühn, F.E. Epoxidation of olefins catalyzed by polyoxomolybdates formed in-situ in liquids. Z. Naturforsch. B. J. Chem. Sci., 2013, 68(10), 1138-1142.
[http://dx.doi.org/10.5560/znb.2013-3139]
[113]
Mirzaee, M.; Bahramian, B.; Shahraki, M.; Moghadam, H.; Mirzaee, A. Molybdenum containing catalysts grafted on functionalized hydrous zirconia nano-particles for epoxidation of alkenes. Catal. Lett., 2018, 148(10), 3003-3017.
[http://dx.doi.org/10.1007/s10562-018-2521-2]
[114]
Mirzaee, M.; Bahramian, B.; Ashrafian, A.; Amoli, A. Boehmite nano‐particles functionalized with silylpropylamine‐supported Keggin‐type heteropolyacids: Catalysts for epoxidation of alkenes. Appl. Organomet. Chem., 2018, 32(2), e4011.
[http://dx.doi.org/10.1002/aoc.4011]
[115]
Evtushok, V.Y.; Podyacheva, O.Y.; Suboch, A.N.; Maksimchuk, N.V.; Stonkus, O.A.; Kibis, L.S.; Kholdeeva, O.A. H2O2-based selective oxidations by divanadium-substituted polyoxotungstate supported on nitrogen-doped carbon nanomaterials. Catal. Today, 2020, 354, 196-203.
[http://dx.doi.org/10.1016/j.cattod.2019.03.060]
[116]
Boudjema, S.; Rabah, H.; Choukchou-Braham, A. Oxidation of cyclohexene with H2O2 catalyzed by vanadium based polyoxometalates doped modified clays as green catalysts. Acta Phys. Pol. A, 2017, 132(3), 469-472.
[http://dx.doi.org/10.12693/APhysPolA.132.469]
[117]
Sathicq, Á.G.; Pizzio, L.R.; Vázquez, P.G.; Tundo, P.; Aricò, F.; Romanelli, G.P. Keggin heteropolyacid as catalyst for olefin epoxidation: A multiphase approach. Sustain. Chem. Pharm., 2020, 15, 100201.
[http://dx.doi.org/10.1016/j.scp.2019.100201]
[118]
You, Y.; Luo, C.; Zhu, W.; Zhang, Y. Magnetic polymer microspheres based on phosphotungstic acid quaternary ammonium salt as an efficient heterogeneous catalyst for epoxidation of cyclohexene. J. Indian Chem. Soc., 2018, 15(7), 1535-1543.
[http://dx.doi.org/10.1007/s13738-018-1351-x]
[119]
Wołosiak, A.; Lewandowski, G. Epoxidation of 1,5,9-cyclododecatriene with H2O2 in the presence of tungstophosphoric acid (H3PW12O40). Pol. J. Chem. Technol., 2010, 12(3), 40-44.
[http://dx.doi.org/10.2478/v10026-010-0032-z]
[120]
Vilanculo, C.B.; Da Silva, M.J. Unraveling the role of the lacunar Na7PW11O39 catalyst in the oxidation of terpene alcohols with hydrogen peroxide at room temperature. New J. Chem., 2020, 44(7), 2813-2820.
[http://dx.doi.org/10.1039/C9NJ04725E]
[121]
Vilanculo, C.B.; da Silva, M.J.; Rodrigues, A.A.; Ferreira, S.O.; da Silva, R.C. Vanadium-doped sodium phosphomolybdate salts as catalysts in the terpene alcohols oxidation with hydrogen peroxide. RSC Adv., 2021, 11(39), 24072-24085.
[http://dx.doi.org/10.1039/D1RA04191F] [PMID: 35479047]
[122]
Batalha, D.C.; Ferreira, S.O.; Silva, R.C.; Silva, M.J. Cesium-exchanged lacunar Keggin heteropolyacid salts: efficient solid catalysts for the green oxidation of terpenic alcohols with hydrogen peroxide. ChemistrySelect, 2020, 5(6), 1976-1986.
[http://dx.doi.org/10.1002/slct.201903437]
[123]
Balula, S.S.; Santos, I.C.M.S.; Cunha-Silva, L.; Carvalho, A.P.; Pires, J.; Freire, C.; Cavaleiro, J.A.S.; de Castro, B.; Cavaleiro, A.M.V. Phosphotungstates as catalysts for monoterpenes oxidation: Homo- and heterogeneous performance. Catal. Today, 2013, 203, 95-102.
[http://dx.doi.org/10.1016/j.cattod.2012.02.020]
[124]
Kholdeeva, O.A.; Zalomaeva, O.V. Recent advances in transition-metal-catalyzed selective oxidation of substituted phenols and methoxyarenes with environmentally benign oxidants. Coord. Chem. Rev., 2016, 306, 302-330.
[http://dx.doi.org/10.1016/j.ccr.2015.07.019]
[125]
Wu, X.; Chen, X.; Guan, H.; Wang, X.; Chen, L. Facile one-pot synthesis of mesoporous heteropolyacids-silica hybrid for catalytic wet hydrogen peroxide oxidation of phenol. J. Sol-Gel Sci. Technol., 2014, 72(3), 663-667.
[http://dx.doi.org/10.1007/s10971-014-3559-2]
[126]
Palacio, M.; Villabrille, P.I.; Palermo, V.; Romanelli, G.P. Titania-heteropolyacid composites (TiO2-HPA) as catalyst for the green oxidation of trimethylphenol to 2,3,5-trimethyl-p-benzoquinone. J. Sol-Gel Sci. Technol., 2020, 95(2), 321-331.
[http://dx.doi.org/10.1007/s10971-020-05239-6]
[127]
Evtushok, V.Y.; Suboch, A.N.; Podyacheva, O.Y.; Stonkus, O.A.; Zaikovskii, V.I.; Chesalov, Y.A.; Kibis, L.S.; Kholdeeva, O.A. Highly efficient catalysts based on divanadium-substituted polyoxometalate and n-doped carbon nanotubes for selective oxidation of alkylphenols. ACS Catal., 2018, 8(2), 1297-1307.
[http://dx.doi.org/10.1021/acscatal.7b03933]
[128]
Rodikova, Y.A.; Zhizhina, E.G. Homogeneous catalysts of redox processes based on heteropolyacid solutions III: Developing effective ways for the preparation of 2,3,5-trimethyl-1,4-benzoquinone. Catal. Ind., 2019, 11(3), 179-190.
[http://dx.doi.org/10.1134/S2070050419030097]
[129]
Ivanchikova, I.D.; Maksimchuk, N.V.; Maksimovskaya, R.I.; Maksimov, G.M.; Kholdeeva, O.A. Highly selective oxidation of alkylphenols to p-benzoquinones with aqueous hydrogen peroxide catalyzed by divanadium-substituted polyoxotungstates. ACS Catal., 2014, 4(8), 2706-2713.
[http://dx.doi.org/10.1021/cs500738e]
[130]
Chang, S.; An, H.; Chen, Y.; Zhu, Q.; Luo, H.; Huang, Y. Highly efficient supramolecular catalysts assembled by Dawson-type POMs and metal-organic complexes for the synergistic catalytic synthesis of p-benzoquinones. ACS Sustain. Chem. Eng., 2022, 10(14), 4728-4740.
[http://dx.doi.org/10.1021/acssuschemeng.2c00351]
[131]
Chang, S.; Chen, Y.; An, H.; Zhu, Q.; Luo, H.; Xu, T. Highly efficient synthesis of p-benzoquinones catalyzed by robust two-dimensional pom-based coordination polymers. ACS Appl. Mater. Interfaces, 2021, 13(18), 21261-21271.
[http://dx.doi.org/10.1021/acsami.1c02558] [PMID: 33909400]
[132]
Gogin, L.L.; Zhizhina, E.G. One-pot process for preparing substituted anthraquinones via diene synthesis in the presence of solutions of Mo-V-P heteropoly acids. Catal. Ind., 2014, 6(4), 273-277.
[http://dx.doi.org/10.1134/S2070050414040096]
[133]
Gogin, L.L.; Zhizhina, E.G.; Pai, Z.P. One-Pot process of naphthoquinones synthesis from hydroquinone in the presence of solutions of Mo-V-P heteropolyacids as bifunctional catalysts. Mod. Res. Catal., 2019, 8(1), 1-9.
[http://dx.doi.org/10.4236/mrc.2019.81001]
[134]
Pamin, K. Połtowicz, J.; Prończuk, M.; Basąg, S.; Maciejewska, J.; Kryściak-Czerwenka, J.; Tokarz-Sobieraj, R. Hydroxylation of phenol by hydrogen peroxide catalyzed by heteropoly compounds in presence of glycerol as green solvent. Catal. Today, 2015, 257, 80-85.
[http://dx.doi.org/10.1016/j.cattod.2015.03.003]
[135]
Bäckvall, J.E. Modern Oxidation Methods, 2nd; Wiley-VCH, 2005.
[http://dx.doi.org/10.1002/9783527632039]
[136]
Shojaei, A.; Rezvani, A.; Heravi, M. A green, reusable and highly efficient solid acid catalyst for the oxidation of aldehydes to the corresponding carboxylic acids using H2O2 and KMnO4: H5PV2Mo10O40 (10-molybdo-2-vanadophosphoric heteropolyacid). J. Serb. Chem. Soc., 2011, 76(11), 1513-1522.
[http://dx.doi.org/10.2298/JSC100920135S]
[137]
da Silva, M.J.; de Andrade Leles, L.C.; Natalino, R.; Ferreira, S.O.; Coronel, N.C. An efficient benzaldehyde oxidation by hydrogen peroxide over metal substituted lacunary potassium heteropolyacid salts. Catal. Lett., 2018, 148(4), 1202-1214.
[http://dx.doi.org/10.1007/s10562-018-2326-3]
[138]
El Amrani, I.; Atlamsani, A.; Dakkach, M.; Rodríguez, M.; Romero, I.; Amthiou, S. Oxydation catalytique des aldéhydes par les hétéropolyacides à base de vanadium en présence de dioxygène. C. R. Chim., 2017, 20, 888-895.
[http://dx.doi.org/10.1016/j.crci.2017.05.007]
[139]
Singh, S.; Patel, A.; Prakashan, P. One pot oxidative esterification of aldehyde over recyclable cesium salt of nickel substituted phosphotungstate. Appl. Catal. A Gen., 2015, 505, 131-140.
[http://dx.doi.org/10.1016/j.apcata.2015.07.032]
[140]
da Silva, M.J.; Rodrigues, A.A. Metal silicotungstate salts as catalysts in furfural oxidation reactions with hydrogen peroxide. Mol. Catal., 2020, 493, 111104.
[http://dx.doi.org/10.1016/j.mcat.2020.111104]
[141]
Shao, H.; Yu, Y. Performance of supported Keggin-type heteropolyacid catalyst in liquid phase oxidation of furfural to maleic anhydride, Huaxue Fanying Gongcheng Yu Gongyi/Chem. React. Eng. Technol., 2017, 33, 136-143.
[http://dx.doi.org/10.11730/j.issn.1001-7631.2017.02.0136.08]
[142]
Kanno, M.; Yasukawa, T.; Ninomiya, W.; Ooyachi, K.; Kamiya, Y. Catalytic oxidation of methacrolein to methacrylic acid over silica-supported 11-molybdo-1-vanadophosphoric acid with different heteropolyacid loadings. J. Catal., 2010, 273(1), 1-8.
[http://dx.doi.org/10.1016/j.jcat.2010.04.014]
[143]
Zhang, H.; Liu, J.; Liu, C.; Wang, T.; Zhu, W. High dispersion of heteropolyacid nanoparticles on hydrothermally Cs-modified three-dimensionally ordered macroporous SiO2 with excellent selectivity in methacrolein oxidation. Chin. J. Chem. Eng., 2020, 28(11), 2785-2791.
[http://dx.doi.org/10.1016/j.cjche.2020.07.017]
[144]
Liu, Y.; Wang, S.; Li, Y.; Cai, X.; Zhu, M.; Han, X. (NH4)Cu0.2H2.8PMo11VO40 via a hydrothermal homogeneous precipitation method for selective oxidation of methacrolein to methacrylic acid. Appl. Catal. A Gen., 2022, 643, 118789.
[http://dx.doi.org/10.1016/j.apcata.2022.118789]
[145]
Wang, B.; Dong, H.; Lu, L.; Liu, H.; Zhang, Z.; Zhu, J. Study on the development of high-performance P-Mo-V catalyst and the influence of aldehyde impurities on catalytic performance in selective oxidation of methacrolein to methacrylic acid. Catalysts, 2021, 11(3), 394.
[http://dx.doi.org/10.3390/catal11030394]
[146]
Cao, Y.L.; Wang, L.; Zhou, L.L.; Xu, B.H.; Diao, Y.Y.; Zhang, S.J. A modified heteropoly acid catalyst with cetyltrimethylammonium bromide for methacrolein to methacrylic acid. J. Ind. Eng. Chem., 2018, 65, 254-263.
[http://dx.doi.org/10.1016/j.jiec.2018.04.036]
[147]
Cao, Y.L.; Wang, L.; Bai, Y.G.; Yan, R.Y.; Xu, B.H. Molybdovanadophosphoric heteropolyacid-catalyzed aerobic oxidation of methacrolein: The crucial role of ionic liquid as a modifier. Catal. Lett., 2020, 150(6), 1774-1785.
[http://dx.doi.org/10.1007/s10562-019-03063-4]
[148]
Ishikawa, S.; Ikeda, T.; Koutani, M.; Yasumura, S.; Amakawa, K.; Shimoda, K.; Jing, Y.; Toyao, T.; Sadakane, M.; Shimizu, K.; Ueda, W. Oxidation catalysis over solid-state Keggin-type phosphomolybdic acid with oxygen defects. J. Am. Chem. Soc., 2022, 144(17), 7693-7708.
[http://dx.doi.org/10.1021/jacs.2c00125] [PMID: 35438484]
[149]
Knoche, S.; Heid, M.; Gora, N.; Ohlig, D.; Steffan, J.; Drochner, A.; Etzold, B.; Albert, B.; Vogel, H. Investigation of the acrolein oxidation on heteropolyacid catalysts by transient response methods. Catal. Sci. Technol., 2020, 10(15), 5231-5244.
[http://dx.doi.org/10.1039/D0CY00851F]
[150]
Pamin, K. Połtowicz, J.; Prończuk, M.; Kryściak-Czerwenka, J.; Karcz, R.; M Serwicka, E. Keggin-type heteropoly salts as bifunctional catalysts in aerobic baeyer-villiger oxidation. Materials., 2018, 11(7), 1208.
[http://dx.doi.org/10.3390/ma11071208] [PMID: 30011824]
[151]
Hu, S.; Niu, L.; Wei, Y.; Chen, L.; Yang, Z. Catalytic properties of mesoporous materials supported heteropoly acids for Baeyer-Villiger oxidation of cyclic ketones. Mol. Phys., 2020, 118(18), e1759832.
[http://dx.doi.org/10.1080/00268976.2020.1759832]
[152]
Ma, Q.; Zhao, J.; Xing, W.; Peng, X. Baeyer-Viiliger oxidation of cyclic ketones using aqueous hydrogen peroxide catalyzed by heteropolyacids in solvent-free system. J. Adv. Oxid. Technol., 2014, 17(2), 212-216.
[http://dx.doi.org/10.1515/jaots-2014-0206]
[153]
Mouheb, L.; Dermeche, L.; Essayem, N.; Rabia, C. Keggin-type mixed polyoxomolybdates catalyzed cyclohexanone oxidation by hydrogen peroxide: In situ ir pyridine adsorption. Catal. Lett., 2020, 150(11), 3327-3334.
[http://dx.doi.org/10.1007/s10562-020-03231-x]
[154]
Mouanni, S.; Amitouche, D.; Mazari, T.; Boumechhour, A.; Rabia, C. Cobalt-Vanadyl mixed polyoxometallates as new catalysts for green adipic acid production. Mater. Today Proc., 2022, 49, 1046-1050.
[http://dx.doi.org/10.1016/j.matpr.2021.09.031]
[155]
Kupwade, R.V. A concise review on synthesis of sulfoxides and sulfones with special reference to oxidation of sulfides. J. Chem. Rev., 2019, 1(2), 99-113.
[http://dx.doi.org/10.33945/SAMI/JCR.2019.1.99113]
[156]
Rayner, C.M. Thiols, sulfides, sulfoxides, and sulfones. Contemp. Org. Synth., 1994, 1(3), 191-203.
[http://dx.doi.org/10.1039/co9940100191]
[157]
Frenzel, R.; Pizzio, L.; Blanco, M.; Sathicq, G.; Romanelli, G. Evaluation of the catalytic activity of H3PW12O40 in the selective oxidation of sulfides to the corresponding sulfoxides or sulfones. Curr. Catal., 2014, 3(2), 124-130.
[http://dx.doi.org/10.2174/2211544702666131224003356]
[158]
Yamaura, T.; Kamata, K.; Yamaguchi, K.; Mizuno, N. Efficient sulfoxidation with hydrogen peroxide catalyzed by a divanadium-substituted phosphotungstate. Catal. Today, 2013, 203, 76-80.
[http://dx.doi.org/10.1016/j.cattod.2012.01.026]
[159]
Romanelli, G.P.; Villabrille, P.I.; Cáceres, C.V.; Vázquez, P.G.; Tundo, P. Keggin heteropolycompounds as catalysts for liquid-phase oxidation of sulfides to sulfoxides/sulfones by hydrogen peroxide. Catal. Commun., 2011, 12(8), 726-730.
[http://dx.doi.org/10.1016/j.catcom.2010.12.023]
[160]
Palermo, V.; Sathicq, Á.G.; Vázquez, P.G.; Romanelli, G.P. Selective oxidation of sulfides to sulfoxides using modified Keggin heteropolyacids as catalyst. Phosphorus Sulfur Silicon Relat. Elem., 2014, 189(10), 1423-1432.
[http://dx.doi.org/10.1080/10426507.2013.865128]
[161]
Palermo, V.; Sathicq, Á.G.; Vázquez, P.G.; Thomas, H.J.; Romanelli, G.P. Doped Keggin heteropolyacids as catalysts in sulfide oxidation. React. Kinet. Mech. Catal., 2011, 104(1), 181-195.
[http://dx.doi.org/10.1007/s11144-011-0341-0]
[162]
Palermo, V.; Romanelli, G.P.; Vázquez, P.G. Mo-based Keggin heteropolyacids as catalysts in the green and selective oxidation of diphenyl sulfide. J. Mol. Catal. Chem., 2013, 373, 142-150.
[http://dx.doi.org/10.1016/j.molcata.2013.03.002]
[163]
Wan, R.; He, P.; Liu, Z.; Ma, X.; Ma, P.; Singh, V.; Zhang, C.; Niu, J.; Wang, J. A Lacunary polyoxovanadate precursor and transition-metal-sandwiched derivatives for catalytic oxidation of sulfides. Chemistry, 2020, 26(40), 8760-8766.
[http://dx.doi.org/10.1002/chem.201905741] [PMID: 31985095]
[164]
Frenzel, R.; Morales, D.; Romanelli, G.; Sathicq, G.; Blanco, M.; Pizzio, L. Synthesis, characterization and catalytic evaluation of H3PW12O40 included in acrylic acid/acrylamide polymer for the selective oxidation of sulfides. J. Mol. Catal. Chem., 2016, 420, 124-133.
[http://dx.doi.org/10.1016/j.molcata.2016.01.026]
[165]
Frenzel, R.; Sathicq, Á.G.; Blanco, M.N.; Romanelli, G.P.; Pizzio, L.R. Carbon-supported metal-modified lacunary tungstosilicic polyoxometallates used as catalysts in the selective oxidation of sulfides. J. Mol. Catal. Chem., 2015, 403, 27-36.
[http://dx.doi.org/10.1016/j.molcata.2015.02.021]
[166]
Migliorero, M.B.C.; Palermo, V.; Vázquez, P.G.; Romanelli, G.P. Valorization of citrus waste: Use in catalysis for the oxidation of sulfides. J. Renew. Mater., 2017, 5(3), 167-173.
[http://dx.doi.org/10.7569/JRM.2017.634108]
[167]
Zolfagharinia, S.; Kolvari, E.; Koukabi, N.; Hosseini, M.M. Nano-sized glass as an economically viable and eco-benign support to anchor heteropolyacids for green and sustainable chemoselective oxidation of sulfides to sulfoxides. J. Chem. Sci., 2017, 129(9), 1411-1421.
[http://dx.doi.org/10.1007/s12039-017-1348-5]
[168]
Frenzel, R.A.; Romanelli, G.P.; Pizzio, L.R. Novel catalyst based on mono- and di-vanadium substituted Keggin polyoxometalate incorporated in poly(acrylic acid-co-acrylamide) polymer for the oxidation of sulfides. Molecular Catalysis, 2018, 457, 8-16.
[http://dx.doi.org/10.1016/j.mcat.2018.07.016]
[169]
Frenzel, R.A.; Palermo, V.; Sathicq, A.G.; Elsharif, A.M.; Luque, R.; Pizzio, L.R.; Romanelli, G.P. A green and reusable catalytic system based on silicopolyoxotungstovanadates incorporated in a polymeric material for the selective oxidation of sulfides to sulfones. Microporous Mesoporous Mater., 2021, 310, 110584.
[http://dx.doi.org/10.1016/j.micromeso.2020.110584]
[170]
Trombettoni, V.; Franco, A.; Sathicq, A.G.; Len, C.; Romanelli, G.P.; Vaccaro, L.; Luque, R. Efficient liquid-assisted grinding selective aqueous oxidation of sulfides using supported heteropolyacid catalysts. ChemCatChem, 2019, 11(10), 2537-2545.
[http://dx.doi.org/10.1002/cctc.201900296]
[171]
Taghiyar, H.; Yadollahi, B. Keggin polyoxometalates encapsulated in molybdenum-iron-type Keplerate nanoball as efficient and cost-effective catalysts in the oxidative desulfurization of sulfides. Sci. Total Environ., 2020, 708, 134860.
[http://dx.doi.org/10.1016/j.scitotenv.2019.134860] [PMID: 31806349]
[172]
Chen, Y.; An, H.; Chang, S.; Li, Y.; Zhu, Q.; Luo, H.; Huang, Y. A POM-based porous supramolecular framework for efficient sulfide-sulfoxide transformations with a low molar O/S ratio. Inorg. Chem. Front., 2022, 9(13), 3282-3294.
[http://dx.doi.org/10.1039/D2QI00525E]
[173]
Chen, Y.; Chang, S.; An, H.; Li, Y.; Zhu, Q.; Luo, H.; Huang, Y. Two polymorphic polyoxometalate-based metal-organic frameworks for the efficient synthesis of functionalized sulfoxides and detoxification of mustard gas simulants. ACS Sustain. Chem. Eng., 2021, 9(46), 15683-15693.
[http://dx.doi.org/10.1021/acssuschemeng.1c06433]
[174]
Frenzel, R.A.; Romanelli, G.P.; Blanco, M.N.; Pizzio, L.R. Transition metal-modified polyoxometalates supported on carbon as catalyst in 2-(methylthio)-benzothiazole sulfoxidation. J. Chem. Sci., 2015, 127(1), 123-132.
[http://dx.doi.org/10.1007/s12039-014-0757-y]
[175]
Tao, F.; Yu, J.; Zhang, L.; Zhou, Y.; Zhong, Y.; Huang, C.; Wang, Y.A. Integrating two highly active components into one for decontaminating sulfur mustard and Sarin. Ind. Eng. Chem. Res., 2021, 60(39), 14193-14202.
[http://dx.doi.org/10.1021/acs.iecr.1c02434]
[176]
Muñoz, M.; Romanelli, G.; Botto, I.L.; Cabello, C.I.; Lamonier, C.; Capron, M.; Baranek, P.; Blanchard, P.; Payen, E. Al13-[X-Mo/WOn] (X=Al, Co, V, P) composites as catalysts in clean oxidation of aromatic sulfides. Appl. Catal. B, 2010, 100(1-2), 254-263.
[http://dx.doi.org/10.1016/j.apcatb.2010.08.001]
[177]
Egusquiza, M.G.; Soriano, M.D.; Muñoz, M.; Romanelli, G.; Soriano, J.; Cabello, C.I.; López Nieto, J.M. Precursors of tetragonal tungsten bronzes as catalysts in selective reactions: Liquid phase oxidation of diphenyl sulfide and gas phase oxidation of hydrogen sulfide. Catal. Today, 2021, 372, 70-81.
[http://dx.doi.org/10.1016/j.cattod.2021.05.001]
[178]
Esfandyari, M.; Heravi, M.; Oskooie, H.; Fotouhi, L.; Tajbakhsh, M.; Bamoharram, F. H3PW12O40: An efficient and green catalyst for the facile and selective oxidation of sulfides to sulfoxides, applied to the last step of the synthesis of omeprazole. Iran. J. Chem. Chem. Eng., 2017, 36, 21-29.
[http://dx.doi.org/10.30492/IJCCE.2017.28705]
[179]
Shigeru Oae, J.T.D. Oxidation and Oxygenation.Org. Sulfur Chem, 1st; CRC Press, 1991.
[180]
Rezvani, M.A.; Harutyunyan, R.; Heravi, M.M. Aerobic oxidation of thioles to disulfides catalyzed by mixed-addenda vanadium (V) substituted heteropolyacids. Synth. React. Inorganic, Met. Synth. React. Inorg. Met.-Org. Nano-Met. Chem., 2012, 42(9), 1232-1236.
[http://dx.doi.org/10.1080/15533174.2012.680095]
[181]
Nagaraaj, P.; Vijayakumar, V. Oxidation of amine α-carbon to amide: A review on direct methods to access the amide functionality. Org. Chem. Front., 2019, 6(15), 2570-2599.
[http://dx.doi.org/10.1039/C9QO00387H]
[182]
Li, H.; Yang, M.; Yuan, Z.; Sun, Y.; Ma, P.; Niu, J.; Wang, J. Construction of one Ru2W12-cluster and six lacunary Keggin tungstoarsenate leading to the larger Ru-containing polyoxometalate photocatalyst. Chin. Chem. Lett., 2022, 33(10), 4664-4668.
[http://dx.doi.org/10.1016/j.cclet.2021.12.081]
[183]
Li, J.; Chang, B.; Zhao, H.; Meng, Q.; Li, M.; Han, Q. Visible-light-responsive polyoxometalate-based metal-organic framework for highly efficient photocatalytic oxidative coupling of amines. J. Mater. Sci., 2021, 56(11), 6676-6688.
[http://dx.doi.org/10.1007/s10853-020-05707-y]
[184]
Sanchez, L.M.; Sathicq, Á.G.; Baronetti, G.T.; Thomas, H.J.; Romanelli, G.P. Vanadium-substituted wells-Dawson heteropolyacid as catalyst for liquid phase oxidation of 1,4-dihydropyridine derivative. Catal. Lett., 2014, 144(1), 172-180.
[http://dx.doi.org/10.1007/s10562-013-1111-6]
[185]
Guo, Y.H.; Cui, L.P.; Lv, J.H.; Yu, K.; Ma, Y.J.; Zhang, E.M.; Zhong, R.; Zhou, B.B. A 3D supramolecular photo-/electro-catalytic material based on 2D monoarsenate capped Dawson layer and metal-organic sheets with rich π-π interactions. J. Solid State Chem., 2020, 292, 121605.
[http://dx.doi.org/10.1016/j.jssc.2020.121605]
[186]
Martínez, J.J.; Páez, L.A.; Gutiérrez, L.F.; Pardo Cuervo, O.H.; Rojas, H.A.; Romanelli, G.P.; Portilla, J.; Castillo, J.C.; Becerra, D. Obtaining protoanemonin through selective oxidation of D-fructose and 5-(hydroxymethyl)furfural in a self-catalysed reaction. Asian J. Org. Chem., 2020, 9(12), 2184-2190.
[http://dx.doi.org/10.1002/ajoc.202000406]
[187]
Liu, S.; Han, J.; Wu, Q.; Bian, B.; Li, L.; Yu, S.; Song, J.; Zhang, C.; Ragauskas, A.J. Hydrogenation of phenol to cyclohexanone over bifunctional Pd/C-heteropoly acid catalyst in the liquid phase. Catal. Lett., 2019, 149(9), 2383-2389.
[http://dx.doi.org/10.1007/s10562-019-02852-1]
[188]
Yaremenko, I.A.; Radulov, P.S.; Belyakova, Y.Y.; Demina, A.A.; Fomenkov, D.I.; Barsukov, D.V.; Subbotina, I.R.; Fleury, F.; Terent’ev, A.O. Catalyst development for the synthesis of ozonides and tetraoxanes under heterogeneous conditions: disclosure of an unprecedented class of fungicides for agricultural application. Chemistry, 2020, 26(21), 4734-4751.
[http://dx.doi.org/10.1002/chem.201904555] [PMID: 31774931]
[189]
Li, J.; Ding, D.J.; Deng, L.; Guo, Q.X.; Fu, Y. Catalytic air oxidation of biomass-derived carbohydrates to formic acid. ChemSusChem, 2012, 5(7), 1313-1318.
[http://dx.doi.org/10.1002/cssc.201100466] [PMID: 22499553]
[190]
Voß, D.; Dietrich, R.; Stuckart, M.; Albert, J. Switchable catalytic polyoxometalate-based systems for biomass conversion to carboxylic acids. ACS Omega, 2020, 5(30), 19082-19091.
[http://dx.doi.org/10.1021/acsomega.0c02430] [PMID: 32775910]
[191]
Wesinger, S.; Mendt, M.; Albert, J. Alcohol-activated vanadium-containing polyoxometalate complexes in homogeneous glucose oxidation identified with 51V-NMR and EPR spectroscopy. ChemCatChem, 2021, 13(16), 3662-3670.
[http://dx.doi.org/10.1002/cctc.202100632]
[192]
Shen, F.; Li, Y.; Qin, X.; Guo, H.; Li, J.; Yang, J.; Ding, Y. Selective oxidation of cellulose into formic acid over heteropolyacid-based temperature responsive catalysts. Renew. Energy, 2022, 185, 139-146.
[http://dx.doi.org/10.1016/j.renene.2021.12.043]
[193]
Zhang, X.; Zhang, X.; Sun, N.; Wang, S.; Wang, X.; Jiang, Z. High production of levulinic acid from cellulosic feedstocks being catalyzed by temperature-responsive transition metal substituted heteropolyacids. Renew. Energy, 2019, 141, 802-813.
[http://dx.doi.org/10.1016/j.renene.2019.04.058]
[194]
Marianou, A.A.; Michailof, C.C.; Ipsakis, D.; Triantafyllidis, K.; Lappas, A.A. Cellulose conversion into lactic acid over supported HPA catalysts. Green Chem., 2019, 21(22), 6161-6178.
[http://dx.doi.org/10.1039/C9GC02622C]
[195]
Bayu, A.; Karnjanakom, S.; Yoshida, A.; Kusakabe, K.; Abudula, A.; Guan, G. Polyoxomolybdates catalysed cascade conversions of cellulose to glycolic acid with molecular oxygen via selective aldohexoses pathways (an epimerization and a [2+4] Retro-aldol reaction). Catal. Today, 2019, 332, 28-34.
[http://dx.doi.org/10.1016/j.cattod.2018.05.034]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy