Research Article

体液非靶向代谢组学分析以区分TBI DOC和NTBI DOC

卷 24, 期 9, 2024

发表于: 04 October, 2023

页: [1183 - 1193] 页: 11

弟呕挨: 10.2174/0115665240249826230928104512

价格: $65

Open Access Journals Promotions 2
摘要

目的:通过脑脊液(CSF)、血清和尿液样本研究创伤性脑损伤(TBI)意识障碍(DOC)患者与非创伤性脑损伤(NTBI) DOC患者的代谢组学差异,有助于了解两种病因的病理机制差异,为后续治疗和预后提供潜在线索。并研究三种不同体液中TBI和NTBI之间的代谢组差异和相似性。 方法: 共纳入24例TBI DOC受试者和29例NTBI DOC受试者。采集TBI DOC和NTBI DOC患者的脑脊液、血清和尿液样本,采用UPLC-MS进行分析。应用统计方法和途径分析来发现潜在的生物标志物和改变的代谢功能。 结果:比较TBI DOC和NTBI DOC时,脑脊液、血清和尿液中分别检出36、31和52种差异代谢物。脑脊液、血清和尿液中差异代谢物的功能分析均与氨基酸代谢有关。除氨基酸代谢外,脑脊液、血清和尿液中的代谢生物标志物主要集中在中枢功能、认知功能、坏死与凋亡和神经功能。在脑脊液中,最高AUC分别为0.864(异proturon)和0.816(脯氨酸甜菜碱)。血清中甲酰胺的AUC为0.941,尿中二氢戊内酯和多塞平n -氧化葡糖苷的AUC为1.0。 结论:脑脊液、血清和尿液代谢组学分析可以区分TBI DOC和NTBI DOC,功能分析显示TBI DOC和NTBI DOC之间的代谢变化差异。

关键词: DOC, TBI, NTBI,代谢组学,生物标志物,坏死。

« Previous
[1]
Adukauskienė D, Budrytė B, Karpec D. Coma: Etiology, diagnosis, and treatment. Medicina (Kaunas) 2008; 44(10): 812-9.
[http://dx.doi.org/10.3390/medicina44100102] [PMID: 19001840]
[2]
Gross T, Schüepp M, Attenberger C, Pargger H, Amsler F. Outcome in polytraumatized patients with and without brain injury. Acta Anaesthesiol Scand 2012; 56(9): 1163-74.
[http://dx.doi.org/10.1111/j.1399-6576.2012.02724.x] [PMID: 22735047]
[3]
Multi-Society Task Force on PVS. Medical aspects of the persistent vegetative state (1). N Engl J Med 1994; 330(21): 1499-508.
[http://dx.doi.org/10.1056/NEJM199405263302107] [PMID: 7818633]
[4]
Multi-Society Task Force on PVS. Medical aspects of the persistent vegetative state (2). N Engl J Med 1994; 330(22): 1572-9.
[http://dx.doi.org/10.1056/NEJM199406023302206] [PMID: 8177248]
[5]
Lewis GD, Wei R, Liu E, et al. Metabolite profiling of blood from individuals undergoing planned myocardial infarction reveals early markers of myocardial injury. J Clin Invest 2008; 118(10): 3503-12.
[http://dx.doi.org/10.1172/JCI35111] [PMID: 18769631]
[6]
Khamis MM, Adamko DJ, El-Aneed A. Mass spectrometric based approaches in urine metabolomics and biomarker discovery. Mass Spectrom Rev 2017; 36(2): 115-34.
[http://dx.doi.org/10.1002/mas.21455] [PMID: 25881008]
[7]
Dandekar SP, Karekar AK. Cancer metabolomics: A tool of clinical utility for early diagnosis of gynaecological cancers. Indian J Med Res 2021; 154(6): 787-96.
[http://dx.doi.org/10.4103/ijmr.IJMR_239_19] [PMID: 35662083]
[8]
Bujak R, Struck-Lewicka W, Markuszewski MJ, Kaliszan R. Metabolomics for laboratory diagnostics. J Pharm Biomed Anal 2015; 113: 108-20.
[http://dx.doi.org/10.1016/j.jpba.2014.12.017] [PMID: 25577715]
[9]
Liu X, Cheng X, Liu X, et al. Investigation of the urinary metabolic variations and the application in bladder cancer biomarker discovery. Int J Cancer 2018; 143(2): 408-18.
[http://dx.doi.org/10.1002/ijc.31323] [PMID: 29451296]
[10]
Eiden M, Christinat N, Chakrabarti A, et al. Discovery and validation of temporal patterns involved in human brain ketometabolism in cerebral microdialysis fluids of traumatic brain injury patients. EBioMedicine 2019; 44: 607-17.
[http://dx.doi.org/10.1016/j.ebiom.2019.05.054] [PMID: 31202815]
[11]
Thomas I, Dickens AM, Posti JP, et al. Serum metabolome associated with severity of acute traumatic brain injury. Nat Commun 2022; 13(1): 2545.
[http://dx.doi.org/10.1038/s41467-022-30227-5] [PMID: 35538079]
[12]
Orešič M, Posti JP, Kamstrup-Nielsen MH, et al. Human serum metabolites associate with severity and patient outcomes in traumatic brain injury. EBioMedicine 2016; 12: 118-26.
[http://dx.doi.org/10.1016/j.ebiom.2016.07.015] [PMID: 27665050]
[13]
Maudsley AA, Govind V, Saigal G, Gold SG, Harris L, Sheriff S. Longitudinal mr spectroscopy shows altered metabolism in traumatic brain injury. J Neuroimaging 2017; 27(6): 562-9.
[http://dx.doi.org/10.1111/jon.12463] [PMID: 28736910]
[14]
Banoei MM, Casault C, Metwaly SM, Winston BW. Metabolomics and biomarker discovery in traumatic brain injury. J Neurotrauma 2018; 35(16): 1831-48.
[http://dx.doi.org/10.1089/neu.2017.5326] [PMID: 29587568]
[15]
Posti JP, Dickens AM, Orešič M, Hyötyläinen T, Tenovuo O. Metabolomics profiling as a diagnostic tool in severe traumatic brain injury. Front Neurol 2017; 8: 398.
[http://dx.doi.org/10.3389/fneur.2017.00398] [PMID: 28868043]
[16]
Fiandaca MS, Mapstone M, Mahmoodi A, et al. Plasma metabolomic biomarkers accurately classify acute mild traumatic brain injury from controls. PLoS One 2018; 13(4): e0195318.
[http://dx.doi.org/10.1371/journal.pone.0195318] [PMID: 29677216]
[17]
Montaner J, Ramiro L, Simats A, et al. Multilevel omics for the discovery of biomarkers and therapeutic targets for stroke. Nat Rev Neurol 2020; 16(5): 247-64.
[http://dx.doi.org/10.1038/s41582-020-0350-6] [PMID: 32322099]
[18]
Shin TH, Lee DY, Basith S, et al. Metabolome changes in cerebral ischemia. Cells 2020; 9(7): 1630.
[http://dx.doi.org/10.3390/cells9071630] [PMID: 32645907]
[19]
Wolahan SM, Hirt D, Braas D, Glenn TC. Role of metabolomics in traumatic brain injury research. Neurosurg Clin N Am 2016; 27(4): 465-72.
[http://dx.doi.org/10.1016/j.nec.2016.05.006] [PMID: 27637396]
[20]
Kimberly WT, Wang Y, Pham L, Furie KL, Gerszten RE. Metabolite profiling identifies a branched chain amino acid signature in acute cardioembolic stroke. Stroke 2013; 44(5): 1389-95.
[http://dx.doi.org/10.1161/STROKEAHA.111.000397] [PMID: 23520238]
[21]
Inoue Y, Shiozaki T, Tasaki O, et al. Changes in cerebral blood flow from the acute to the chronic phase of severe head injury. J Neurotrauma 2005; 22(12): 1411-8.
[http://dx.doi.org/10.1089/neu.2005.22.1411] [PMID: 16379579]
[22]
Overgaard J, Tweed WA. Cerebral circulation after head injury. J Neurosurg 1976; 45(3): 292-300.
[http://dx.doi.org/10.3171/jns.1976.45.3.0292] [PMID: 948015]
[23]
Nakae R. Coagulation and fibrinolytic disorder. No Shinkei Geka 2021; 49(5): 946-53. [Coagulation and Fibrinolytic Disorder].
[PMID: 34615754]
[24]
Buonacera A, Stancanelli B, Malatino L. Stroke and hypertension: An appraisal from pathophysiology to clinical practice. Curr Vasc Pharmacol 2018; 17(1): 72-84.
[http://dx.doi.org/10.2174/1570161115666171116151051] [PMID: 29149815]
[25]
Jahng GH, Oh J, Lee DW, et al. Glutamine and glutamate complex, as measured by functional magnetic resonance spectroscopy, alters during face-name association task in patients with mild cognitive impairment and alzheimer’s disease. J Alzheimers Dis 2016; 52(1): 145-59.
[http://dx.doi.org/10.3233/JAD-150877] [PMID: 27060946]
[26]
Lever M, Slow S. The clinical significance of betaine, an osmolyte with a key role in methyl group metabolism. Clin Biochem 2010; 43(9): 732-44.
[http://dx.doi.org/10.1016/j.clinbiochem.2010.03.009] [PMID: 20346934]
[27]
Zhong C, Miao M, Che B, et al. Plasma choline and betaine and risks of cardiovascular events and recurrent stroke after ischemic stroke. Am J Clin Nutr 2021; 114(4): 1351-9.
[http://dx.doi.org/10.1093/ajcn/nqab199] [PMID: 34159355]
[28]
Dixon KJ. Pathophysiology of traumatic brain injury. Phys Med Rehabil Clin N Am 2017; 28(2): 215-25.
[http://dx.doi.org/10.1016/j.pmr.2016.12.001] [PMID: 28390509]
[29]
Choi DW. Ischemia-induced neuronal apoptosis. Curr Opin Neurobiol 1996; 6(5): 667-72.
[http://dx.doi.org/10.1016/S0959-4388(96)80101-2] [PMID: 8937832]
[30]
Yun DH, Jeon ES, Sung SM, Ryu SH, Kim JH. Lysophosphatidylcholine suppresses apoptosis and induces neurite outgrowth in PC12 cells through activation of phospholipase D2. Exp Mol Med 2006; 38(4): 375-84.
[http://dx.doi.org/10.1038/emm.2006.44] [PMID: 16953116]
[31]
Sun Y, Lee JH, Kim NH, et al. Lysophosphatidylcholine-induced apoptosis in H19-7 hippocampal progenitor cells is enhanced by the upregulation of Fas Ligand. Biochim Biophys Acta Mol Cell Biol Lipids 2009; 1791(1): 61-8.
[http://dx.doi.org/10.1016/j.bbalip.2008.09.007] [PMID: 19007912]
[32]
Simpson BN, Kim M, Chuang YF, et al. Blood metabolite markers of cognitive performance and brain function in aging. J Cereb Blood Flow Metab 2016; 36(7): 1212-23.
[http://dx.doi.org/10.1177/0271678X15611678] [PMID: 26661209]
[33]
Li M, Zhou L, Sun X, et al. Dopamine, a co-regulatory component, bridges the central nervous system and the immune system. Biomed Pharmacother 2022; 145: 112458.
[http://dx.doi.org/10.1016/j.biopha.2021.112458] [PMID: 34847478]
[34]
Klein MO, Battagello DS, Cardoso AR, Hauser DN, Bittencourt JC, Correa RG. Dopamine: Functions, signaling, and association with neurological diseases. Cell Mol Neurobiol 2019; 39(1): 31-59.
[http://dx.doi.org/10.1007/s10571-018-0632-3] [PMID: 30446950]
[35]
Warren N, O’Gorman C, Lehn A, Siskind D. Dopamine dysregulation syndrome in Parkinson’s disease: a systematic review of published cases. J Neurol Neurosurg Psychiatry 2017; 88(12): 1060-4.
[http://dx.doi.org/10.1136/jnnp-2017-315985] [PMID: 29018160]
[36]
Segura-Aguilar J, Paris I, Muñoz P, Ferrari E, Zecca L, Zucca FA. Protective and toxic roles of dopamine in Parkinson’s disease. J Neurochem 2014; 129(6): 898-915.
[http://dx.doi.org/10.1111/jnc.12686] [PMID: 24548101]
[37]
Eisenhofer G, Kopin IJ, Goldstein DS. Catecholamine metabolism: a contemporary view with implications for physiology and medicine. Pharmacol Rev 2004; 56(3): 331-49.
[http://dx.doi.org/10.1124/pr.56.3.1] [PMID: 15317907]
[38]
Chen B, Tong X, Zhang X, et al. Sulfation modification of dopamine in brain regulates aggregative behavior of animals. Natl Sci Rev 2022; 9(4): nwab163.
[http://dx.doi.org/10.1093/nsr/nwab163] [PMID: 35530433]
[39]
Suominen T, Piepponen TP, Kostiainen R, Kostiainen R. Permeation of dopamine sulfate through the blood-brain barrier. PLoS One 2015; 10(7): e0133904.
[http://dx.doi.org/10.1371/journal.pone.0133904] [PMID: 26207745]
[40]
Osier ND, Ziari M, Puccio AM, et al. Elevated cerebrospinal fluid concentrations of N-acetylaspartate correlate with poor outcome in a pilot study of severe brain trauma. Brain Inj 2019; 33(10): 1364-71.
[http://dx.doi.org/10.1080/02699052.2019.1641743] [PMID: 31305157]
[41]
Elting JW, Sulter GA, Langedijk M, Luijckx GJ, Teelken AW, De Keyser J. N-acetylaspartate: Serum marker of reperfusion in ischemic stroke. J Stroke Cerebrovasc Dis 2004; 13(6): 254-8.
[http://dx.doi.org/10.1016/j.jstrokecerebrovasdis.2004.08.002] [PMID: 17903983]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy