Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Review Article

5-Aminotetrazoles – An Overview of Synthetic Methodologies through the Desulfurization of Thioureas

Author(s): Adriana Marques Moraes, Tiago Lima da Silva and Marcio C.S. de Mattos*

Volume 27, Issue 15, 2023

Published on: 04 October, 2023

Page: [1319 - 1328] Pages: 10

DOI: 10.2174/0113852728263929230919074722

Price: $65

conference banner
Abstract

Tetrazoles are important heterocycles in diverse branches of chemistry. Among the 5-substituted tetrazoles, the 5-amino derivatives are the most important by far as they show high chemical versatility and relevant applications in material chemistry, catalysis, agrochemistry, etc. Particularly in medicinal chemistry, they present a wide range of pharmacological properties. In the present review, we focus on the synthesis of 5- aminotetrazol from the desulfurization processes of thioureas using metal salts, hypervalent iodine compounds and halogenated reagents.

Keywords: Organic synthesis, azidation, carbodiimide, oxidation, isothiourea, guanyl azide.

Graphical Abstract
[1]
(a) Frank, É.; Szőllősi, G. Nitrogen-containing heterocycles as significant molecular scaffolds for medicinal and other applications. Molecules, 2021, 26(15), 4617.
[http://dx.doi.org/10.3390/molecules26154617] [PMID: 34361770];
(b) Obaid, R.J.; Mughal, E.U.; Naeem, N.; Al-Rooqi, M.M.; Sadiq, A.; Jassas, R.S.; Moussa, Z.; Ahmed, S.A. Pharmacological significance of nitrogen-containing five and six-membered heterocyclic scaffolds as potent cholinesterase inhibitors for drug discovery. Process Biochem., 2022, 120, 250-259.
[http://dx.doi.org/10.1016/j.procbio.2022.06.009];
(c) Wang, F.; Yao, Y.; Zhu, H.; Zhang, Y. Nitrogen-containing heterocycle: A privileged scaffold for marketed drugs. Curr. Top. Med. Chem., 2021, 21(6), 439-441.
[http://dx.doi.org/10.2174/156802662106210304105631];
(d) de Andrade, V.; de Mattos, M. N-Halo reagents: Modern synthetic approaches for heterocyclic synthesis. Synthesis, 2019, 51(9), 1841-1870.
[http://dx.doi.org/10.1055/s-0037-1611746]
[2]
(a) Heravi, M.M.; Zadsirjan, V. Prescribed drugs containing nitrogen heterocycles: An overview. RSC Advances, 2020, 10(72), 44247-44311.
[http://dx.doi.org/10.1039/D0RA09198G] [PMID: 35557843];
(b) Vitaku, E.; Smith, D.T.; Njardarson, J.T. Analysis of the structural diversity, substitution patterns, and frequency of nitrogen heterocycles among U.S. FDA approved pharmaceuticals. J. Med. Chem., 2014, 57(24), 10257-10274.
[http://dx.doi.org/10.1021/jm501100b] [PMID: 25255204];
(c) Taylor, R.D.; MacCoss, M.; Lawson, A.D.G. Rings in drugs. J. Med. Chem., 2014, 57(14), 5845-5859.
[http://dx.doi.org/10.1021/jm4017625] [PMID: 24471928]
[3]
(a) de Andrade, V.S.C.; de Mattos, M.C.S. Applications of N-halo reagents in multicomponent reactions: A still underrated approach for the construction of heterocyclic scaffolds. Curr. Org. Chem., 2022, 26(11), 1088-1111.
[http://dx.doi.org/10.2174/1385272826666220822124705];
(b) Nishanth Rao, R.; Jena, S.; Mukherjee, M.; Maiti, B.; Chanda, K. Green synthesis of biologically active heterocycles of medicinal importance: A review. Environ. Chem. Lett., 2021, 19(4), 3315-3358.
[http://dx.doi.org/10.1007/s10311-021-01232-9];
(c) de Andrade, V.S.C.; de Mattos, M.C.S. N-Halo reagents-mediated greener protocols for heterocyclic synthesis: Safe chemistry and pot-economy approaches to azoles and quinoxalines. Curr. Green Chem., 2018, 5(2), 68-85.
[http://dx.doi.org/10.2174/2452273202666180719124023]
[4]
Bladin, J.A. Ueber von Dicyanphenylhydrazin abgeleitete Verbindungen. Ber. Dtsch. Chem. Ges., 1885, 18(1), 1544-1551.
[http://dx.doi.org/10.1002/cber.188501801335]
[5]
Bladin, J.A. Ueber Verbindungen, welche sich vom dicyanphenylhydrazin ableiten. III. Ber. Dtsch. Chem. Ges., 1886, 19(2), 2598-2604.
[http://dx.doi.org/10.1002/cber.188601902220]
[6]
Bladin, J.A. Ueber das tetrazol. Ber. Dtsch. Chem. Ges., 1892, 25(1), 1411-1413.
[http://dx.doi.org/10.1002/cber.189202501212]
[7]
(a) Hossaim, M.B.; van der Helm, D.; Sanduja, R. Structure of 6-azidotetrazolo[5,1-a]phthalazine, C8H4N8, isolated from the toxic dinoflaggelate Gymnodinium breve. Acta Crystallogr. Sect. C: Cryst. Struct. Commun, 1985, 41, 1199-1202.;
(b) Davison, E.K.; Sperry, J. Natural products with heteroatom-rich ring systems. J. Nat. Prod., 2017, 80(11), 3060-3079.
[http://dx.doi.org/10.1021/acs.jnatprod.7b00575] [PMID: 29135244]
[8]
(a) Neochoritis, C.G.; Zhao, T.; Dömling, A. Tetrazoles via multicomponent reactions. Chem. Rev., 2019, 119(3), 1970-2042.
[http://dx.doi.org/10.1021/acs.chemrev.8b00564] [PMID: 30707567];
(b) Sarvary, A.; Maleki, A. A review of syntheses of 1,5-disubstituted tetrazole derivatives. Mol. Divers., 2015, 19(1), 189-212.
[http://dx.doi.org/10.1007/s11030-014-9553-3] [PMID: 25273563]
[9]
Camilleri, P.; Kerr, M.W.; Newton, T.W.; Bowyer, J.R. Structure-activity studies of tetrazole urea herbicides. J. Agric. Food Chem., 1989, 37(1), 196-200.
[http://dx.doi.org/10.1021/jf00085a044]
[10]
Wurzenberger, M.H.H.; Endraß, S.M.J.; Lommel, M.; Klapötke, T.M.; Stierstorfer, J. Comparison of 1-Propyl-5H-tetrazole and 1-azidopropyl-5H-tetrazole as ligands for laser ignitable energetic materials. ACS Appl. Energy Mater., 2020, 3(4), 3798-3806.
[http://dx.doi.org/10.1021/acsaem.0c00229]
[11]
Manafi Khajeh Pasha, A.; Raoufi, S.; Ghobadi, M.; Kazemi, M. Biologically active tetrazole scaffolds: Catalysis in magnetic nanocomposites. Synth. Commun., 2020, 50(24), 3685-3716.
[http://dx.doi.org/10.1080/00397911.2020.1811872]
[12]
Massi, M.; Stagni, S.; Ogden, M.I. Lanthanoid tetrazole coordination complexes. Coord. Chem. Rev., 2018, 375, 164-172.
[http://dx.doi.org/10.1016/j.ccr.2017.11.017]
[13]
(a) Uppadhayay, R.K.; Kumar, A.; Teotia, J.; Singh, A. Multifaceted chemistry of tetrazole. synthesis, uses, and pharmaceutical applications. Russ. J. Org. Chem., 2022, 58(12), 1801-1811.
[http://dx.doi.org/10.1134/S1070428022120090];
(b) Myznikov, L.V.; Vorona, S.V.; Zevatskii, Y.E. Biologically active compounds and drugs in the tetrazole series. Chem. Heterocycl. Compd., 2021, 57(3), 224-233.
[http://dx.doi.org/10.1007/s10593-021-02897-4]
[14]
Verma, A.; Kaur, B.; Venugopal, S.; Wadhwa, P.; Sahu, S.; Kaur, P.; Kumar, D.; Sharma, A. Tetrazole: A privileged scaffold for the discovery of anticancer agents. Chem. Biol. Drug Des., 2022, 100(3), 419-442.
[http://dx.doi.org/10.1111/cbdd.14103] [PMID: 35713482]
[15]
Popova, E.A.; Trifonov, R.E.; Ostrovskii, V.A. Tetrazoles for biomedicine. Russ. Chem. Rev., 2019, 88(6), 644-676.
[http://dx.doi.org/10.1070/RCR4864]
[16]
Gao, C.; Chang, L.; Xu, Z.; Yan, X.F.; Ding, C.; Zhao, F.; Wu, X.; Feng, L.S. Recent advances of tetrazole derivatives as potential anti-tubercular and anti-malarial agents. Eur. J. Med. Chem., 2019, 163, 404-412.
[http://dx.doi.org/10.1016/j.ejmech.2018.12.001] [PMID: 30530192]
[17]
Wang, S.Q.; Wang, Y.F.; Xu, Z. Tetrazole hybrids and their antifungal activities. Eur. J. Med. Chem., 2019, 170, 225-234.
[http://dx.doi.org/10.1016/j.ejmech.2019.03.023] [PMID: 30904780]
[18]
Zhan, P.; Li, Z.; Liu, X.; De Clercq, E. Sulfanyltriazole/tetrazoles: A promising class of HIV-1 NNRTIs. Mini Rev. Med. Chem., 2009, 9(8), 1014-1023.
[http://dx.doi.org/10.2174/138955709788681618] [PMID: 19601897]
[19]
(a) Dhiman, N.; Kaur, K.; Jaitak, V. Tetrazoles as anticancer agents: A review on synthetic strategies, mechanism of action and SAR studies. Bioorg. Med. Chem., 2020, 28(15), 115599.
[http://dx.doi.org/10.1016/j.bmc.2020.115599] [PMID: 32631569];
(b) Malik, M.A.; Wani, M.Y.; Al-Thabaiti, S.A.; Shiekh, R.A. Tetrazoles as carboxylic acid isosteres: Chemistry and biology. J. Incl. Phenom. Macrocycl. Chem., 2014, 78(1-4), 15-37.
[http://dx.doi.org/10.1007/s10847-013-0334-x]
[20]
Matta, C.F.; Arabi, A.A.; Weaver, D.F. The bioisosteric similarity of the tetrazole and carboxylate anions: Clues from the topologies of the electrostatic potential and of the electron density. Eur. J. Med. Chem., 2010, 45(5), 1868-1872.
[http://dx.doi.org/10.1016/j.ejmech.2010.01.025] [PMID: 20133027]
[21]
Herr, R.J. 5-Substituted-1H-tetrazoles as carboxylic acid isosteres: Medicinal chemistry and synthetic methods. Bioorg. Med. Chem., 2002, 10(11), 3379-3393.
[http://dx.doi.org/10.1016/S0968-0896(02)00239-0] [PMID: 12213451]
[22]
May, B.C.H.; Abell, A.D. The synthesis and crystal structure of alpha-keto tetrazole-based dipeptide mimics. Tetrahedron Lett., 2001, 42(33), 5641-5644.
[http://dx.doi.org/10.1016/S0040-4039(01)01101-7]
[23]
Tymtsunik, A.V.; Bilenko, V.A.; Kokhan, S.O.; Grygorenko, O.O.; Volochnyuk, D.M.; Komarov, I.V. 1-Alkyl-5-((di)alkylamino) tetrazoles: Building blocks for peptide surrogates. J. Org. Chem., 2012, 77(2), 1174-1180.
[http://dx.doi.org/10.1021/jo2022235] [PMID: 22171684]
[24]
Kubo, K.; Kohara, Y.; Yoshimura, Y.; Inada, Y.; Shibouta, Y.; Furukawa, Y.; Kato, T.; Nishikawa, K.; Naka, T. Nonpeptide angiotensin II receptor antagonists. Synthesis and biological activity of potential prodrugs of benzimidazole-7-carboxylic acids. J. Med. Chem., 1993, 36(16), 2343-2349.
[http://dx.doi.org/10.1021/jm00068a011] [PMID: 8360879]
[25]
(a) Holland, G.F.; Pereira, J.N. Heterocyclic tetrazoles, a new class of lipolysis inhibitors. J. Med. Chem., 1967, 10(2), 149-154.
[http://dx.doi.org/10.1021/jm00314a004] [PMID: 6034054];
(b) Figdor, S.K.; von Wittenau, M.S. Metabolism of 5-(3-Pyridyl)tetrazole. J. Med. Chem., 1967, 10(6), 1158-1159.
[http://dx.doi.org/10.1021/jm00318a038] [PMID: 6056047]
[26]
Mittal, R.; Awasthi, S.K. Recent advances in the synthesis of 5-substituted 1H-tetrazoles: A complete survey (2013–2018). Synthesis, 2019, 51(20), 3765-3783.
[http://dx.doi.org/10.1055/s-0037-1611863]
[27]
Glück, J.; Klapötke, T.M.; Küblböck, T. 5-Amino-1H-tetrazole-based multi-coloured smoke signals applying the concept of fuel mixes. New J. Chem., 2018, 42(13), 10670-10675.
[http://dx.doi.org/10.1039/C8NJ01786G]
[28]
Cao, C.Y.; Lu, S.; Zhang, D.; Gong, L.L.; Zhang, H.P. Effects of nitroguanidine on the thermal behavior and burning characteristics of 5-amino-1H-tetrazole-based propel-lants. RSC Adv., 2017, 7(23), 13808-13816.
[http://dx.doi.org/10.1039/C7RA01607G]
[29]
(a) Popova, E.A.; Trifonov, R.E.; Ostrovskii, V.A. Advances in the synthesis of tetrazoles coordinated to metal ions. ARKIVOC, 2012, 45-65.;
(b) Aromí, G.; Barrios, L.A.; Roubeau, O.; Gamez, P. Triazoles and tetrazoles: Prime ligands to generate remarkable coordination materials. Coord. Chem. Rev., 2011, 255(5-6), 485-546.
[http://dx.doi.org/10.1016/j.ccr.2010.10.038]
[30]
Nasrollahzadeh, M.; Nezafat, Z.; Bidgoli, N.S.S.; Shafiei, N. Use of tetrazoles in catalysis and energetic applications: Recent developments. Mol. Catal., 2021, 513, 111788.
[http://dx.doi.org/10.1016/j.mcat.2021.111788]
[31]
Ehsani, A.; Mahjani, M.G.; Moshrefi, R.; Mostaanzadeh, H.; Shayeh, J.S. Electrochemical and DFT study on the inhibition of 316L stainless steel corrosion in acidic medium by 1-(4-nitrophenyl)-5-amino-1H-tetrazole. RSC Advances, 2014, 4(38), 20031-20037.
[http://dx.doi.org/10.1039/C4RA01029A]
[32]
Kiselev, V.G.; Gritsan, N.P. Theoretical study of the 5-aminotetrazole thermal decomposition. J. Phys. Chem. A, 2009, 113(15), 3677-3684.
[http://dx.doi.org/10.1021/jp900285y] [PMID: 19323480]
[33]
Zhang, J.; Wang, S.; Ba, Y.; Xu, Z. Tetrazole hybrids with potential anticancer activity. Eur. J. Med. Chem., 2019, 178, 341-351.
[http://dx.doi.org/10.1016/j.ejmech.2019.05.071] [PMID: 31200236]
[34]
Wang, X.; Li, W. Comparative study of interactions between human cGAS and inhibitors: Insights from molecular dynamics and MM/PBSA studies. Int. J. Mol. Sci., 2021, 22(3), 1164.
[http://dx.doi.org/10.3390/ijms22031164] [PMID: 33503880]
[35]
Gao, F.; Xiao, J.; Huang, G. Current scenario of tetrazole hybrids for antibacterial activity. Eur. J. Med. Chem., 2019, 184, 111744.
[http://dx.doi.org/10.1016/j.ejmech.2019.111744] [PMID: 31605865]
[36]
Szulczyk, D.; Bielenica, A.; Głogowska, A.; Augustynowicz-Kopeć, E.; Dobrowolski, M.; Roszkowski, P.; Stępień, K.; Chrzanowska, A.; Struga, M. Development of (4-methoxyphenyl)-1H-tetrazol-5-amine regioisomers as a new class of selective antitubercular agents. Eur. J. Med. Chem., 2020, 186, 111882.
[http://dx.doi.org/10.1016/j.ejmech.2019.111882] [PMID: 31753514]
[37]
Radakovic, N.; Nikolić, A.; Jovanović, N.T.; Stojković, P.; Stankovic, N.; Šolaja, B.; Opsenica, I.; Pavic, A. Unraveling the anti-virulence potential and antifungal efficacy of 5-aminotetrazoles using the zebrafish model of disseminated candidiasis. Eur. J. Med. Chem., 2022, 230, 114137.
[http://dx.doi.org/10.1016/j.ejmech.2022.114137] [PMID: 35077918]
[38]
Häbich, D. Synthesis of 3′-(5-Amino-1,2,3,4-tetrazol-1-yl)-3′-deoxythymidines. Synthesis, 1992, 1992(4), 358-360.
[http://dx.doi.org/10.1055/s-1992-26107]
[39]
Ford, R.E.; Knowles, P.; Lunt, E.; Marshall, S.M.; Penrose, A.J.; Ramsden, C.A.; Summers, A.J.H.; Walker, J.L.; Wright, D.E. Synthesis and quantitative structure-activity relationships of antiallergic 2-hydroxy-N-(1H-tetrazol-5-yl)benzamides and N-(2-hydroxyphenyl)-1H-tetrazole-5-carboxamides. J. Med. Chem., 1986, 29(4), 538-549.
[http://dx.doi.org/10.1021/jm00154a019] [PMID: 2870188]
[40]
Castro, J.L.; Ball, R.G.; Broughton, H.B.; Russell, M.G.N.; Rathbone, D.; Watt, A.P.; Baker, R.; Chapman, K.L.; Fletcher, A.E.; Patel, S.; Smith, A.J.; Marshall, G.R.; Ryecroft, W.; Matassa, V.G. Controlled modification of acidity in cholecystokinin B receptor antagonists: N-(1,4-Benzodiazepin-3-yl)-N‘-[3-(tetrazol-5-ylamino)phenyl]ureas. J. Med. Chem., 1996, 39(4), 842-849.
[http://dx.doi.org/10.1021/jm9506736] [PMID: 8632408]
[41]
(a) Thiele, J. Ueber nitro- und amidoguanidin. Justus Liebigs Ann. Chem., 1892, 270(1-2), 1-63.
[http://dx.doi.org/10.1002/jlac.18922700102];
(b) Thicle, J.; Ingle, H. Ueber einige derivate des tetrazols. Justus Liebigs Ann. Chem., 1895, 287(3), 233-265.
[http://dx.doi.org/10.1002/jlac.18952870302];
(c) Kurzer, F.; Godfrey, L.E.A. Syntheses of heterocyclic compounds from aminoguanidine. Angew. Chem. Int. Ed. Engl., 1963, 2(8), 459-476.
[http://dx.doi.org/10.1002/anie.196304591]
[42]
Nikolić, A.M.; Ajdačić, V.; Opsenica, I.M. Palladium-catalyzed N-Arylation of 1-substituted-1H-tetrazol-5-amines. J. Organomet. Chem., 2019, 880, 134-142.
[http://dx.doi.org/10.1016/j.jorganchem.2018.11.007]
[43]
Murthy Boddapati, S.N.; Emmanuel Kola, A.; Kesana, S.B.; Bollikolla, H.B. Temperature dependent regioselective synthesis of aryl tetrazole amines using copper source. J. Organomet. Chem., 2018, 866, 177-183.
[http://dx.doi.org/10.1016/j.jorganchem.2018.04.027]
[44]
Nimnual, P.; Tummatorn, J.; Boekfa, B.; Thongsornkleeb, C.; Ruchirawat, S.; Piyachat, P.; Punjajom, K. Construction of 5-aminotetrazoles via in situ generation of carbodiimidium ions from ketones promoted by TMSN3/TfOH. J. Org. Chem., 2019, 84(9), 5603-5613.
[http://dx.doi.org/10.1021/acs.joc.9b00555] [PMID: 30945854]
[45]
Joo, Y.H.; Shreeve, J.M. 1-substituted 5-aminotetrazoles: Syntheses from CNN3 with primary amines. Org. Lett., 2008, 10(20), 4665-4667.
[http://dx.doi.org/10.1021/ol8019742] [PMID: 18816126]
[46]
(a) Světlík, J.; Hrušovský, I.; Martvoň, A. Reactions of asymmetric carbodiimides with azoimide. Collect. Czech. Chem. Commun., 1979, 44(10), 2982-2986.
[http://dx.doi.org/10.1135/cccc19792982];
(b) Vorona, S.V.; Zevatskii, Y.E.; Myznikov, L.V. Zinc (II) chloride as phase transfer catalyst and as catalyst of cycloaddition azide ion to heterocumulenes and terminal alkynes in organic solvents. ChemistrySelect, 2019, 4(36), 10846-10850.
[http://dx.doi.org/10.1002/slct.201903162]
[47]
a) Voitekhovich, S.V.; Vorob’ev, A.N.; Gaponik, P.N.; Ivashkevich, O.A. Synthesis of new functionally substituted 1-R-tetrazoles and their 5-amino derivatives. Chem. Heterocycl. Compd., 2005, 41(8), 999-1004.
[http://dx.doi.org/10.1007/s10593-005-0267-4];
(b) Habibi, D.; Nasrollahzadeh, M.; Sahebekhtiari, H.; Sajadi, S. Ultrasound-promoted regioselective synthesis of 1-aryl-5-amino-1H-tetrazoles. Synlett, 2012, 23(19), 2795-2798.
[http://dx.doi.org/10.1055/s-0032-1317513];
(c) Khalili, B.; Darabi, F.S.; Eftekhari-Sis, B.; Rimaz, M. Green chemistry: ZrOCl2•8H2O catalyzed regioselective synthesis of 5-amino-1-aryl-1H-tetrazoles from second-ary arylcyanamides in water. Monatsh. Chem., 2013, 144(10), 1569-1572.
[http://dx.doi.org/10.1007/s00706-013-1038-z];
(d) Telvekar, V.; Bhagat, S. l-Proline: An efficient organocatalyst for the synthesis of 5-Substituted 1H-tetrazoles via [3+2] cycloaddition of nitriles and sodium azide. Synlett, 2018, 29(7), 874-879.
[http://dx.doi.org/10.1055/s-0036-1591534]
[]
(e) Pathare, R.S.; Ansari, A.J.; Verma, S.; Maurya, A.; Maurya, A.K.; Agnihotri, V.K.; Sharon, A.; Pardasani, R.T.; Sawant, D.M. Sequential Pd(0)/Fe(III) catalyzed azide–isocyanide coupling/cyclization reaction: One-pot synthesis of aminotetrazoles. J. Org. Chem., 2018, 83(16), 9530-9537.
[http://dx.doi.org/10.1021/acs.joc.8b01261] [PMID: 30037227]
[48]
Gonçalves, I.L.; de Azambuja, G.O.; Kawano, D.F.; Eifler-Lima, V.L. Thioureas as building blocks for the generation of heterocycles and compounds with pharmacological activity: An overview. Mini Rev. Org. Chem., 2018, 15(1), 28-35.
[http://dx.doi.org/10.2174/1570193X14666170518125219]
[49]
Williams, A.; Ibrahim, I.T. Carbodiimide chemistry: Rrecent advances. Chem. Rev., 1981, 81(6), 589-636.
[http://dx.doi.org/10.1021/cr00046a004]
[50]
(a) Vishwakarma, R.; Gadipelly, C.; Mannepalli, L.K. Advances in tetrazole synthesis – An overview. ChemistrySelect, 2022, 7(29), e202200706.
[http://dx.doi.org/10.1002/slct.202200706];
(b) Verma, N.; Bera, S.; Mondal, D. Synthesis of tetrazole derivatives through conversion of amide and thioamide functionalities. Chem. Heterocycl. Compd., 2022, 58(2-3), 73-83.
[http://dx.doi.org/10.1007/s10593-022-03059-w];
(c) Leyva-Ramos, S.; Cardoso-Ortiz, J. Recent developments in the synthesis of tetrazoles and their pharmacological relevance. Curr. Org. Chem., 2021, 25(3), 388-403.
[http://dx.doi.org/10.2174/18755348MTEyoMzEFz];
(d) Sathishkumar, S.; Gayathri, K. Synthesis of tetrazole derivatives. Russ. J. Org. Chem., 2021, 57(3), 402-416.
[http://dx.doi.org/10.1134/S107042802103012X];
(e) Mohammadkhani, L.; Heravi, M.M. Synthesis of N-heterocycles containing 1,5-disubstituted-1H-tetrazole via post-Ugi-azide reaction. Mol. Divers., 2020, 24(3), 841-853.
[http://dx.doi.org/10.1007/s11030-019-09972-1] [PMID: 31222498];
(f) Gouda, M.A.; Al-Ghorbani, M.; Helal, M.H.; Salem, M.A.; Hanashalshahaby, E.H.A. A review: Recent progress on the synthetic routes to 1(5)-substituted 1H-Tetrazoles and its analogs. Synth. Commun., 2020, 50(20), 3017-3043.
[http://dx.doi.org/10.1080/00397911.2020.1792499];
(g) Ostrovskii, V.A.; Popova, E.A.; Trifonov, R.E. Developments in tetrazole chemistry (2009–16). Adv. Heterocycl. Chem., 2017, 123, 1-62.
[http://dx.doi.org/10.1016/bs.aihch.2016.12.003];
(h) Benson, F.R. The chemistry of the tetrazoles. Chem. Rev., 1947, 41(1), 1-61.
[http://dx.doi.org/10.1021/cr60128a001] [PMID: 20257066]
[51]
Stollé, R.; Ehrmann, K.; Rieder, D.; Wille, H.; Winter, H.; Henke-Stark, F. Über tetrazolabkömmlinge. J. Prakt. Chem., 1932, 134(9-12), 282-309.
[http://dx.doi.org/10.1002/prac.19321340902]
[52]
Percival, D.F.; Herbst, R.M. Alkylated 5-aminotetrazololes, their preparation and properties. J. Org. Chem., 1957, 22(8), 925-933.
[http://dx.doi.org/10.1021/jo01359a019]
[53]
Kim, K.S.; Qian, L. Improved method for the preparation of guanidines. Tetrahedron Lett., 1993, 34(48), 7677-7680.
[http://dx.doi.org/10.1016/S0040-4039(00)61537-X]
[54]
Batey, R.A.; Powell, D.A. A general synthetic method for the formation of substituted 5-aminotetrazoles from thioureas: A strategy for diversity amplification. Org. Lett., 2000, 2(20), 3237-3240.
[http://dx.doi.org/10.1021/ol006465b] [PMID: 11009390]
[55]
Butler, R.N. Tetrazoles. Comprehensive Heterocyclic Chemistry; Potts, K.T., Ed.; Pergamon Press: New York, 1984, Vol. 5, pp. 791-838.
[http://dx.doi.org/10.1016/B978-008096519-2.00081-3]
[56]
Sathishkumar, M.; Shanmugavelan, P.; Nagarajan, S.; Dinesh, M.; Ponnuswamy, A. Water promoted one pot three-component synthesis of tetrazoles. New J. Chem., 2013, 37(2), 488-493.
[http://dx.doi.org/10.1039/C2NJ40733G]
[57]
Guin, S.; Rout, S.K.; Gogoi, A.; Nandi, S.; Ghara, K.K.; Patel, B.K. Desulfurization strategy in the construction of azoles possessing additional nitrogen, oxygen or sulfur using a Copper(I) catalyst. Adv. Synth. Catal., 2012, 354(14-15), 2757-2770.
[http://dx.doi.org/10.1002/adsc.201200408]
[58]
Seelam, M.; Kammela, P.R.; Shaikh, B.; Tamminana, R.; Bogiri, S. Cobalt-promoted one-pot reaction of isothiocyanates toward the synthesis of aryl/alkylcyanamides and substituted tetrazoles. Chem. Heterocycl. Compd., 2018, 54(5), 535-544.
[http://dx.doi.org/10.1007/s10593-018-2303-1]
[59]
Lakshmi, K.; Babu, M.S.; Ramachandran, D. Cobalt-promoted regioselective preparation of aryl tetrazole amines. J. Chem. Sci., 2018, 130(5), 46.
[http://dx.doi.org/10.1007/s12039-018-1453-0]
[60]
Kondhare, D.D.; Bhadke, V.V.; Deshmukh, S.S.; Wakhradkar, M.G.; Totawar, B.B. Eco-efficient one-pot tandem synthesis of 1-aryl-1H-tetrazol-5-amine by CAN via in situ generated 1-phenylthiourea and heterocumulene. J. Indian Chem. Soc., 2021, 98(8), 100103.
[http://dx.doi.org/10.1016/j.jics.2021.100103]
[61]
Pendem, V.B.; Tamminana, R.; Nannapaneni, M. Iron-promoted sulfur sequestration for the substituent-dependent regioselective synthesis of tetrazoles and guanidines. J. Sulfur Chem., 2021, 42(5), 499-509.
[http://dx.doi.org/10.1080/17415993.2021.1909589]
[62]
Yella, R.; Khatun, N.; Rout, S.K.; Patel, B.K. Tandem regioselective synthesis of tetrazoles and related heterocycles using iodine. Org. Biomol. Chem., 2011, 9(9), 3235-3245.
[http://dx.doi.org/10.1039/c0ob01007c] [PMID: 21431153]
[63]
Jadhav, N.C.; Jagadhane, P.B.; Patel, K.N.; Telvekar, V.N. An expedient route to the azoles through oxidative desulfurization using iodine reagent. Tetrahedron Lett., 2013, 54(1), 101-105.
[http://dx.doi.org/10.1016/j.tetlet.2012.10.114]
[64]
Yoshimura, A.; Middleton, K.R.; Luedtke, M.W.; Zhu, C.; Zhdankin, V.V. Hypervalent iodine catalyzed Hofmann rearrangement of carboxamides using oxone as terminal oxidant. J. Org. Chem., 2012, 77(24), 11399-11404.
[http://dx.doi.org/10.1021/jo302375m] [PMID: 23176018]
[65]
Chaudhari, P.S.; Pathare, S.P.; Akamanchi, K.G. O-Iodoxybenzoic acid mediated oxidative desulfurization initiated domino reactions for synthesis of azoles. J. Org. Chem., 2012, 77(8), 3716-3723.
[http://dx.doi.org/10.1021/jo2025509] [PMID: 22423599]
[66]
Xie, Y.; Guo, D.; Jiang, X.; Pan, H.; Wang, W.; Jin, T.; Mi, Z. An efficient method for the synthesis of substituted 5-aminotetrazoles from selenoureas using PhI(OAc)2. Tetrahedron Lett., 2015, 56(19), 2533-2536.
[http://dx.doi.org/10.1016/j.tetlet.2015.03.128]
[67]
Moraes, A.M.; da Silva, T.L.; de Mattos, M.C.S. An eco‐friendly synthesis of 5‐aminotetrazoles using trichloroisocyanuric acid as desulfurization agent of thioureas. J. Heterocycl. Chem., 2023, 60(9), 1625-1632.
[http://dx.doi.org/10.1002/jhet.4667]
[68]
(a) Gaspa, S.; Carraro, M.; Pisano, L.; Porcheddu, A.; De Luca, L. Trichloroisocyanuric acid: A versatile and efficient chlorinating and oxidizing reagent. Eur. J. Org. Chem., 2019, 2019(22), 3544-3552.
[http://dx.doi.org/10.1002/ejoc.201900449];
(b) Mendonça, G.; Mattos, M. Green chlorination of organic compounds using trichloroisocyanuric acid (TCCA). Curr. Org. Synth., 2014, 10(6), 820-836.
[http://dx.doi.org/10.2174/157017941006140206102255];
(c) Tilstam, U.; Weinmann, H. Trichloroisocyanuric acid: A safe and efficient oxidant. Org. Process Res. Dev., 2002, 6(4), 384-393.
[http://dx.doi.org/10.1021/op010103h]
[69]
Li, B.L. Azidotrimethylsilane. Synlett, 2012, 23(10), 1554-1555.
[http://dx.doi.org/10.1055/s-0031-1290687]
[70]
Vergaelen, M.; Verbraeken, B.; Van Guyse, J.F.R.; Podevyn, A.; Tigrine, A.; de la Rosa, V.R.; Monnery, B.D.; Hoogenboom, R. Ethyl acetate as solvent for the synthesis of poly(2-ethyl-2-oxazoline). Green Chem., 2020, 22(5), 1747-1753.
[http://dx.doi.org/10.1039/C9GC03872H]
[71]
Yu, Y.; Ostresh, J.M.; Houghten, R.A. Solid-phase synthesis of 5-aminotetrazoles. Tetrahedron Lett., 2004, 45(41), 7787-7789.
[http://dx.doi.org/10.1016/j.tetlet.2004.07.160]
[72]
Gavrilyuk, J.I.; Evindar, G.; Chen, J.Y.; Batey, R.A. Peptide-heterocycle hybrid molecules: Solid-phase-supported synthesis of substituted N-terminal 5-aminotetrazole peptides via electrocyclization of peptidic imidoylazides. J. Comb. Chem., 2007, 9(4), 644-651.
[http://dx.doi.org/10.1021/cc060119p] [PMID: 17580974]
[73]
Savych, O.; Kuchkovska, Y.O.; Bogolyubsky, A.V.; Konovets, A.I.; Gubina, K.E.; Pipko, S.E.; Zhemera, A.V.; Grishchenko, A.V.; Khomenko, D.N.; Brovarets, V.S.; Doroschuk, R.; Moroz, Y.S.; Grygorenko, O.O. One-pot parallel synthesis of 5-(Dialkylamino)tetrazoles. ACS Comb. Sci., 2019, 21(9), 635-642.
[http://dx.doi.org/10.1021/acscombsci.9b00120] [PMID: 31437394]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy