Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Mini-Review Article

Natural Alternatives to Non-biodegradable Polymers in 3D Printing of Pharmaceuticals

Author(s): Ayush Somwanshi, Pankaj Wadhwa*, Amir Raza, Sharwan Hudda, Muskan Magan and Kanav Khera

Volume 29, Issue 29, 2023

Published on: 02 October, 2023

Page: [2281 - 2290] Pages: 10

DOI: 10.2174/0113816128259971230921111755

Price: $65

Abstract

Background: Due to potential toxicity, non-biodegradable polymers used in 3D (3-dimensional) printing of drugs could be dangerous for patient safety and the environment.

Objective: This review aims to investigate the toxicity of non-biodegradable polymers and investigate the use of natural materials as an alternative in 3D printing medicines. The study evaluates the dangers connected to 3D printing.

Methods: A review of the literature on various 3D printing processes, such as inkjet printing, fused filament manufacturing, and extrusion-related 3DP systems, was done for this study. Also, the use of cellulose derivatives and natural materials in 3D printing and their potential as active excipients was proposed.

Results: The review identified potential toxicity risks linked to non-biodegradable polymers used in drug 3D printing. As a potential fix for this issue, the use of natural materials with improved mechanical and thermal properties was explored. The use of cellulose derivatives as an alternative to non-biodegradable polymers in 3D printing pharmaceuticals was also investigated in the study.

Conclusion: This study emphasises the significance of evaluating the risks connected to drug 3D printing and recommends using natural materials as an alternative to non-biodegradable polymers. More study is required to create secure and reliable 3D printing processes for pharmaceuticals.

Keywords: Additive manufacturing, active excipient, non-biodegradable, natural materials, patient safety, 3D printing technique.

[1]
Darji MA, Lalge RM, Marathe SP, et al. Excipient stability in oral solid dosage forms: A review. AAPS PharmSciTech 2018; 19(1): 12-26.
[http://dx.doi.org/10.1208/s12249-017-0864-4] [PMID: 28895106]
[2]
Bharawaj S, Jain V, Sharma S, Jat R, Jain S. Orally disintegrating tablets: A review. Drug Invent Today 2010; 2(1).
[3]
Teżyk M, Milanowski B, Ernst A, Lulek J. Recent progress in continuous and semi-continuous processing of solid oral dosage forms: A review. Drug Dev Ind Pharm 2016; 42(8): 1195-214.
[http://dx.doi.org/10.3109/03639045.2015.1122607] [PMID: 26592545]
[4]
Vanhoorne V, Vervaet C. Recent progress in continuous manufacturing of oral solid dosage forms. Int J Pharm 2020; 579: 119194.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119194] [PMID: 32135231]
[5]
Awad A, Trenfield SJ, Goyanes A, Gaisford S, Basit AW. Reshaping drug development using 3D printing. Drug Discov Today 2018; 23(8): 1547-55.
[http://dx.doi.org/10.1016/j.drudis.2018.05.025] [PMID: 29803932]
[6]
Trenfield SJ, Awad A, Goyanes A, Gaisford S, Basit AW. 3D printing pharmaceuticals: Drug development to frontline care. Trends Pharmacol Sci 2018; 39(5): 440-51.
[http://dx.doi.org/10.1016/j.tips.2018.02.006] [PMID: 29534837]
[7]
Awad A, Trenfield SJ, Gaisford S, Basit AW. 3D printed medicines: A new branch of digital healthcare. Int J Pharm 2018; 548(1): 586-96.
[http://dx.doi.org/10.1016/j.ijpharm.2018.07.024] [PMID: 30033380]
[8]
Sjöholm E, Sandler N. Additive manufacturing of personalized orodispersible warfarin films. Int J Pharm 2019; 564: 117-23.
[http://dx.doi.org/10.1016/j.ijpharm.2019.04.018] [PMID: 30974195]
[9]
Kollamaram G, Croker DM, Walker GM, Goyanes A, Basit AW, Gaisford S. Low temperature fused deposition modeling (FDM) 3D printing of thermolabile drugs. Int J Pharm 2018; 545(1-2): 144-52.
[http://dx.doi.org/10.1016/j.ijpharm.2018.04.055] [PMID: 29705104]
[10]
Araújo M, Sa-Barreto L, Gratieri T, Gelfuso G, Cunha-Filho M. The digital pharmacies era: How 3D printing technology using fused deposition modeling can become a reality. Pharmaceutics 2019; 11(3): 128.
[http://dx.doi.org/10.3390/pharmaceutics11030128] [PMID: 30893842]
[11]
Sabbatini B, Cambriani A, Cespi M, Palmieri GF, Perinelli DR, Bonacucina G. An Overview of natural polymers as reinforcing agents for 3D printing. ChemEngineering 2021; 5(4): 78.
[http://dx.doi.org/10.3390/chemengineering5040078]
[12]
Ahmed W, Alnajjar F, Zaneldin E, Al-Marzouqi AH, Gochoo M, Khalid S. Implementing FDM 3D printing strategies using natural fibers to produce biomass composite. Materials 2020; 13(18): 4065.
[http://dx.doi.org/10.3390/ma13184065] [PMID: 32933194]
[13]
Z-free zipdose technology. Aprecia Pharmaceuticals. 2015. Available From: https://aprecia.com/zipdose-platform/zipdose-technology.php (acessed on 25 March 2023).
[14]
SPRITAM®. Spritam full prescribing information. Aprecia Pharmaceuticals. 2022. Available From: https://spritam.com/pdfs/spritam-full-prescribing-information.pdf (accessed 25 March 2023).
[15]
Choe S, Kim Y, Park G, et al. Biodegradation of 3D-printed biodegradable/non-biodegradable plastic blends. ACS Appl Polym Mater 2022; 4(7): 5077-90.
[http://dx.doi.org/10.1021/acsapm.2c00600]
[16]
Stults CLM, Ansell JM, Shaw AJ, Nagao LM. Evaluation of extractables in processed and unprocessed polymer materials used for pharmaceutical applications. AAPS PharmSciTech 2015; 16(1): 150-64.
[http://dx.doi.org/10.1208/s12249-014-0188-6] [PMID: 25227309]
[17]
Norwood DL, Paskiet D, Ruberto M, et al. Best practices for extractables and leachables in orally inhaled and nasal drug products: An overview of the PQRI recommendations. Pharm Res 2008; 25(4): 727-39.
[http://dx.doi.org/10.1007/s11095-007-9521-z] [PMID: 18183477]
[18]
Hermabessiere L, Receveur J, Himber C, et al. An Irgafos® 168 story: When the ubiquity of an additive prevents studying its leaching from plastics. Sci Total Environ 2020; 749: 141651.
[http://dx.doi.org/10.1016/j.scitotenv.2020.141651] [PMID: 32836131]
[19]
Dorival-García N, Carillo S, Ta C, et al. Large-scale assessment of extractables and leachables in single-use bags for biomanufacturing. Anal Chem 2018; 90(15): 9006-15.
[http://dx.doi.org/10.1021/acs.analchem.8b01208] [PMID: 29943976]
[20]
Oliveira M, Santos E, Araújo A, Fechine GJM, Machado AV, Botelho G. The role of shear and stabilizer on PLA degradation. Polym Test 2016; 51: 109-16.
[http://dx.doi.org/10.1016/j.polymertesting.2016.03.005]
[21]
Jain A, Bansal KK, Tiwari A, Rosling A, Rosenholm JM. Role of polymers in 3D printing technology for drug delivery-an overview. Curr Pharm Des 2019; 24(42): 4979-90.
[http://dx.doi.org/10.2174/1381612825666181226160040] [PMID: 30585543]
[22]
Park S, Shou W, Makatura L, Matusik W, Fu KK. 3D printing of polymer composites: Materials, processes, and applications. Matter 2022; 5(1): 43-76.
[http://dx.doi.org/10.1016/j.matt.2021.10.018]
[23]
Zhu X, Li H, Huang L, Zhang M, Fan W, Cui L. 3D printing promotes the development of drugs. Biomed Pharmacother 2020; 131: 110644.
[http://dx.doi.org/10.1016/j.biopha.2020.110644] [PMID: 32853908]
[24]
Hamburg MA, Collins FS. The path to personalized medicine. N Engl J Med 2010; 363(4): 301-4.
[http://dx.doi.org/10.1056/NEJMp1006304] [PMID: 20551152]
[25]
Arain FA, Kuniyoshi FH, Abdalrhim AD, Miller VM. Sex/gender medicine. The biological basis for personalized care in cardiovascular medicine. Circ J 2009; 73(10): 1774-82.
[http://dx.doi.org/10.1253/circj.CJ-09-0588] [PMID: 19729858]
[26]
Ligon SC, Liska R, Stampfl J, Gurr M, Mülhaupt R. Polymers for 3D printing and customized additive manufacturing. Chem Rev 2017; 117(15): 10212-90.
[http://dx.doi.org/10.1021/acs.chemrev.7b00074] [PMID: 28756658]
[27]
Hosny KM, Alkhalidi HM, Alharbi WS, et al. Recent trends in assessment of cellulose derivatives in designing novel and nanoparticulate-based drug delivery systems for improvement of oral health. Polymers 2021; 14(1): 92.
[http://dx.doi.org/10.3390/polym14010092] [PMID: 35012115]
[28]
Goyanes A, Buanz ABM, Hatton GB, Gaisford S, Basit AW. 3D printing of modified-release aminosalicylate (4-ASA and 5-ASA) tablets. Eur J Pharm Biopharm 2015; 89: 157-62.
[http://dx.doi.org/10.1016/j.ejpb.2014.12.003] [PMID: 25497178]
[29]
Du H, Liu W, Zhang M, Si C, Zhang X, Li B. Cellulose nanocrystals and cellulose nanofibrils based hydrogels for biomedical applications. Carbohydr Polym 2019; 209: 130-44.
[http://dx.doi.org/10.1016/j.carbpol.2019.01.020] [PMID: 30732792]
[30]
Goyanes A, Wang J, Buanz A, et al. 3D printing of medicines: Engineering novel oral devices with unique design and drug release characteristics. Mol Pharm 2015; 12(11): 4077-84.
[http://dx.doi.org/10.1021/acs.molpharmaceut.5b00510] [PMID: 26473653]
[31]
Zhang XN, Zheng Q, Wu ZL. Recent advances in 3D printing of tough hydrogels: A review. Compos, Part B Eng 2022; 238: 109895.
[http://dx.doi.org/10.1016/j.compositesb.2022.109895]
[32]
Lee HY, Chan LW, Heng PWS. Influence of partially cross-linked alginate used in the production of alginate microspheres by emulsification. J Microencapsul 2005; 22(3): 275-80.
[http://dx.doi.org/10.1080/02652040500100378] [PMID: 16019913]
[33]
Nagarsenker MS, Patere SN, Kapadia CJ. Influence of formulation factors and compression force on release profile of sustained release metoprolol tablets using compritol® 888ato as lipid excipient. Indian J Pharm Sci 2015; 77(5): 620-5.
[http://dx.doi.org/10.4103/0250-474X.169030] [PMID: 26798179]
[34]
Hiremath P, Nuguru K, Agrahari V. Material attributes and their impact on wet granulation process performance. Handbook of pharmaceutical wet granulation. Elsevier 2019; pp. 263-315.
[http://dx.doi.org/10.1016/B978-0-12-810460-6.00012-9]
[35]
Rowe RC, Sheskey P, Quinn M. Handbook of pharmaceutical excipients. Libros Digitales-Pharmaceutical Press 2009.
[36]
Shokri J, Adibkia K. Application of cellulose and cellulose derivatives in pharmaceutical industries. Cellulose-medical, pharmaceutical and electronic applications. IntechOpen 2013.
[http://dx.doi.org/10.5772/55178]
[37]
Goyanes A, Robles Martinez P, Buanz A, Basit AW, Gaisford S. Effect of geometry on drug release from 3D printed tablets. Int J Pharm 2015; 494(2): 657-63.
[http://dx.doi.org/10.1016/j.ijpharm.2015.04.069] [PMID: 25934428]
[38]
Kempin W, Domsta V, Grathoff G, et al. Immediate release 3D-printed tablets produced via fused deposition modeling of a thermo-sensitive drug. Pharm Res 2018; 35(6): 124.
[http://dx.doi.org/10.1007/s11095-018-2405-6] [PMID: 29679157]
[39]
Pietrzak K, Isreb A, Alhnan MA. A flexible-dose dispenser for immediate and extended release 3D printed tablets. Eur J Pharm Biopharm 2015; 96: 380-7.
[http://dx.doi.org/10.1016/j.ejpb.2015.07.027] [PMID: 26277660]
[40]
Hanson Shepherd JN, Parker ST, Shepherd RF, Gillette MU, Lewis JA, Nuzzo RG. 3D microperiodic hydrogel scaffolds for robust neuronal cultures. Adv Funct Mater 2011; 21(1): 47-54.
[http://dx.doi.org/10.1002/adfm.201001746] [PMID: 21709750]
[41]
Alhijjaj M, Belton P, Qi S. An investigation into the use of polymer blends to improve the printability of and regulate drug release from pharmaceutical solid dispersions prepared via fused deposition modeling (FDM) 3D printing. Eur J Pharm Biopharm 2016; 108: 111-25.
[http://dx.doi.org/10.1016/j.ejpb.2016.08.016] [PMID: 27594210]
[42]
Aulton ME, Taylor K. Aulton’s pharmaceutics: The design and manufacture of medicines. Churchill Livingstone: Elsevier 2013.
[43]
Melocchi A, Parietti F, Maroni A, Foppoli A, Gazzaniga A, Zema L. Hot-melt extruded filaments based on pharmaceutical grade polymers for 3D printing by fused deposition modeling. Int J Pharm 2016; 509(1-2): 255-63.
[http://dx.doi.org/10.1016/j.ijpharm.2016.05.036] [PMID: 27215535]
[44]
Khaled SA, Burley JC, Alexander MR, Roberts CJ. Desktop 3D printing of controlled release pharmaceutical bilayer tablets. Int J Pharm 2014; 461(1-2): 105-11.
[http://dx.doi.org/10.1016/j.ijpharm.2013.11.021] [PMID: 24280018]
[45]
Seoane-Viaño I, Trenfield SJ, Basit AW, Goyanes A. Translating 3D printed pharmaceuticals: From hype to real-world clinical applications. Adv Drug Deliv Rev 2021; 174: 553-75.
[http://dx.doi.org/10.1016/j.addr.2021.05.003] [PMID: 33965461]
[46]
Ahmed EM. Hydrogel: Preparation, characterization, and applications: A review. J Adv Res 2015; 6(2): 105-21.
[http://dx.doi.org/10.1016/j.jare.2013.07.006] [PMID: 25750745]
[47]
Chung JJ, Im H, Kim SH, Park JW, Jung Y. Toward biomimetic scaffolds for tissue engineering: 3D printing techniques in regenerative medicine. Front Bioeng Biotechnol 2020; 8: 586406.
[http://dx.doi.org/10.3389/fbioe.2020.586406] [PMID: 33251199]
[48]
Lee JM, Yeong WY. Design and printing strategies in 3D bioprinting of cell-hydrogels: A review. Adv Healthc Mater 2016; 5(22): 2856-65.
[http://dx.doi.org/10.1002/adhm.201600435] [PMID: 27767258]
[49]
Stewart S, Domínguez-Robles J, Donnelly R, Larrañeta E. Implantable polymeric drug delivery devices: Classification, manufacture, materials, and clinical applications. Polymers 2018; 10(12): 1379.
[http://dx.doi.org/10.3390/polym10121379] [PMID: 30961303]
[50]
Zhang C, Yang X, Li Y, et al. Multifunctional hybrid composite films based on biodegradable cellulose nanofibers, aloe juice, and carboxymethyl cellulose. Cellulose 2021; 28(8): 4927-41.
[http://dx.doi.org/10.1007/s10570-021-03838-2]
[51]
Iordanskii A. Bio-based and biodegradable plastics: From passive barrier to active packaging behavior. Polymers 2020; 12(7): 1537.
[http://dx.doi.org/10.3390/polym12071537] [PMID: 32664618]
[52]
Nakayama M, Okano T, Miyazaki T, Kohori F, Sakai K, Yokoyama M. Molecular design of biodegradable polymeric micelles for temperature-responsive drug release. J Control Release 2006; 115(1): 46-56.
[http://dx.doi.org/10.1016/j.jconrel.2006.07.007] [PMID: 16920217]
[53]
Than YM, Titapiwatanakun V. Statistical design of experiment- based formulation development and optimization of 3D printed oral controlled release drug delivery with multi target product profile. J Pharm Investig 2021; 51(6): 715-34.
[http://dx.doi.org/10.1007/s40005-021-00542-y]
[54]
Sta Agueda JRH, Chen Q, Maalihan RD, et al. 3D printing of biomedically relevant polymer materials and biocompatibility. MRS Commun 2021; 11(2): 197-212.
[http://dx.doi.org/10.1557/s43579-021-00038-8] [PMID: 33936866]
[55]
Aguilar-de-Leyva Á, Linares V, Casas M, Caraballo I. 3D printed drug delivery systems based on natural products. Pharmaceutics 2020; 12(7): 620.
[http://dx.doi.org/10.3390/pharmaceutics12070620] [PMID: 32635214]
[56]
Goole J, Amighi K. 3D printing in pharmaceutics: A new tool for designing customized drug delivery systems. Int J Pharm 2016; 499(1-2): 376-94.
[http://dx.doi.org/10.1016/j.ijpharm.2015.12.071] [PMID: 26757150]
[57]
Deng N, Sun J, Li Y, et al. Experimental study of rhBMP-2 chitosan nano-sustained release carrier-loaded PLGA/nHA scaffolds to construct mandibular tissue-engineered bone. Arch Oral Biol 2019; 102: 16-25.
[http://dx.doi.org/10.1016/j.archoralbio.2019.03.023] [PMID: 30954805]
[58]
Lin HY, Chang TW, Peng TK. Three-dimensional plotted alginate fibers embedded with diclofenac and bone cells coated with chitosan for bone regeneration during inflammation. J Biomed Mater Res A 2018; 106(6): 1511-21.
[http://dx.doi.org/10.1002/jbm.a.36357] [PMID: 29396912]
[59]
Marques CF, Olhero SM, Torres PMC, et al. Novel sintering-free scaffolds obtained by additive manufacturing for concurrent bone regeneration and drug delivery: Proof of concept. Mater Sci Eng C 2019; 94: 426-36.
[http://dx.doi.org/10.1016/j.msec.2018.09.050] [PMID: 30423726]
[60]
Long J, Etxeberria AE, Nand AV, Bunt CR, Ray S, Seyfoddin A. A 3D printed chitosan-pectin hydrogel wound dressing for lidocaine hydrochloride delivery. Mater Sci Eng C 2019; 104: 109873.
[http://dx.doi.org/10.1016/j.msec.2019.109873] [PMID: 31500054]
[61]
Xiang H, Yang X, Ke L, Hu Y. The properties, biotechnologies, and applications of antifreeze proteins. Int J Biol Macromol 2020; 153: 661-75.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.03.040] [PMID: 32156540]
[62]
Leyva-Gómez G, Mendoza-Muñoz N, Del Prado-Audelo M, Ojeda-Piedra S, Zambrano-Zaragoza M, Quintanar-Guerrero D. Natural polymers in pharmaceutical nanotechnology. Nanomaterials and Nanotechnology Materials Horizons: From Nature to Nanomaterials. Singapore: Springer 2021; pp. 163-215.
[http://dx.doi.org/10.1007/978-981-33-6056-3_6]
[63]
Etxabide A, Long J, Guerrero P, de la Caba K, Seyfoddin A. 3D printed lactose-crosslinked gelatin scaffolds as a drug delivery system for dexamethasone. Eur Polym J 2019; 114: 90-7.
[http://dx.doi.org/10.1016/j.eurpolymj.2019.02.019]
[64]
Karavasili C, Gkaragkounis A, Moschakis T, Ritzoulis C, Fatouros DG. Pediatric-friendly chocolate-based dosage forms for the oral administration of both hydrophilic and lipophilic drugs fabricated with extrusion-based 3D printing. Eur J Pharm Sci 2020; 147: 105291.
[http://dx.doi.org/10.1016/j.ejps.2020.105291] [PMID: 32135271]
[65]
Alhnan MA, Okwuosa TC, Sadia M, Wan KW, Ahmed W, Arafat B. Emergence of 3D printed dosage forms: Opportunities and challenges. Pharm Res 2016; 33(8): 1817-32.
[http://dx.doi.org/10.1007/s11095-016-1933-1] [PMID: 27194002]
[66]
Goyanes A, Det-Amornrat U, Wang J, Basit AW, Gaisford S. 3D scanning and 3D printing as innovative technologies for fabricating personalized topical drug delivery systems. J Control Release 2016; 234: 41-8.
[http://dx.doi.org/10.1016/j.jconrel.2016.05.034] [PMID: 27189134]
[67]
Gioumouxouzis CI, Chatzitaki AT, Karavasili C, et al. Controlled release of 5-fluorouracil from alginate beads encapsulated in 3D printed pH-responsive solid dosage forms. AAPS PharmSciTech 2018; 19(8): 3362-75.
[http://dx.doi.org/10.1208/s12249-018-1084-2] [PMID: 29948989]
[68]
Tagami T, Fukushige K, Ogawa E, Hayashi N, Ozeki T. 3D printing factors important for the fabrication of polyvinylalcohol filament-based tablets. Biol Pharm Bull 2017; 40(3): 357-64.
[http://dx.doi.org/10.1248/bpb.b16-00878] [PMID: 28250279]
[69]
Saleh E, Zhang F, He Y, et al. 3D inkjet printing of electronics using UV conversion. Adv Mater Technol 2017; 2(10): 1700134.
[http://dx.doi.org/10.1002/admt.201700134]
[70]
Lee A, Sudau K, Ahn KH, Lee SJ, Willenbacher N. Optimization of experimental parameters to suppress nozzle clogging in inkjet printing. Ind Eng Chem Res 2012; 51(40): 13195-204.
[http://dx.doi.org/10.1021/ie301403g]
[71]
Kyobula M, Adedeji A, Alexander MR, et al. 3D inkjet printing of tablets exploiting bespoke complex geometries for controlled and tuneable drug release. J Control Release 2017; 261: 207-15.
[http://dx.doi.org/10.1016/j.jconrel.2017.06.025] [PMID: 28668378]
[72]
Vorndran E, Klammert U, Ewald A, Barralet JE, Gbureck U. Simultaneous immobilization of bioactives during 3D powder printing of bioceramic drug-release matrices. Adv Funct Mater 2010; 20(10): 1585-91.
[http://dx.doi.org/10.1002/adfm.200901759]
[73]
de Queiroz Antonino R, Lia Fook B, de Oliveira Lima V, et al. Preparation and characterization of chitosan obtained from shells of shrimp (Litopenaeus vannamei Boone). Mar Drugs 2017; 15(5): 141.
[http://dx.doi.org/10.3390/md15050141] [PMID: 28505132]
[74]
Zhou L, Ramezani H, Sun M, et al. 3D printing of high-strength chitosan hydrogel scaffolds without any organic solvents. Biomater Sci 2020; 8(18): 5020-8.
[http://dx.doi.org/10.1039/D0BM00896F] [PMID: 32844842]
[75]
Chen S, Shi Y, Luo Y, Ma J. Layer-by-layer coated porous 3D printed hydroxyapatite composite scaffolds for controlled drug delivery. Colloids Surf B Biointerfaces 2019; 179: 121-7.
[http://dx.doi.org/10.1016/j.colsurfb.2019.03.063] [PMID: 30954012]
[76]
Akin-Ajani O D, Okunlola A. Pharmaceutical applications of pectin. Pectins. IntechOpen 2021.
[77]
Herrada-Manchón H, Rodríguez-González D, Alejandro Fernández M, et al. 3D printed gummies: Personalized drug dosage in a safe and appealing way. Int J Pharm 2020; 587: 119687.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119687] [PMID: 32730802]
[78]
Wang J, Liu Y, Zhang X, et al. 3D printed agar/calcium alginate hydrogels with high shape fidelity and tailorable mechanical properties. Polymer 2021; 214: 123238.
[http://dx.doi.org/10.1016/j.polymer.2020.123238]
[79]
Martin V, Ribeiro IA, Alves MM, et al. Engineering a multifunctional 3D-printed PLA-collagen-minocycline-nanohydroxyapatite scaffold with combined antimicrobial and osteogenic effects for bone regeneration. Mater Sci Eng C 2019; 101: 15-26.
[http://dx.doi.org/10.1016/j.msec.2019.03.056] [PMID: 31029308]
[80]
Wojtyła S, Klama P, Baran T. Is 3D printing safe? Analysis of the thermal treatment of thermoplastics: ABS, PLA, PET, and nylon. J Occup Environ Hyg 2017; 14(6): D80-5.
[http://dx.doi.org/10.1080/15459624.2017.1285489] [PMID: 28165927]
[81]
Black M. 3D printing presents health risks: Tips on protecting your workers. An air quality expert shares prevention best practice. 2020. Available From: https://www.industryweek.com/operations/safety/article/21138777/3d-printing-presents-health-risks-tips-on-protecting-your-workers (acessed on 25 March 2023).
[82]
Goldsberry C. Mitigating the health risks of 3D-printing emissions. 2020. Available From: https://www.plasticstoday.com/ 3D-printing/mitigating-health-risks-3d-printing-emissions (acessed on 25 March 2023).
[83]
Taormina G, Sciancalepore C, Messori M, Bondioli F. 3D printing processes for photocurable polymeric materials: Technologies, materials, and future trends. J Appl Biomater Funct Mater 2018; 16(3): 151-60.
[http://dx.doi.org/10.1177/2280800018764770] [PMID: 29609487]
[84]
Kritikos M. 3D bio-printing for medical and enhancement purposes: Legal and ethical aspects. 2018. Available From: http://www.europarl.europa.eu/RegData/etudes/IDAN/2018/614571/EPRS_IDA(2018)614571(ANN2)_EN.Pdf (acessed on 25 March 2023).
[85]
Mahmood MA. 3D printing in drug delivery and biomedical applications: A state-of-the-art review. Compounds 2021; 1(3): 94-115.
[http://dx.doi.org/10.3390/compounds1030009]
[86]
Ali A, Ahmad U, Akhtar J. 3D printing in pharmaceutical sector: An overview. Pharmaceutical Formulation Design - Recent Practices. IntechOpen 2020.
[87]
Leso V, Ercolano ML, Mazzotta I, Romano M, Cannavacciuolo F, Iavicoli I. Three-dimensional (3D) printing: Implications for risk assessment and management in occupational settings. Ann Work Expo Health 2021; 65(6): 617-34.
[http://dx.doi.org/10.1093/annweh/wxaa146] [PMID: 33616163]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy