Generic placeholder image

Endocrine, Metabolic & Immune Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5303
ISSN (Online): 2212-3873

Research Article

The Mechanism of Plantaginis Semen in the Treatment of Diabetic Nephropathy based on Network Pharmacology and Molecular Docking Technology

Author(s): Linlin He*, Kai Shen, Lei He, Yuqing Chen and Zhiyuan Tang

Volume 24, Issue 3, 2024

Published on: 04 October, 2023

Page: [363 - 379] Pages: 17

DOI: 10.2174/1871530323666230915100355

Price: $65

Abstract

Background: Diabetic nephropathy (DN) is one of the common complications of diabetes. Plantaginis Semen (PS) has a variety of therapeutic effects, however its mechanism on DN is unclear.

Objective: This paper aims to find the ingredients, the key targets, and the action pathways of PS on DN from the perspective of network pharmacology.

Methods: The databases of network pharmacology, such as Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP), Pharmmapper, OMIM, DrugBank, Gene- Cards, TTD, Disgenet, STRING, and Cytoscape software, were used to find the main ingredients and targets. Gene Ontology (GO) function and Kyoto Encyclopedia of Genome and Genomes (KEGG) pathway enrichment analysis were used to reveal the potential pathways of the PS on DN. The GEO database was used to find the targets of DN based on valid experimental research. The molecular docking technology was used to evaluate the combination between ingredients of PS and the targets.

Results: A total of 9 active ingredients and 216 potential therapeutic targets were obtained for PS on DN. Hub targets were discovered by the Cytoscape software analysis. CASP3 was screened by Venn diagram by making intersection between GSE30529 and hub genes. Moreover, CASP3 was combined with one of the nine active ingredients, quercetin, by molecular docking analysis. The KEGG pathways were mainly involved in diabetic nephropathy, and were simultaneously associated with CASP3 as followed: AGE-RAGE signaling pathway in diabetic complications, apoptosis, lipid and atherosclerosis, MAPK signaling pathway, TNF signaling pathway, IL-17 signaling pathway, and p53 signaling pathway.

Conclusion: PS can have the treatment on DN through CASP3. Quercetin, as one of the nine active ingredients, can be bounded to CASP3 to inhibit apoptosis in DN. PS can also take action on DN probably through many pathways. The role of PS on DN through other pathways still needs to be further elaborated.

Keywords: Plantaginis semen, diabetic nephropathy, network pharmacology, molecular docking, CASP3, quercetin.

« Previous
Graphical Abstract
[1]
Zheng, L.; Tu, L.; Huang, H.; Zhang, L.; Wang, Y.; Zhou, J.; Chen, Q.; Wei, X. Changes in the spectrum of kidney diseases: A survey of 2803 patients from 2010 to 2018 at a single center in southeastern China. Ren. Fail., 2022, 44(1), 987-993.
[http://dx.doi.org/10.1080/0886022X.2022.2083517] [PMID: 35656734]
[2]
Deng, Y.; Li, N.; Wu, Y.; Wang, M.; Yang, S.; Zheng, Y.; Deng, X.; Xiang, D.; Zhu, Y.; Xu, P.; Zhai, Z.; Zhang, D.; Dai, Z.; Gao, J. Global, regional, and national burden of diabetes-related chronic kidney disease from 1990 to 2019. Front. Endocrinol., 2021, 12, 672350.
[http://dx.doi.org/10.3389/fendo.2021.672350] [PMID: 34276558]
[3]
Keri, K.C.; Samji, N.S.; Blumenthal, S. Diabetic nephropathy: Newer therapeutic perspectives. J. Community Hosp. Intern. Med. Perspect., 2018, 8(4), 200-207.
[http://dx.doi.org/10.1080/20009666.2018.1500423] [PMID: 30181826]
[4]
Heyman, S.N.; Raz, I.; Dwyer, J.P.; Weinberg Sibony, R.; Lewis, J.B.; Abassi, Z. Diabetic proteinuria revisited: Updated physiologic perspectives. Cells, 2022, 11(18), 2917.
[http://dx.doi.org/10.3390/cells11182917] [PMID: 36139492]
[5]
Kriz, W.; Löwen, J.; Gröne, H.J. The complex pathology of diabetic nephropathy in humans. Nephrol. Dial. Transplant., 2023, gfad052.
[http://dx.doi.org/10.1093/ndt/gfad052] [PMID: 36918205]
[6]
Hu, Q.; Chen, Y.; Deng, X.; Li, Y.; Ma, X.; Zeng, J.; Zhao, Y. Diabetic nephropathy: Focusing on pathological signals, clinical treatment, and dietary regulation. Biomed. Pharmacother, 2023, 159, 114252.
[7]
Choudhury, D.; Tuncel, M.; Levi, M. Diabetic nephropathy -- a multifaceted target of new therapies. Discov. Med., 2010, 10(54), 406-415.
[PMID: 21122472]
[8]
Banerjee, D.; Winocour, P.; Chowdhury, T.A.; De, P.; Wahba, M.; Montero, R.; Fogarty, D.; Frankel, A.H.; Karalliedde, J.; Mark, P.B.; Patel, D.C.; Pokrajac, A.; Sharif, A.; Zac-Varghese, S.; Bain, S.; Dasgupta, I. Management of hypertension and renin-angiotensin-aldosterone system blockade in adults with diabetic kidney disease: Association of british clinical diabetologists and the renal association UK guideline update 2021. BMC Nephrol., 2022, 23(1), 9.
[http://dx.doi.org/10.1186/s12882-021-02587-5] [PMID: 34979961]
[9]
Kopel, J.; Pena-Hernandez, C.; Nugent, K. Evolving spectrum of diabetic nephropathy. World J. Diabetes, 2019, 10(5), 269-279.
[http://dx.doi.org/10.4239/wjd.v10.i5.269] [PMID: 31139314]
[10]
Samsu, N. Diabetic nephropathy: Challenges in pathogenesis, diagnosis, and treatment. BioMed Res. Int., 2021, 2021, 1-17.
[http://dx.doi.org/10.1155/2021/1497449] [PMID: 34307650]
[11]
Tang, G.; Li, S.; Zhang, C.; Chen, H.; Wang, N.; Feng, Y. Clinical efficacies, underlying mechanisms and molecular targets of Chinese medicines for diabetic nephropathy treatment and management. Acta Pharm. Sin. B, 2021, 11(9), 2749-2767.
[http://dx.doi.org/10.1016/j.apsb.2020.12.020] [PMID: 34589395]
[12]
Tzeng, T.F.; Liu, W.; Liou, S.S.; Hong, T.Y.; Liu, I.M. Antioxidantrich extract from plantaginis semen ameliorates diabetic retinal injury in a streptozotocin-induced diabetic rat model. Nutrients, 2016, 8(9), 572.
[http://dx.doi.org/10.3390/nu8090572] [PMID: 27649243]
[13]
Kho, M.; Park, J.; Han, B.; Tan, R.; Yoon, J.; Kim, H.; Ahn, Y.; Lee, Y.; Kang, D.; Lee, H. Plantago asiatica L. ameliorates puromycin aminonucleoside-induced nephrotic syndrome by suppressing inflammation and apoptosis. Nutrients, 2017, 9(4), 386.
[http://dx.doi.org/10.3390/nu9040386] [PMID: 28420111]
[14]
Sun, X.; Lan, J.; Tong, R.; Zhang, H.; Sun, S.; Xiong, A.; Wang, Z.; Yang, L. An integrative investigation on the efficacy of Plantaginis semen based on UPLC-QTOF-MS metabolomics approach in hyperlipidemic mice. Biomed. Pharmacother., 2019, 115, 108907.
[15]
Yin, J.Y.; Nie, S.P.; Zhou, C.; Wan, Y.; Xie, M.Y. Chemical characteristics and antioxidant activities of polysaccharide purified from the seeds of Plantago asiatica L. J. Sci. Food Agric., 2010, 90(2), 210-217.
[http://dx.doi.org/10.1002/jsfa.3793] [PMID: 20355033]
[16]
Ji-Ping, L.; Ren-Chao, T.; Xiao-Meng, S.; Hao-Yue, Z.; Shuai, S.; Ai-Zhen, X.; Zheng-Tao, W.; Li, Y. Comparison of main chemical compo-sition of Plantago asiatica L. and P. depressa Willd. seed extracts and their anti-obesity effects in high-fat diet-induced obese mice. Phytomedicine, 2021, 81, 153362.
[http://dx.doi.org/10.1016/j.phymed.2020.153362] [PMID: 33296814]
[17]
Niu, Y.; Li, N.; Alaxi, S.; Huang, G.; Chen, L.; Feng, Z. A new heteropolysaccharide from the seed husks of Plantago asiatica L. with its thermal and antioxidant properties. Food Funct., 2017, 8(12), 4611-4618.
[http://dx.doi.org/10.1039/C7FO01171G] [PMID: 29138791]
[18]
Zhao, H.; Wang, Q.; Sun, Y.; Yang, B.; Wang, Z.; Chai, G.; Guan, Y.; Zhu, W.; Shu, Z.; Lei, X.; Kuang, H. Purification, characterization and immunomodulatory effects of Plantago depressa polysaccharides. Carbohydr. Polym., 2014, 112, 63-72.
[http://dx.doi.org/10.1016/j.carbpol.2014.05.069] [PMID: 25129717]
[19]
Zhao, H.; Xu, J.; Wang, R.; Tang, W.; Kong, L.; Wang, W.; Wang, L.; Zhang, Y.; Ma, W. Plantaginis Semen polysaccharides ameliorate renal damage through regulating NLRP3 inflammasome in gouty nephropathy rats. Food Funct., 2021, 12(6), 2543-2553.
[http://dx.doi.org/10.1039/D0FO03143G] [PMID: 33624653]
[20]
Chen, C.; Shang, C.; Xin, L.; Xiang, M.; Wang, Y.; Shen, Z.; Jiao, L.; Ding, F.; Cui, X. Beneficial effects of psyllium on the prevention and treatment of cardiometabolic diseases. Food Funct., 2022, 13(14), 7473-7486.
[http://dx.doi.org/10.1039/D2FO00560C] [PMID: 35781477]
[21]
Nogales, C.; Mamdouh, Z.M.; List, M.; Kiel, C.; Casas, A.I.; Schmidt, H.H.H.W. Network pharmacology: Curing causal mechanisms instead of treating symptoms. Trends Pharmacol. Sci., 2022, 43(2), 136-150.
[http://dx.doi.org/10.1016/j.tips.2021.11.004] [PMID: 34895945]
[22]
Yuan, Z.; Pan, Y.; Leng, T.; Chu, Y.; Zhang, H.; Ma, J.; Ma, X. Progress and prospects of research ideas and methods in the network pharmacology of traditional chinese medicine. J Pharm Pharm Sci, 2022, 25, 218-226.
[23]
Li, X.; Liu, Z.; Liao, J.; Chen, Q.; Lu, X.; Fan, X. Network pharmacology approaches for research of traditional chinese medicines. Chin. J. Nat. Med., 2023, 21(5), 323-332.
[http://dx.doi.org/10.1016/S1875-5364(23)60429-7] [PMID: 37245871]
[24]
Pinzi, L.; Rastelli, G. Molecular docking: Shifting paradigms in drug discovery. Int. J. Mol. Sci., 2019, 20(18), 4331.
[http://dx.doi.org/10.3390/ijms20184331] [PMID: 31487867]
[25]
Dong, D.; Xu, Z.; Zhong, W.; Peng, S. Parallelization of molecular docking: A review. Curr. Top. Med. Chem., 2018, 18(12), 1015-1028.
[http://dx.doi.org/10.2174/1568026618666180821145215] [PMID: 30129415]
[26]
Fu, S.; Zhou, Y.; Hu, C.; Xu, Z.; Hou, J. Network pharmacology and molecular docking technology-based predictive study of the active ingredients and potential targets of rhubarb for the treatment of diabetic nephropathy. BMC Complement. Med. Ther, 2022, 22(1), 210.
[27]
Zhang, M.M.; Wang, D.; Lu, F.; Zhao, R.; Ye, X.; He, L.; Ai, L.; Wu, C.J. Identification of the active substances and mechanisms of ginger for the treatment of colon cancer based on network pharmacology and molecular docking. BioData Min., 2021, 14(1), 1.
[http://dx.doi.org/10.1186/s13040-020-00232-9] [PMID: 33430939]
[28]
Zhao, J.; Lin, F.; Liang, G.; Han, Y.; Xu, N.; Pan, J.; Luo, M.; Yang, W.; Zeng, L. Exploration of the molecular mechanism of polygonati rhizoma in the treatment of osteoporosis based on network pharmacology and molecular docking. Front. Endocrinol., 2022, 12, 815891.
[http://dx.doi.org/10.3389/fendo.2021.815891]
[29]
Liu, B.; Zhang, J.; Shao, L.; Yao, J. Network pharmacology analysis and molecular docking to unveil the potential mechanisms of San-Huang-Chai-Zhu formula treating cholestasis. PLoS One, 2022, 17(2), e0264398.
[http://dx.doi.org/10.1371/journal.pone.0264398] [PMID: 35196362]
[30]
Ru, J.; Li, P.; Wang, J.; Zhou, W.; Li, B.; Huang, C.; Li, P.; Guo, Z.; Tao, W.; Yang, Y.; Xu, X.; Li, Y.; Wang, Y.; Yang, L. TCMSP: A data-base of systems pharmacology for drug discovery from herbal medicines. J. Cheminform., 2014, 6(1), 13.
[http://dx.doi.org/10.1186/1758-2946-6-13] [PMID: 24735618]
[31]
Xu, X.; Zhang, W.; Huang, C.; Li, Y.; Yu, H.; Wang, Y.; Duan, J.; Ling, Y. A novel chemometric method for the prediction of human oral bioavailability. Int. J. Mol. Sci., 2012, 13(6), 6964-6982.
[http://dx.doi.org/10.3390/ijms13066964] [PMID: 22837674]
[32]
Li, Y.; Han, C.; Wang, J.; Xiao, W.; Wang, Z.; Zhang, J.; Yang, Y.; Zhang, S.; Ai, C. Investigation into the mechanism of Eucommia ulmoides Oliv. based on a systems pharmacology approach. J. Ethnopharmacol., 2014, 151(1), 452-460.
[http://dx.doi.org/10.1016/j.jep.2013.10.067] [PMID: 24239601]
[33]
Liang, J.; Huang, Y.; Mai, Z.; Zhan, Q.; Lin, H.; Xie, Y.; Wang, H.; Liu, Y.; Luo, C. Integrating network pharmacology and experimental validation to decipher the mechanism of action of huanglian jiedu decoction in treating atherosclerosis. Drug Des. Devel. Ther., 2021, 15, 1779-1795.
[http://dx.doi.org/10.2147/DDDT.S304911] [PMID: 33958856]
[34]
Liu, X.; Ouyang, S.; Yu, B.; Liu, Y.; Huang, K.; Gong, J.; Zheng, S.; Li, Z.; Li, H.; Jiang, H. PharmMapper server: A web server for potential drug target identification using pharmacophore mapping approach. Nucleic Acids Res., 2010, 38, W609-14.
[http://dx.doi.org/10.1093/nar/gkq300]
[35]
Wang, X.; Pan, C.; Gong, J.; Liu, X.; Li, H. Enhancing the enrichment of pharmacophore-based target prediction for the polypharmacologi-cal profiles of drugs. J. Chem. Inf. Model., 2016, 56(6), 1175-1183.
[http://dx.doi.org/10.1021/acs.jcim.5b00690] [PMID: 27187084]
[36]
Wang, X.; Shen, Y.; Wang, S.; Li, S.; Zhang, W.; Liu, X.; Lai, L.; Pei, J.; Li, H. PharmMapper 2017 update: A web server for potential drug target identification with a comprehensive target pharmacophore database. Nucleic Acids Res., 2017, 45(W1), W356-W360.
[http://dx.doi.org/10.1093/nar/gkx374] [PMID: 28472422]
[37]
Huang, C.; Li, R.; Shi, W.; Huang, Z. Discovery of the anti-tumor mechanism of calycosin against colorectal cancer by using system pharmacology approach. Med. Sci. Monit., 2019, 25, 5589-5593.
[http://dx.doi.org/10.12659/MSM.918250] [PMID: 31352466]
[38]
Szklarczyk, D.; Gable, A.L.; Lyon, D.; Junge, A.; Wyder, S.; Huerta Cepas, J.; Simonovic, M.; Doncheva, N.T.; Morris, J.H.; Bork, P.; Jensen, L.J.; Mering, C. STRING v11: Protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res., 2019, 47(D1), D607-D613.
[http://dx.doi.org/10.1093/nar/gky1131] [PMID: 30476243]
[39]
Szklarczyk, D.; Franceschini, A.; Wyder, S.; Forslund, K.; Heller, D.; Huerta-Cepas, J.; Simonovic, M.; Roth, A.; Santos, A.; Tsafou, K.P.; Kuhn, M.; Bork, P.; Jensen, L.J.; von Mering, C. STRING v10: Protein–protein interaction networks, integrated over the tree of life. Nucleic Acids Res., 2015, 43(D1), D447-D452.
[http://dx.doi.org/10.1093/nar/gku1003] [PMID: 25352553]
[40]
Chin, C. H.; Chen, S. H.; Wu, H. H.; Ho, C. W.; Ko, M. T.; Lin, C. Y. cytoHubba: identifying hub objects and sub-networks from complex interactome. BMC Systems Biology, 2014, 8(Suppl 4), S11.
[41]
Zhou, Y.; Zhou, B.; Pache, L.; Chang, M.; Khodabakhshi, A.H.; Tanaseichuk, O.; Benner, C.; Chanda, S.K. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat. Commun., 2019, 10(1), 1523.
[http://dx.doi.org/10.1038/s41467-019-09234-6] [PMID: 30944313]
[42]
Ashburner, M.; Ball, C.A.; Blake, J.A.; Botstein, D.; Butler, H.; Cherry, J.M.; Davis, A.P.; Dolinski, K.; Dwight, S.S.; Eppig, J.T.; Harris, M.A.; Hill, D.P.; Issel-Tarver, L.; Kasarskis, A.; Lewis, S.; Matese, J.C.; Richardson, J.E.; Ringwald, M.; Rubin, G.M.; Sherlock, G. Gene ontology: Tool for the unification of biology. Nat. Genet., 2000, 25(1), 25-29.
[http://dx.doi.org/10.1038/75556] [PMID: 10802651]
[43]
Kanehisa, M.; Goto, S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res., 2000, 28(1), 27-30.
[http://dx.doi.org/10.1093/nar/28.1.27] [PMID: 10592173]
[44]
Barrett, T.; Wilhite, S.E.; Ledoux, P.; Evangelista, C.; Kim, I.F.; Tomashevsky, M.; Marshall, K.A.; Phillippy, K.H.; Sherman, P.M.; Holko, M.; Yefanov, A.; Lee, H.; Zhang, N.; Robertson, C.L.; Serova, N.; Davis, S.; Soboleva, A. NCBI GEO: Archive for functional genomics data sets-update. Nucleic Acids Res., 2013, 41(Database issue), D991-D995.
[PMID: 23193258]
[45]
Chen, J.; Lai, X. C–X–C motif chemokine ligand 12: A potential therapeutic target in Duchenne muscular dystrophy. Bioengineered, 2021, 12(1), 5428-5439.
[http://dx.doi.org/10.1080/21655979.2021.1967029] [PMID: 34424816]
[46]
Goto, J.; Kataoka, R.; Hirayama, N. Ph4Dock: Pharmacophore-based protein-ligand docking. J. Med. Chem., 2004, 47(27), 6804-6811.
[http://dx.doi.org/10.1021/jm0493818] [PMID: 15615529]
[47]
Mallik, R.; Chowdhury, T.A. Pharmacotherapy to delay the progression of diabetic kidney disease in people with type 2 diabetes: Past, present and future. Ther. Adv. Endocrinol. Metab., 2022, 13, 20420188221081601.
[http://dx.doi.org/10.1177/20420188221081601] [PMID: 35281302]
[48]
Zhao, J.; Ai, J.; Mo, C.; Shi, W.; Meng, L. Comparative efficacy of seven Chinese patent medicines for early diabetic kidney disease: A Bayesian network meta-analysis. Complement Ther Med, 2022, 67, 102831.
[49]
Raafat, K. Identification of phytochemicals from North African plants for treating Alzheimer’s diseases and of their molecular targets by in silico network pharmacology approach. J. Tradit. Complement. Med., 2021, 11(3), 268-278.
[http://dx.doi.org/10.1016/j.jtcme.2020.08.002] [PMID: 34012873]
[50]
Xue, J.; Shi, Y.; Li, C.; Song, H. Network pharmacology‐based prediction of the active ingredients, potential targets, and signaling pathways in compound Lian‐Ge granules for treatment of diabetes. J. Cell. Biochem., 2019, 120(4), 6431-6440.
[http://dx.doi.org/10.1002/jcb.27933] [PMID: 30362298]
[51]
Chen, Y.; Chen, X.; Zhang, S. Druggability of lipid metabolism modulation against renal fibrosis. Acta Pharmacol. Sin., 2022, 43(3), 505-519.
[http://dx.doi.org/10.1038/s41401-021-00660-1] [PMID: 33990764]
[52]
Tong, L.L.; Adler, S.G. Diabetic kidney disease treatment: New perspectives. Kidney Res. Clin. Pract., 2022, 41(Suppl. 2), S63-S73.
[http://dx.doi.org/10.23876/j.krcp.21.288] [PMID: 36239062]
[53]
Eftekhari, A.; Vahed, S.Z.; Kavetskyy, T.; Rameshrad, M.; Jafari, S.; Chodari, L.; Hosseiniyan, S.M.; Derakhshankhah, H.; Ahmadian, E.; Ardalan, M. Cell junction proteins: Crossing the glomerular filtration barrier in diabetic nephropathy. Int. J. Biol. Macromol., 2020, 148, 475-482.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.01.168] [PMID: 31962072]
[54]
Luan, Z.L.; Zhang, C.; Ming, W.H.; Huang, Y.Z.; Guan, Y.F.; Zhang, X.Y. Nuclear receptors in renal health and disease. EBioMedicine, 2022, 76, 103855.
[http://dx.doi.org/10.1016/j.ebiom.2022.103855] [PMID: 35123268]
[55]
Dai, Z.W.; Cai, K.D.; Xu, L.C.; Wang, L.L. Perilipin2 inhibits diabetic nephropathy-induced podocyte apoptosis by activating the PPARγ signaling pathway. Mol. Cell. Probes, 2020, 53, 101584.
[http://dx.doi.org/10.1016/j.mcp.2020.101584] [PMID: 32387304]
[56]
Yan, R.; Wang, Y.; Shi, M.; Xiao, Y.; Liu, L.; Liu, L.; Guo, B. Regulation of PTEN/AKT/FAK pathways by PPARγ impacts on fibrosis in diabetic nephropathy. J. Cell. Biochem., 2019, 120(5), 6998-7014.
[http://dx.doi.org/10.1002/jcb.27937]
[57]
Sangaran, P.G.; Ibrahim, Z.A.; Chik, Z.; Mohamed, Z.; Ahmadiani, A. LPS preconditioning attenuates apoptosis mechanism by inhibiting NF-κB and caspase-3 activity: TLR4 pre-activation in the signaling pathway of LPS-induced neuroprotection. Mol. Neurobiol., 2021, 58(5), 2407-2422.
[http://dx.doi.org/10.1007/s12035-020-02227-3] [PMID: 33421016]
[58]
Jing, Z.; Hu, L.; Su, Y.; Ying, G.; Ma, C.; Wei, J. Potential signaling pathway through which Notch regulates oxidative damage and apoptosis in renal tubular epithelial cells induced by high glucose. J. Recept. Signal Transduct. Res., 2021, 41(4), 357-362.
[http://dx.doi.org/10.1080/10799893.2020.1810706] [PMID: 32933345]
[59]
Tang, L.; Li, K.; Zhang, Y.; Li, H.; Li, A.; Xu, Y.; Wei, B. Quercetin liposomes ameliorate streptozotocin-induced diabetic nephropathy in diabetic rats. Sci. Rep., 2020, 10(1), 2440.
[http://dx.doi.org/10.1038/s41598-020-59411-7] [PMID: 32051470]
[60]
Tong, F.; Liu, S.; Yan, B.; Li, X.; Ruan, S.; Yang, S. Quercetin nanoparticle complex attenuated diabetic nephropathy via regulating the expression level of ICAM-1 on endothelium. Int. J. Nanomedicine, 2017, 12, 7799-7813.
[http://dx.doi.org/10.2147/IJN.S146978] [PMID: 29123394]
[61]
Hu, T.; Yue, J.; Tang, Q.; Cheng, K.W.; Chen, F.; Peng, M.; Zhou, Q.; Wang, M. The effect of quercetin on diabetic nephropathy (DN): A systematic review and meta-analysis of animal studies. Food Funct., 2022, 13(9), 4789-4803.
[http://dx.doi.org/10.1039/D1FO03958J] [PMID: 35416188]
[62]
Bournival, J.; Francoeur, M.A.; Renaud, J.; Martinoli, M.G. Quercetin and sesamin protect neuronal PC12 cells from high-glucose-induced oxidation, nitrosative stress, and apoptosis. Rejuvenation Res., 2012, 15(3), 322-333.
[http://dx.doi.org/10.1089/rej.2011.1242] [PMID: 22524206]
[63]
Özyurt, H.; Çevik, Ö.; Özgen, Z.; Özden, A.S.; Çadırcı, S.; Elmas, M.A.; Ercan, F.; Gören, M.Z.; Şener, G. Quercetin protects radiation-induced DNA damage and apoptosis in kidney and bladder tissues of rats. Free Radic. Res., 2014, 48(10), 1247-1255.
[http://dx.doi.org/10.3109/10715762.2014.945925] [PMID: 25039564]
[64]
Yardim, A.; Kandemir, F.M.; Ozdemir, S.; Kucukler, S.; Comakli, S.; Gur, C.; Celik, H. Quercetin provides protection against the peripheral nerve damage caused by vincristine in rats by suppressing caspase 3, NF-κB, ATF-6 pathways and activating Nrf2, Akt pathways. Neurotoxicology, 2020, 81, 137-146.
[http://dx.doi.org/10.1016/j.neuro.2020.10.001] [PMID: 33038355]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy