Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Review Article

Mono-metallic, Bi-metallic and Tri-metallic Biogenic Nanoparticles Derived from Garlic and Ginger with their Applications

Author(s): Saba Farooq*, Munawar Ali Munawar and Zainab Ngaini*

Volume 27, Issue 14, 2023

Published on: 04 October, 2023

Page: [1202 - 1214] Pages: 13

DOI: 10.2174/1385272827666230915103130

Open Access Journals Promotions 2
Abstract

Biogenic metallic nanoparticles (NPs) produced from garlic and ginger have a wide range of applications in the pharmaceuticals, biotechnology and electronics industries. Despite many commercial NPs reported, NPs made from natural extracts are more affordable, straightforward and environmentally friendly than synthetic approaches. Biogenic metallic NPs derived from garlic and ginger have superior biocompatibility, better dispersion, higher stability, and stronger biological activities. This is due to the fact that garlic and ginger possess significant activities against multi-drug resisted pathogens and are in high demand, especially for the prevention of microbial diseases. This review placed a substantial emphasis on comparative investigations of the synthesis of mono-, bi-, and tri-metallic NPs with a variety of sizes and forms, as well as applications using materials like ginger and garlic. The benefits and drawbacks of mono-metallic, bi-metallic, and tri-metallic biogenic NPs produced from garlic and ginger are also comprehensively highlighted. Recent improvements have opened the way to site-specific targeting and drug delivery by these metallic NPs.

Keywords: Biogenic material, chemical reduction, nucleation, metal oxide, nanoparticles, garlic and ginger.

Graphical Abstract
[1]
Arora, N.; Thangavelu, K.; Karanikolos, G.N. Bimetallic nanoparticles for antimicrobial applications. Front Chem., 2020, 8, 412.
[http://dx.doi.org/10.3389/fchem.2020.00412] [PMID: 32671014]
[2]
Bao, Y.; He, J.; Song, K.; Guo, J.; Zhou, X.; Liu, S. Plant-extract-mediated synthesis of metal nanoparticles. J. Chem., 2021, 2021, 1-14.
[http://dx.doi.org/10.1155/2021/6562687]
[3]
Hernández-Varela, J.D.; Chanona-Pérez, J.J.; Calderón Benavides, H.A.; Cervantes Sodi, F.; Vicente-Flores, M. Effect of ball milling on cellulose nanoparticles structure obtained from garlic and agave waste. Carbohydr. Polym., 2021, 255, 117347.
[http://dx.doi.org/10.1016/j.carbpol.2020.117347] [PMID: 33436189]
[4]
Srinoi, P.; Chen, Y.T.; Vittur, V.; Marquez, M.; Lee, T. Bimetallic nanoparticles: Enhanced magnetic and optical properties for emerging biological applications. Appl. Sci., 2018, 8(7), 1106.
[http://dx.doi.org/10.3390/app8071106]
[5]
Salvador, M.; MacLeod, B.A.; Hess, A.; Kulkarni, A.P.; Munechika, K.; Chen, J.I.L.; Ginger, D.S. Electron accumulation on metal nanoparticles in plasmon-enhanced organic solar cells. ACS Nano, 2012, 6(11), 10024-10032.
[http://dx.doi.org/10.1021/nn303725v] [PMID: 23062171]
[6]
Chen, Y.; Munechika, K.; Jen-La Plante, I.; Munro, A.M.; Skrabalak, S.E.; Xia, Y.; Ginger, D.S. Excitation enhancement of CdSe quantum dots by single metal nanoparticles. Appl. Phys. Lett., 2008, 93(5), 053106.
[http://dx.doi.org/10.1063/1.2956391]
[7]
Khanal, L.N.; Sharma, K.R.; Paudyal, H.; Parajuli, K.; Dahal, B.; Ganga, G.C.; Pokharel, Y.R.; Kalauni, S.K. Green synthesis of silver nanoparticles from root extracts of Rubus ellipticus Sm. and comparison of antioxidant and antibacterial activity. J. Nanomater., 2022, 2022, 1-11.
[http://dx.doi.org/10.1155/2022/1832587]
[8]
Singh, R.P.; Magesh, S.; Rakkiyappan, C. Ginger (Zingiber officinale) root extract: A source of silver nanoparticles and their application. Eng. Sci., 2011, 02(03), 75-80.
[9]
El-Naka, M.A.; El-Dissouky, A.; Ali, G.Y.; Ebrahim, S.; Shokry, A. Fluorescent garlic-capped Ag nanoparticles as dual sensors for the detection of acetone and acrylamide. RSC Advances, 2022, 12(52), 34095-34106.
[http://dx.doi.org/10.1039/D2RA06789G] [PMID: 36505681]
[10]
Darwesh, O.M.; Elshahawy, I.E. Silver nanoparticles inactivate sclerotial formation in controlling white rot disease in onion and garlic caused by the soil borne fungus Stromatinia cepivora. Eur. J. Plant Pathol., 2021, 160(4), 917-934.
[http://dx.doi.org/10.1007/s10658-021-02296-7]
[11]
Von White, G. II.; Kerscher, P.; Brown, R.M.; Morella, J.D.; McAllister, W.; Dean, D.; Kitchens, C.L. Green synthesis of robust, biocompatible silver nanoparticles using garlic extract. J. Nanomater., 2012, 2012, 1-12.
[http://dx.doi.org/10.1155/2012/730746] [PMID: 24683414]
[12]
Vaseghi, Z.; Nematollahzadeh, A.; Tavakoli, O. Green methods for the synthesis of metal nanoparticles using biogenic reducing agents: A review. Rev. Chem. Eng., 2018, 34(4), 529-559.
[http://dx.doi.org/10.1515/revce-2017-0005]
[13]
Yang, N.; Li, F.; Jian, T.; Liu, C.; Sun, H.; Wang, L.; Xu, H. Biogenic synthesis of silver nanoparticles using ginger (Zingiber officinale) extract and their antibacterial properties against aquatic pathogens. Acta Oceanol. Sin., 2017, 36(12), 95-100.
[http://dx.doi.org/10.1007/s13131-017-1099-7]
[14]
Saldías, C.; Bonardd, S.; Quezada, C.; Radi’c, D.; Leiva, A. The role of polymers in the synthesis of noble metal nanoparticles: A review. J. Nanosci. Nanotechnol., 2017, 17(1), 87-114.
[http://dx.doi.org/10.1166/jnn.2017.13016] [PMID: 29617067]
[15]
Krishna, S.B.N. Emergent roles of garlic-based nanoparticles for bio-medical applications - A review. Curr. Trends Biotechnol. Pharm., 2021, 15(3), 349-360.
[16]
Makarov, V.V.; Love, A.J.; Sinitsyna, O.V.; Makarova, S.S.; Yaminsky, I.V.; Taliansky, M.E.; Kalinina, N.O. “Green” nanotechnologies: Synthesis of metal nanoparticles using plants. Acta Nat., 2014, 6(1), 35-44.
[http://dx.doi.org/10.32607/20758251-2014-6-1-35-44] [PMID: 24772325]
[17]
Nasrollahzadeh, M.; Sajjadi, M.; Iravani, S.; Varma, R.S. Trimetallic nanoparticles: Greener synthesis and their applications. Nanomaterials, 2020, 10(9), 1784.
[http://dx.doi.org/10.3390/nano10091784] [PMID: 32916829]
[18]
Prasad, A.S. Iron oxide nanoparticles synthesized by controlled bio-precipitation using leaf extract of garlic vine (Mansoa alliacea). Mater. Sci. Semicond. Process., 2016, 53, 79-83.
[http://dx.doi.org/10.1016/j.mssp.2016.06.009]
[19]
Patil, S.; Chandrasekaran, R. Biogenic nanoparticles: A comprehensive perspective in synthesis, characterization, application and its challenges. J. Genet. Eng. Biotechnol., 2020, 18(1), 67.
[http://dx.doi.org/10.1186/s43141-020-00081-3] [PMID: 33104931]
[20]
Zaib, M.; Malik, T.; Akhtar, N.; Shahzadi, T. Sensitive detection of sulphide ions using green synthesized monometallic and bimetallic nanoparticles: Comparative study. Waste Biomass Valoriz., 2022, 13(4), 2447-2459.
[http://dx.doi.org/10.1007/s12649-021-01665-x]
[21]
Nyabadza, A.; Vazquez, M.; Brabazon, D. A review of bimetallic and monometallic nanoparticle synthesis via laser ablation in liquid. Crystals, 2023, 13(2), 253.
[http://dx.doi.org/10.3390/cryst13020253]
[22]
Paszkiewicz, M. Gołąbiewska,, A.; Rajski, Ł.; Kowal, E.; Sajdak, A.; Zaleska-Medynska, A. Synthesis and characterization of monometallic (Ag, Cu) and bimetallic Ag-Cu particles for antibacterial and antifungal applications. J. Nanomater., 2016, 2016, 1-11.
[http://dx.doi.org/10.1155/2016/2187940]
[23]
Nallal, V.U.M.; Razia, M.; Duru, O.A.; Ramalingam, G.; Chinnappan, S.; Chandrasekaran, M.; Gengan, R.M.; Chung, W.J.; Chang, S.W.; Ravindran, B. Eco-friendly synthesis of multishaped crystalline silver nanoparticles using hill garlic extract and their potential application as an antifungal agent. J. Nanomater., 2022, 2022, 1-7.
[http://dx.doi.org/10.1155/2022/7613210]
[24]
Ramzan, M.; Karobari, M.I.; Heboyan, A.; Mohamed, R.N.; Mustafa, M.; Basheer, S.N.; Desai, V.; Batool, S.; Ahmed, N.; Zeshan, B. Synthesis of silver nanoparticles from extracts of wild ginger (Zingiber zerumbet) with antibacterial activity against selective multidrug resistant oral bacteria. Molecules, 2022, 27(6), 2007.
[http://dx.doi.org/10.3390/molecules27062007] [PMID: 35335369]
[25]
Mehata, M.S. Green route synthesis of silver nanoparticles using plants/ginger extracts with enhanced surface plasmon resonance and degradation of textile dye. Mater. Sci. Eng. B, 2021, 273, 115418.
[http://dx.doi.org/10.1016/j.mseb.2021.115418]
[26]
Hu, D.; Gao, T.; Kong, X.; Ma, N.; Fu, J.; Meng, L.; Duan, X.; Hu, C.Y.; Chen, W.; Feng, Z.; Latif, S. Ginger (Zingiber officinale) extract mediated green synthesis of silver nanoparticles and evaluation of their antioxidant activity and potential catalytic reduction activities with Direct Blue 15 or Direct Orange 26. PLoS One, 2022, 17(8), e0271408.
[http://dx.doi.org/10.1371/journal.pone.0271408] [PMID: 36006900]
[27]
Mohammadi, M.; Shahisaraee, S.A.; Tavajjohi, A.; Pournoori, N.; Muhammadnejad, S.; Mohammadi, S.R.; Poursalehi, R.; Delavari, H.H. Green synthesis of silver nanoparticles using Zingiber officinale and Thymus vulgaris extracts: Characterisation, cell cytotoxicity, and its antifungal activity against Candida albicans in comparison to fluconazole. IET Nanobiotechnol., 2019, 13(2), 114-119.
[http://dx.doi.org/10.1049/iet-nbt.2018.5146] [PMID: 31051440]
[28]
Jung, H.; King, M.E.; Personick, M.L. Strategic synergy: Advances in the shape control of bimetallic nanoparticles with dilute alloyed surfaces. Curr. Opin. Colloid Interface Sci., 2019, 40, 104-117.
[http://dx.doi.org/10.1016/j.cocis.2019.02.004]
[29]
Hassan, S.A.; Ghadam, P. Bimetallic nanoparticles with specific insight into nanoremediation. Importance Appl. Nanotechnol., 2020, 4, 1-8.
[30]
Mureed, S.; Naz, S.; Haider, A.; Raza, A.; Ul-Hamid, A.; Haider, J.; Ikram, M.; Ghaffar, R.; Irshad, M.; Ghaffar, A.; Saeed, A. Development of multi-concentration cu:ag bimetallic nanoparticles as a promising bactericidal for antibiotic-resistant bacteria as evaluated with molecular docking study. Nanoscale Res. Lett., 2021, 16(1), 91.
[http://dx.doi.org/10.1186/s11671-021-03547-6] [PMID: 34021844]
[31]
Dsouza, A.; Shilpa, M.P.; Gurumurthy, S.C.; Nagaraja, B.S.; Mundinamani, S.; Ramam, K.; Gedda, M.; Murari, M.S. CuAg and AuAg bimetallic nanoparticles for catalytic and heat transfer applications. Clean Technol. Environ. Policy, 2021, 23(7), 2145-2155.
[http://dx.doi.org/10.1007/s10098-021-02120-0]
[32]
Khan, Z. Trimetallic nanoparticles: Synthesis, characterization and catalytic degradation of formic acid for hydrogen generation. Int. J. Hydrogen Energy, 2019, 44(23), 11503-11513.
[http://dx.doi.org/10.1016/j.ijhydene.2019.03.122]
[33]
Sahoo, A.; Tripathy, S.K.; Dehury, N.; Patra, S. A porous trimetallic Au@Pd@Ru nanoparticle system: Synthesis, characterisation and efficient dye degradation and removal. J. Mater. Chem. A Mater. Energy Sustain., 2015, 3(38), 19376-19383.
[http://dx.doi.org/10.1039/C5TA03959B]
[34]
Ferrando, R.; Jellinek, J.; Johnston, R.L. Nanoalloys: From theory to applications of alloy clusters and nanoparticles. Chem. Rev., 2008, 108(3), 845-910.
[http://dx.doi.org/10.1021/cr040090g] [PMID: 18335972]
[35]
Crawley, J.W.M.; Gow, I.E.; Lawes, N.; Kowalec, I.; Kabalan, L.; Catlow, C.R.A.; Logsdail, A.J.; Taylor, S.H.; Dummer, N.F.; Hutchings, G.J. Heterogeneous trimetallic nanoparticles as catalysts. Chem. Rev., 2022, 122(6), 6795-6849.
[http://dx.doi.org/10.1021/acs.chemrev.1c00493] [PMID: 35263103]
[36]
Akbarzadeh, H.; Mehrjouei, E.; Abbaspour, M.; Shamkhali, A.N. Melting behavior of bimetallic and trimetallic nanoparticles: A review of MD simulation studies. Top. Curr. Chem., 2021, 379(3), 22.
[http://dx.doi.org/10.1007/s41061-021-00332-y] [PMID: 33890199]
[37]
Akbarzadeh, H.; Abbaspour, M.; Mehrjouei, E.; Kamrani, M. Stability control of AgPd@Pt trimetallic nanoparticles via Ag–Pd core structure and composition: A molecular dynamics study. Ind. Eng. Chem. Res., 2018, 57(18), 6236-6245.
[http://dx.doi.org/10.1021/acs.iecr.8b00447]
[38]
Karthikeyan, B.; Loganathan, B. Rapid green synthetic protocol for novel trimetallic nanoparticles. J. Nanopart., 2013, 2013, 1-8.
[http://dx.doi.org/10.1155/2013/168916]
[39]
Mahajan, P.; Sharma, A.; Kaur, B.; Goyal, N.; Gautam, S. Green synthesized (Ocimum sanctum and Allium sativum) Ag-doped cobalt ferrite nanoparticles for antibacterial application. Vacuum, 2019, 161, 389-397.
[http://dx.doi.org/10.1016/j.vacuum.2018.12.021]
[40]
Rastogi, L.; Arunachalam, J. microwave-assisted green synthesis of small gold nanoparticles using aqueous garlic (Allium sativum) extract: Their application as antibiotic carriers. Int. J. Green Nanotechnol., 2012, 4(2), 163-173.
[http://dx.doi.org/10.1080/19430892.2012.676926]
[41]
Misiorek, M. Sekuła, J.; Ruman, T. Mass spectrometry imaging of low molecular weight compounds in garlic (Allium sativum L.) with gold nanoparticle enhanced target. Phytochem. Anal., 2017, 28(6), 479-486.
[http://dx.doi.org/10.1002/pca.2696] [PMID: 28612465]
[42]
Arumai Selvan, D.; Mahendiran, D.; Senthil Kumar, R.; Kalilur Rahiman, A. Garlic, green tea and turmeric extracts-mediated green synthesis of silver nanoparticles: Phytochemical, antioxidant and in vitro cytotoxicity studies. J. Photochem. Photobiol. B, 2018, 180, 243-252.
[http://dx.doi.org/10.1016/j.jphotobiol.2018.02.014] [PMID: 29476965]
[43]
Amatya, S.P.; Pradhan Joshi, L. Bio-Synthesis of copper nanoparticles (CuNPs) using garlic extract to investigate antibacterial activity. BIBECHANA, 2020, 17, 13-19.
[http://dx.doi.org/10.3126/bibechana.v17i0.23485]
[44]
Fahmy, S.A.; Mamdouh, W. Garlic oil-loaded PLGA nanoparticles with controllable size and shape and enhanced antibacterial activities. J. Appl. Polym. Sci., 2018, 135(16), 46133.
[http://dx.doi.org/10.1002/app.46133]
[45]
Hari, N.; Thomas, T.K.; Nair, A.J. Comparative study on the synergistic action of garlic synthesized and citrate capped silver nanoparticles with β-Penem antibiotics. ISRN Nanotechnol., 2013, 2013, 1-6.
[http://dx.doi.org/10.1155/2013/792105]
[46]
Wencui, Z.; Qi, Z.; Ying, W.; Di, W. Preparation of solid lipid nanoparticles loaded with garlic oil and evaluation of their in vitro and in vivo characteristics. Eur. Rev. Medicaland Pharmacol. Sci., 2015, 19(19), 3742-3750.
[PMID: 26502865]
[47]
Kumari, G.D.; Shivangi, K. Formulation and evaluation of herbal extract of Allivum sativum (garlic) loaded chitosan nanoparticle. J. Drug Deliv. Ther., 2019, 9(3-s), 715-718.
[48]
Srivastava, S.K.; Yamada, R.; Ogino, C.; Kondo, A. Sidewall modification of multiwalled carbon nanotubes by Allivum sativum (garlic) and its effect on the deposition of gold nanoparticles. Carbon, 2013, 56, 309-316.
[http://dx.doi.org/10.1016/j.carbon.2013.01.021]
[49]
Shang, A.; Cao, S.Y.; Xu, X.Y.; Gan, R.Y.; Tang, G.Y.; Corke, H.; Mavumengwana, V.; Li, H.B. Bioactive compounds and biological functions of garlic (Allium sativum L.). Foods, 2019, 8(7), 246.
[http://dx.doi.org/10.3390/foods8070246] [PMID: 31284512]
[50]
Srivastava, S.K.; Ogino, C.; Kondo, A. Green synthesis of thiolated graphene nanosheets by alliin (garlic) and its effect on the deposition of gold nanoparticles. RSC Advances, 2014, 4(12), 5986.
[http://dx.doi.org/10.1039/c3ra45353g]
[51]
Setiyanto, C.M.; Raharto, T.; Yulizar, Y.; Ivandini, T.A. The Modification of boron-doped diamond using gold nanoparticles synthesized in garlic (Allium sativum) extract solution for arsenic (III); Sensors: Depok, Indonesia, 2020, p. 040001.
[http://dx.doi.org/10.1063/5.0007851]
[52]
El-Naka, M.A.; El-Dissouky, A.; Ali, G.Y.; Ebrahim, S.; Shokry, A. Garlic capped silver nanoparticles for rapid detection of cholesterol. Talanta, 2023, 253, 123908.
[http://dx.doi.org/10.1016/j.talanta.2022.123908] [PMID: 36087411]
[53]
Gabriel, T.; Vestine, A.; Kim, K.D.; Kwon, S.J.; Sivanesan, I.; Chun, S.C. Antibacterial activity of nanoparticles of garlic (Allium sativum) extract against different bacteria such as Streptococcus mutans and Poryphormonas gingivalis. Appl. Sci., 2022, 12(7), 3491.
[http://dx.doi.org/10.3390/app12073491]
[54]
Handharyani, E.; Sutardi, L.N.; Mustika, A.A.; Andriani, A.; Yuliani, S. Antibacterial activity of Curcuma longa (turmeric), Curcuma zedoaria (zedoary), and Allium sativum (garlic) nanoparticle extract on chicken with chronic respiratory disease complex: In vivo study. E3S Web Conf. 2020, 151, 01054.
[http://dx.doi.org/10.1051/e3sconf/202015101054]
[55]
Hassan, A.M. Antibacterial efficacy of garlic oil nano-emulsion. AIMS Agric. Food, 2019, 4(1), 194-205.
[http://dx.doi.org/10.3934/agrfood.2019.1.194]
[56]
Mondal, A.; Banerjee, S.; Bose, S.; Mazumder, S.; Haber, R.A.; Farzaei, M.H.; Bishayee, A. Garlic constituents for cancer prevention and therapy: From phytochemistry to novel formulations. Pharmacol. Res., 2022, 175, 105837.
[http://dx.doi.org/10.1016/j.phrs.2021.105837] [PMID: 34450316]
[57]
Girish, V.M.; Liang, H.; Aguilan, J.T.; Nosanchuk, J.D.; Friedman, J.M.; Nacharaju, P. Anti-biofilm activity of garlic extract loaded nanoparticles. Nanomedicine., 2019, 20, 102009.
[http://dx.doi.org/10.1016/j.nano.2019.04.012] [PMID: 31085344]
[58]
Sundaram, K.; Mu, J.; Kumar, A.; Behera, J.; Lei, C.; Sriwastva, M.K.; Xu, F.; Dryden, G.W.; Zhang, L.; Chen, S.; Yan, J.; Zhang, X.; Park, J.W.; Merchant, M.L.; Tyagi, N.; Teng, Y.; Zhang, H.G. Garlic exosome-like nanoparticles reverse high-fat diet induced obesity via the gut/brain axis. Theranostics, 2022, 12(3), 1220-1246.
[http://dx.doi.org/10.7150/thno.65427] [PMID: 35154484]
[59]
Liu, B.; Li, X.; Yu, H.; Shi, X.; Zhou, Y.; Alvarez, S.; Naldrett, M.J.; Kachman, S.D.; Ro, S.H.; Sun, X.; Chung, S.; Jing, L.; Yu, J. Therapeutic potential of garlic chive-derived vesicle-like nanoparticles in NLRP3 inflammasome-mediated inflammatory diseases. Theranostics, 2021, 11(19), 9311-9330.
[http://dx.doi.org/10.7150/thno.60265] [PMID: 34646372]
[60]
Abdel-Mageid, A.D.; Abou-Salem, M.E.S.; Salaam, N.M.H.A.; El-Garhy, H.A.S. The potential effect of garlic extract and curcumin nanoparticles against complication accompanied with experimentally induced diabetes in rats. Phytomedicine, 2018, 43, 126-134.
[http://dx.doi.org/10.1016/j.phymed.2018.04.039] [PMID: 29747745]
[61]
Rajoriya, P.; Misra, P.; Shukla, P.K.; Ramteke, P.W. Light-regulatory effect on the phytosynthesis of silver nanoparticles using aqueous extract of garlic (Allium sativum) and onion (Allium cepa) bulb. Curr. Sci., 2016, 111(8), 1364.
[http://dx.doi.org/10.18520/cs/v111/i8/1364-1368]
[62]
Srivastava, A.; Rao, D.P. Enhancement of seed germination and plant growth of wheat, maize, peanut and garlic using multiwalled carbon nanotubes. Eur. Chem. Bull., 2014, 3(5), 502-504.
[63]
Zhao, J.; Wei, Z.; Feng, X.; Miao, M.; Sun, L.; Cao, S.; Shi, L.; Fang, J. Luminescent and transparent nanopaper based on rare-earth up-converting nanoparticle grafted nanofibrillated cellulose derived from garlic skin. ACS Appl. Mater. Interfaces, 2014, 6(17), 14945-14951.
[http://dx.doi.org/10.1021/am5026352] [PMID: 25116651]
[64]
Yang, F.L.; Li, X.G.; Zhu, F.; Lei, C.L. Structural characterization of nanoparticles loaded with garlic essential oil and their insecticidal activity against Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae). J. Agric. Food Chem., 2009, 57(21), 10156-10162.
[http://dx.doi.org/10.1021/jf9023118] [PMID: 19835357]
[65]
Ibrahim, S.S.; Salem, N.Y.; ElNaby, S.S.A.; Adel, M.M. Characterization of nanoparticles loaded with garlic essential oil and their insecticidal activity against Phthorimaea operculella (Zeller) (PTM) (Lepidoptera: Gelechiidae). Int. J. Nanosci. Nanotechnol., 2021, 17(3), 147-160.
[66]
Abdelli, N.; Mekawi, E.; Ebrahim Abdel-Alim, M.; Salim, N.S.; El-Nagar, M.; Al-Dalain, S.Y.; Adlan Abdalla, R.; Nagarajan, G.; Fadhal, E.; Ibrahim, R.I.H.; Afkar, E.; Morsy, M.K. QTRAP LC/MS/MS of garlic nanoparticles and improving sunflower oil stabilization during accelerated shelf life storage. Foods, 2022, 11(24), 3962.
[http://dx.doi.org/10.3390/foods11243962] [PMID: 36553704]
[67]
Zahedi, M. Licorice-garlic-fennel essential oils composite nanoparticles as natural food preservatives. Int. J. Nanodimens., 2021, 12(3), 239-251.
[68]
Luis, A.I.S.; Campos, E.V.R.; de Oliveira, J.L.; Guilger-Casagrande, M.; de Lima, R.; Castanha, R.F.; de Castro, V.L.S.S.; Fraceto, L.F. Zein nanoparticles impregnated with eugenol and garlic essential oils for treating fish pathogens. ACS Omega, 2020, 5(25), 15557-15566.
[http://dx.doi.org/10.1021/acsomega.0c01716] [PMID: 32637831]
[69]
Meléndez-Villanueva, M.A.; Morán-Santibañez, K.; Martínez-Sanmiguel, J.J.; Rangel-López, R.; Garza-Navarro, M.A.; Rodríguez-Padilla, C.; Zarate-Triviño, D.G.; Trejo-Ávila, L.M. Virucidal activity of gold nanoparticles synthesized by green chemistry using garlic extract. Viruses, 2019, 11(12), 1111.
[http://dx.doi.org/10.3390/v11121111] [PMID: 31801280]
[70]
Khan, M.S.; Qureshi, N.A.; Jabeen, F.; Wajid, M.; Sabri, S.; Shakir, M. The role of garlic oil in the amelioration of oxidative stress and tissue damage in rohu Labeo rohita treated with silver nanoparticles. Fish. Sci., 2020, 86(2), 255-269.
[http://dx.doi.org/10.1007/s12562-020-01403-7]
[71]
Ibrahim, E.; Zhang, M.; Zhang, Y.; Hossain, A.; Qiu, W.; Chen, Y.; Wang, Y.; Wu, W.; Sun, G.; Li, B. Green-synthesization of silver nanoparticles using endophytic bacteria isolated from garlic and its antifungal activity against wheat Fusarium head blight pathogen Fusarium graminearum. Nanomaterials, 2020, 10(2), 219.
[http://dx.doi.org/10.3390/nano10020219] [PMID: 32012732]
[72]
Saha, M.; Bandyopadhyay, P.K. Green biosynthesis of silver nanoparticle using garlic, allium sativum with reference to its antimicrobial activity against the pathogenic strain of Bacillus sp. and Pseudomonas sp. infecting goldfish, Carassius auratus. Proc. Zool. Soc., 2019, 72(2), 180-186.
[http://dx.doi.org/10.1007/s12595-017-0258-3]
[73]
Vijayakumar, S.; Malaikozhundan, B.; Saravanakumar, K.; Durán-Lara, E.F.; Wang, M.H.; Vaseeharan, B. Garlic clove extract assisted silver nanoparticle - Antibacterial, antibiofilm, antihelminthic, anti-inflammatory, anticancer and ecotoxicity assessment. J. Photochem. Photobiol. B, 2019, 198, 111558.
[http://dx.doi.org/10.1016/j.jphotobiol.2019.111558] [PMID: 31357173]
[74]
Otunola, G.; Afolayan, A.; Ajayi, E.; Odeyemi, S. Characterization, antibacterial and antioxidant properties of silver nanoparticles synthesized from aqueous extracts of Allium sativum, Zingiber officinale, and Capsicum frutescens. Pharmacogn. Mag., 2017, 13(50), 201.
[http://dx.doi.org/10.4103/pm.pm_430_16] [PMID: 28808381]
[75]
Mohamed, J.M.M.; Alqahtani, A.; Kumar, T.V.A.; Fatease, A.A.; Alqahtani, T.; Krishnaraju, V.; Ahmad, F.; Menaa, F.; Alamri, A.; Muthumani, R.; Vijaya, R. Superfast synthesis of stabilized silver nanoparticles using aqueous Allium sativum (garlic) extract and isoniazid hydrazide conjugates: Molecular docking and in-vitro characterizations. Molecules, 2021, 27(1), 110.
[http://dx.doi.org/10.3390/molecules27010110] [PMID: 35011342]
[76]
Rastogi, L.; Arunachalam, J. Sunlight based irradiation strategy for rapid green synthesis of highly stable silver nanoparticles using aqueous garlic (Allium sativum) extract and their antibacterial potential. Mater. Chem. Phys., 2011, 129(1-2), 558-563.
[http://dx.doi.org/10.1016/j.matchemphys.2011.04.068]
[77]
El-Refai, A.A.; Ghoniem, G.A.; El-Khateeb, A.Y.; Hassaan, M.M. Eco-friendly synthesis of metal nanoparticles using ginger and garlic extracts as biocompatible novel antioxidant and antimicrobial agents. J. Nanostructure Chem., 2018, 8(1), 71-81.
[http://dx.doi.org/10.1007/s40097-018-0255-8]
[78]
Rastogi, L.; Arunachalam, J. Green synthetic route for the size-controlled synthesis of biocompatible gold nanoparticles using aqueous extract of garlic (Allium sativum). Adv. Mater. Lett., 2013, 4(7), 548-555.
[http://dx.doi.org/10.5185/amlett.2012.11456]
[79]
El-Batal, A.I.; Hashem, A.A.M.; Abdelbaky, N.M. Gamma radiation mediated green synthesis of gold nanoparticles using fermented soybean-garlic aqueous extract and their antimicrobial activity. Springerplus, 2013, 2(1), 129.
[http://dx.doi.org/10.1186/2193-1801-2-129] [PMID: 23667801]
[80]
Satgurunathan, T.; Bhavan, P.S.; Kalpana, R.; Jayakumar, T.; Sheu, J-R.; Manjunath, M. Influence of garlic (Allium sativum) clove-based selenium nanoparticles on status of nutritional, biochemical, enzymological, and gene expressions in the freshwater prawn Macrobrachium rosenbergii (De Man, 1879). Biol. Trace Elem. Res., 2022, 1-22.
[http://dx.doi.org/10.1007/s12011-022-03300-9] [PMID: 35665883]
[81]
Satgurunathan, T.; Bhavan, P.S.; Komathi, S. Green synthesis of selenium nanoparticles from sodium selenite using garlic extract and its enrichment on artemia nauplii to feed the freshwater prawn Macrobrachium rosenbergii post-larvae. Res. J. Chem. Environ., 2017, 12(10), 1-12.
[82]
Anu, K.; Singaravelu, G.; Murugan, K.; Benelli, G. Green-synthesis of selenium nanoparticles using garlic cloves (Allium sativum): Biophysical characterization and cytotoxicity on vero cells. J. Cluster Sci., 2017, 28(1), 551-563.
[http://dx.doi.org/10.1007/s10876-016-1123-7]
[83]
Tanaka, Y.; Takada, S.; Kumagai, K.; Kobayashi, K.; Hokura, A.; Ogra, Y. Elucidation of tellurium biogenic nanoparticles in garlic, Allium sativum, by inductively coupled plasma-mass spectrometry. J. Trace Elem. Med. Biol., 2020, 62, 126628.
[http://dx.doi.org/10.1016/j.jtemb.2020.126628] [PMID: 32739829]
[84]
Shaymurat, T.; Gu, J.; Xu, C.; Yang, Z.; Zhao, Q.; Liu, Y.; Liu, Y. Phytotoxic and genotoxic effects of ZnO nanoparticles on garlic (Allium sativum L.): A morphological study. Nanotoxicology, 2012, 6(3), 241-248.
[http://dx.doi.org/10.3109/17435390.2011.570462] [PMID: 21495879]
[85]
Velsankar, K. Green synthesis of cuo nanoparticles via allium sativum extract and its characterizations on antimicrobial, antioxidant, antilarvicidal activities. J. Environ. Chem. Eng., 2020, 8(5), 104123.
[http://dx.doi.org/10.1016/j.jece.2020.104123]
[86]
Haider, A.; Ijaz, M.; Ali, S.; Haider, J.; Imran, M.; Majeed, H.; Shahzadi, I.; Ali, M.M.; Khan, J.A.; Ikram, M. Green synthesized phytochemically (Zingiber officinale and Allium sativum) reduced nickel oxide nanoparticles confirmed bactericidal and catalytic potential. Nanoscale Res. Lett., 2020, 15(1), 50.
[http://dx.doi.org/10.1186/s11671-020-3283-5] [PMID: 32124107]
[87]
Abid, M.A.; Abid, D.A.; Aziz, W.J.; Rashid, T.M. Iron oxide nanoparticles synthesized using garlic and onion peel extracts rapidly degrade methylene blue dye. Physica B, 2021, 622, 413277.
[http://dx.doi.org/10.1016/j.physb.2021.413277]
[88]
Rath, K.; Sen, S. Garlic extract based preparation of size controlled superparamagnetic hematite nanoparticles and their cytotoxic applications. Indian J. Biotechnol., 2019, 18, 108-118.
[89]
Khaghani, S.; Ghanbari, D. Magnetic and photo-catalyst Fe3O4-Ag nanocomposite: Green preparation of silver and magnetite nanoparticles by garlic extract. J. Mater. Sci. Mater. Electron., 2017, 28(3), 2877-2886.
[http://dx.doi.org/10.1007/s10854-016-5872-8]
[90]
Subramanian, M.S.; Nandagopal, M.S. G.; Amin Nordin, S.; Thilakavathy, K.; Joseph, N. Prevailing knowledge on the bioavailability and biological activities of sulphur compounds from alliums: A potential drug candidate. Molecules, 2020, 25(18), 4111.
[http://dx.doi.org/10.3390/molecules25184111] [PMID: 32916777]
[91]
Gupta, R.; Singh, P.K.; Singh, R.; Singh, R.L. Pharmacological activities of Zingiber officinale (ginger) and its active ingredients: A review. Int. J. Sci. Innov. Res., 2016, 4(1), 1-18.
[92]
Korni, F.M.M.; Khalil, F. Effect of ginger and its nanoparticles on growth performance, cognition capability, immunity and prevention of motile Aeromonas septicaemia in Cyprinus carpio fingerlings. Aquacult. Nutr., 2017, 23(6), 1492-1499.
[http://dx.doi.org/10.1111/anu.12526]
[93]
Mathur, S.; Pareek, S.; Verma, R.; Shrivastava, D.; Bisen, P.S. Therapeutic potential of ginger bio-active compounds in gastrointestinal cancer therapy: The molecular mechanism. Nutrire, 2022, 47(2), 15.
[http://dx.doi.org/10.1186/s41110-022-00166-8]
[94]
Zhang, M.; Xu, C.; Liu, D.; Han, M.K.; Wang, L.; Merlin, D. Oral delivery of nanoparticles loaded with ginger active compound, 6-shogaol, attenuates ulcerative colitis and promotes wound healing in a murine model of ulcerative colitis. J. Crohn’s Colitis, 2018, 12(2), 217-229.
[http://dx.doi.org/10.1093/ecco-jcc/jjx115] [PMID: 28961808]
[95]
Kaushal, M.; Gupta, A.; Vaidya, D.; Gupta, M. Postharvest management and value addition of ginger (Zingiber officinale Roscoe): A review. Int. J. Environ. Agricul. Biotechnol., 2017, 2(1), 397-412.
[http://dx.doi.org/10.22161/ijeab/2.1.50]
[96]
Arcusa, R.; Villaño, D.; Marhuenda, J.; Cano, M.; Cerdà, B.; Zafrilla, P. Potential role of ginger (Zingiber officinale Roscoe) in the prevention of neurodegenerative diseases. Front. Nutr., 2022, 9, 809621.
[http://dx.doi.org/10.3389/fnut.2022.809621] [PMID: 35369082]
[97]
Kalarikkal, S.P.; Prasad, D.; Kasiappan, R.; Chaudhari, S.R.; Sundaram, G.M. A cost-effective polyethylene glycol-based method for the isolation of functional edible nanoparticles from ginger rhizomes. Sci. Rep., 2020, 10(1), 4456.
[http://dx.doi.org/10.1038/s41598-020-61358-8] [PMID: 32157137]
[98]
Zhang, M.; Xiao, B.; Wang, H.; Han, M.K.; Zhang, Z.; Viennois, E.; Xu, C.; Merlin, D. Edible ginger-derived nano-lipids loaded with doxorubicin as a novel drug-delivery approach for colon cancer therapy. Mol. Ther., 2016, 24(10), 1783-1796.
[http://dx.doi.org/10.1038/mt.2016.159] [PMID: 27491931]
[99]
Zhang, M.; Viennois, E.; Prasad, M.; Zhang, Y.; Wang, L.; Zhang, Z.; Han, M.K.; Xiao, B.; Xu, C.; Srinivasan, S.; Merlin, D. Edible ginger-derived nanoparticles: A novel therapeutic approach for the prevention and treatment of inflammatory bowel disease and colitis-associated cancer. Biomaterials, 2016, 101, 321-340.
[http://dx.doi.org/10.1016/j.biomaterials.2016.06.018] [PMID: 27318094]
[100]
Imbua Levi Enoka, V.; Mutie Kikuvi, G.; Wangui Ndung’u, P. Antibacterial activity, acute toxicity and the effect of garlic and onion extract chitosan nanoparticles on the growth indices in Rainbow Rooster Chicken. AIMS Agricul. Food, 2020, 5(3), 449-465.
[http://dx.doi.org/10.3934/agrfood.2020.3.449]
[101]
Elrhman, S.Y.A.; Fattah, H.M.A.E.; Morsy, G.M.; Elmasry, S. Effect of ginger nanoparticles on hepato-renal toxicity induced by carbon tetrachloride in rats. Annu. Res. Rev. Biol., 2020, 35(7), 36-55.
[http://dx.doi.org/10.9734/arrb/2020/v35i730245]
[102]
Borcan, F.; Chirita-Emandi, A.; Andreescu, N.I.; Borcan, L.C.; Albulescu, R.C.; Puiu, M.; Tomescu, M.C. Synthesis and preliminary characterization of polyurethane nanoparticles with ginger extract as a possible cardiovascular protector. Int. J. Nanomedicine, 2019, 14, 3691-3703.
[http://dx.doi.org/10.2147/IJN.S202049] [PMID: 31190819]
[103]
Amorndoljai, P.; Taneepanichskul, S.; Niempoog, S.; Nimmannit, U. Improving of knee osteoarthritic symptom by the local application of ginger extract nanoparticles: A preliminary report with short term follow-up. J. Med. Assoc. Thai., 2015, 98(9), 871-877.
[PMID: 26591397]
[104]
Zhang, M.; Wang, X.; Han, M.K.; Collins, J.F.; Merlin, D. Oral administration of ginger-derived nanolipids loaded with siRNA as a novel approach for efficient siRNA drug delivery to treat ulcerative colitis. Nanomedicine., 2017, 12(16), 1927-1943.
[http://dx.doi.org/10.2217/nnm-2017-0196] [PMID: 28665164]
[105]
Zhuang, X.; Deng, Z.B.; Mu, J.; Zhang, L.; Yan, J.; Miller, D.; Feng, W.; McClain, C.J.; Zhang, H.G. Ginger-derived nanoparticles protect against alcohol-induced liver damage. J. Extracell. Vesicles, 2015, 4(1), 28713.
[http://dx.doi.org/10.3402/jev.v4.28713] [PMID: 26610593]
[106]
Bakr, A.F. Assessment of ginger extract and ginger nanoparticles protective activity against acetaminophen-induced hepatotoxicity and nephrotoxicity in rats. Pak. Vet. J., 2019, 39(4), 479-486.
[http://dx.doi.org/10.29261/pakvetj/2019.060]
[107]
Wang, X.; Zhang, M.; Flores, S.R.L.; Woloshun, R.R.; Yang, C.; Yin, L.; Xiang, P.; Xu, X.; Garrick, M.D.; Vidyasagar, S.; Merlin, D.; Collins, J.F. Oral gavage of ginger nanoparticle-derived lipid vectors carrying Dmt1 siRNA blunts iron loading in murine hereditary hemochromatosis. Mol. Ther., 2019, 27(3), 493-506.
[http://dx.doi.org/10.1016/j.ymthe.2019.01.003] [PMID: 30713087]
[108]
Markam, R.; Bajpai, A.K. Functionalization of ginger derived nanoparticles with chitosan to design drug delivery system for controlled release of 5-amino salicylic acid (5-ASA) in treatment of inflammatory bowel diseases: An in vitro study. React. Funct. Polym., 2020, 149, 104520.
[http://dx.doi.org/10.1016/j.reactfunctpolym.2020.104520]
[109]
Zhang, M.; Collins, J.F.; Merlin, D. Do ginger-derived nanoparticles represent an attractive treatment strategy for inflammatory bowel diseases? Nanomedicine., 2016, 11(23), 3035-3037.
[http://dx.doi.org/10.2217/nnm-2016-0353] [PMID: 27813445]
[110]
Abozahra, R.; Abdelhamid, S.M.; Wen, M.M.; Abdelwahab, I.; Baraka, K. A nanoparticles based microbiological study on the effect of rosemary and ginger essential oils against Klebsiella pneumoniae. Open Microbiol. J., 2020, 14(1), 205-212.
[http://dx.doi.org/10.2174/1874285802014010205]
[111]
Al-Sanea, M.M.; Abelyan, N.; Abdelgawad, M.A.; Musa, A.; Ghoneim, M.M.; Al-Warhi, T.; Aljaeed, N.; Alotaibi, O.J.; Alnusaire, T.S.; Abdelwahab, S.F.; Helmy, A.; Abdelmohsen, U.R.; Youssif, K.A. Strawberry and ginger silver nanoparticles as potential inhibitors for SARS-CoV-2 assisted by, in silico modeling and metabolic profiling. Antibiotics, 2021, 10(7), 824.
[http://dx.doi.org/10.3390/antibiotics10070824] [PMID: 34356745]
[112]
Yadi, M.; Azizi, M.; Dianat-Moghadam, H.; Akbarzadeh, A.; Abyadeh, M.; Milani, M. Antibacterial activity of green gold and silver nanoparticles using ginger root extract. Bioprocess Biosyst. Eng., 2022, 45(12), 1905-1917.
[http://dx.doi.org/10.1007/s00449-022-02780-2] [PMID: 36269380]
[113]
Priyaa, G.H.; Satyan, K.B. Biological synthesis of silver nanoparticles using ginger (Zingiber officinale) extract. J. Environ. Nanotechnol., 2014, 3(4), 32-40.
[http://dx.doi.org/10.13074/jent.2014.12.143106]
[114]
Kamal, A.; Zaki, S.; Shokry, H.; Abd-El-Haleem, D. Using ginger extract for synthesis of metallic nanoparticles and their applications in water treatment. J. Pure Appl. Microbiol., 2020, 14(2), 1227-1236.
[http://dx.doi.org/10.22207/JPAM.14.2.17]
[115]
Abbas, A.H.; Fairouz, N.Y. Characterization, biosynthesis of copper nanoparticles using ginger roots extract and investigation of its antibacterial activity. Mater. Today Proc., 2022, 61, 908-913.
[http://dx.doi.org/10.1016/j.matpr.2021.09.551]
[116]
Menon, S. Efficacy of biogenic selenium nanoparticles from an extract of ginger towards evaluation on anti-microbial and anti-oxidant activities. Colloid Interface Sci. Commun., 2019, 29, 1-8.
[http://dx.doi.org/10.1016/j.colcom.2018.12.004]
[117]
Ganta, S.S.L.; Jeevitha, M.; Preetha, S.; Rajeshkumar, S. Anti-inflammatory activity of dried ginger mediated iron nanoparticles. J. Pharm. Res. Int., 2020, 32(28), 14-19.
[http://dx.doi.org/10.9734/jpri/2020/v32i2830866]
[118]
Zhang, L.; Liu, A.; Wang, W.; Ye, R.; Liu, Y.; Xiao, J.; Wang, K. Characterisation of microemulsion nanofilms based on Tilapia fish skin gelatine and ZnO nanoparticles incorporated with ginger essential oil: Meat packaging application. Int. J. Food Sci. Technol., 2017, 52(7), 1670-1679.
[http://dx.doi.org/10.1111/ijfs.13441]
[119]
Qiao, Z.; Zhang, K.; Liu, J.; Cheng, D.; Yu, B.; Zhao, N.; Xu, F.J. Biomimetic electrodynamic nanoparticles comprising ginger-derived extracellular vesicles for synergistic anti-infective therapy. Nat. Commun., 2022, 13(1), 7164.
[http://dx.doi.org/10.1038/s41467-022-34883-5] [PMID: 36418895]
[120]
Hu, Y.; Feng, Q.; Zeng, H.; Banat, I.M.; Si, Y.; Huang, P.; Li, X.; Sun, S.; Dong, H.; She, Y.; Zhang, F. Corrosion inhibition of sulphate-reducing bacterial by Ag/Cu bimetallic nanoparticles synthesised from ginger extract. J. Clean. Prod., 2022, 377, 134204.
[http://dx.doi.org/10.1016/j.jclepro.2022.134204]
[121]
Ivashchenko, O. Gapiński; J.; eplińska, B.; Przysiecka,Ł; Zalewski, T.; Nowaczyk, G.; Jarek, M.; Marcinkowska-Gapińska, A.; Jurga, S. Self-organizing silver and ultrasmall iron oxide nanoparticles prepared with ginger rhizome extract: Characterization, biomedical potential and microstructure analysis of hydrocolloids. Mater. Des., 2017, 133, 307-324.
[http://dx.doi.org/10.1016/j.matdes.2017.08.001]
[122]
Alkhathlan, A.H. AL-Abdulkarim, H.A.; Khan, M.; Khan, M.; AlDobiy, A.; Alkholief, M.; Alshamsan, A.; Alkhathlan, H.Z.; Siddiqui, M.R.H. Ecofriendly synthesis of silver nanoparticles using aqueous extracts of Zingiber officinale (ginger) and Nigella sativa l. seeds (black cumin) and comparison of their antibacterial potential. Sustainability, 2020, 12(24), 10523.
[http://dx.doi.org/10.3390/su122410523]
[123]
Jahan, I.; Erci, F.; Cakir-Koc, R.; Isildak, I. Microwave-irradiated green synthesis of metallic silver and copper nanoparticles using fresh ginger (Zingiber officinale) rhizome extract and evaluation of their antibacterial potentials and cytotoxicity. Inorganic Nano-Metal Chem., 2021, 51(5), 722-732.
[http://dx.doi.org/10.1080/24701556.2020.1808017]
[124]
Fahrina, A.; Yusuf, M.; Muchtar, S.; Fitriani, F.; Mulyati, S.; Aprilia, S.; Rosnelly, C.M.; Bilad, M.R.; Ismail, A.F.; Takagi, R.; Matsuyama, H.; Arahman, N. Development of anti-microbial polyvinylidene fluoride (PVDF) membrane using bio-based ginger extract-silica nanoparticles (GE-SiNPs) for bovine serum albumin (BSA) filtration. J. Taiwan Inst. Chem. Eng., 2021, 125, 323-331.
[http://dx.doi.org/10.1016/j.jtice.2021.06.010]
[125]
Kirdat, P.N.; Dandge, P.B.; Hagwane, R.M.; Nikam, A.S.; Mahadik, S.P.; Jirange, S.T. Synthesis and characterization of ginger (Z. officinale) extract mediated iron oxide nanoparticles and its antibacterial activity. Mater. Today Proc., 2021, 43, 2826-2831.
[http://dx.doi.org/10.1016/j.matpr.2020.11.422]
[126]
Huynh, K.H.; Pham, X.H.; Kim, J.; Lee, S.H.; Chang, H.; Rho, W.Y.; Jun, B.H. Synthesis, properties, and biological applications of metallic alloy nanoparticles. Int. J. Mol. Sci., 2020, 21(14), 5174.
[http://dx.doi.org/10.3390/ijms21145174] [PMID: 32708351]
[127]
Berta, L.; Coman, N.A.; Rusu, A.; Tanase, C. A Review on plant-mediated synthesis of bimetallic nanoparticles, characterisation and their biological applications. Materials, 2021, 14(24), 7677.
[http://dx.doi.org/10.3390/ma14247677] [PMID: 34947271]
[128]
Sharma, G.; Kumar, A.; Sharma, S.; Naushad, M.; Prakash Dwivedi, R. ALOthman, Z.A.; Mola, G.T. Novel development of nanoparticles to bimetallic nanoparticles and their composites: A review. J. King Saud Univ. Sci., 2019, 31(2), 257-269.
[http://dx.doi.org/10.1016/j.jksus.2017.06.012]

© 2024 Bentham Science Publishers | Privacy Policy