Generic placeholder image

当代阿耳茨海默病研究

Editor-in-Chief

ISSN (Print): 1567-2050
ISSN (Online): 1875-5828

Research Article

MCI风险分类早期发现痴呆:上海轻度认知障碍队列研究的结果

卷 20, 期 6, 2023

发表于: 26 September, 2023

页: [431 - 439] 页: 9

弟呕挨: 10.2174/1567205020666230914161034

价格: $65

摘要

引言:本研究的目的是确定与轻度认知障碍(MCI)转化为阿尔茨海默病(AD)痴呆相关的风险因素和风险分类,以促进AD的早期干预和临床试验设计。 方法:该研究包括400名MCI受试者的前瞻性队列研究,这些受试者每年进行3年的随访。 结果:在平均3.5年的随访期内,109名受试者被诊断为各种原因的痴呆症,其中104名被试者转为阿尔茨海默氏痴呆症,5名被试物转为其他类型的痴呆症。前3个随访年的累计转化率分别为5.5%(95%CI:3.4,8.6)、16.3%(95%CI:12.9,21.1)和31.0%(95%CI:25.4,36.5)。与MCI转化为AD的更大风险相关的因素包括吸烟状态、ApoE4携带者状态、右海马体积(rt.HV)、左颞叶体积以及阿尔茨海默病评估量表认知亚量表13(ADAS-Cog-C)的修订中文版评分。ADAS-Cog-C或临床前阿尔茨海默病认知综合评分(PACC)与rt.HV的风险分类显示,在每次年度随访中,各组之间存在转换差异。 结论:使用rt.HV和神经心理测试分数(包括ADAS-Cog-C和PACC的分数)进行简单的风险分类,可能是一种实用而有效的方法来识别有全因痴呆风险的个体。

关键词: 轻度认知障碍、痴呆、危险因素、PAACC、风险分类、阿尔茨海默病。

[1]
Jack, C.R., Jr; Bennett, D.A.; Blennow, K.; Carrillo, M.C.; Dunn, B.; Haeberlein, S.B.; Holtzman, D.M.; Jagust, W.; Jessen, F.; Karlawish, J.; Liu, E.; Molinuevo, J.L.; Montine, T.; Phelps, C.; Rankin, K.P.; Rowe, C.C.; Scheltens, P.; Siemers, E.; Snyder, H.M.; Sperling, R.; Elliott, C.; Masliah, E.; Ryan, L.; Silverberg, N. NIA-AA Research Framework: Toward a biological definition of Alzheimer’s disease. Alzheimers Dement., 2018, 14(4), 535-562.
[http://dx.doi.org/10.1016/j.jalz.2018.02.018] [PMID: 29653606]
[2]
Albert, M.S.; DeKosky, S.T.; Dickson, D.; Dubois, B.; Feldman, H.H.; Fox, N.C.; Gamst, A.; Holtzman, D.M.; Jagust, W.J.; Petersen, R.C.; Snyder, P.J.; Carrillo, M.C.; Thies, B.; Phelps, C.H. The diagnosis of mild cognitive impairment due to Alzheimer’s disease: Recommendations from the national institute on aging-Alzheimer’s association workgroups on diagnostic guidelines for alzheimer’s disease. Alzheimers Dement., 2011, 7(3), 270-279.
[http://dx.doi.org/10.1016/j.jalz.2011.03.008] [PMID: 21514249]
[3]
Zhou, B; Tanabe, K; Kojima, S; Teramukai, S; Fukushima, M Protective factors modulate the risk of beta amyloid in Alzheimer's Disease. Behav. Neurol., 2020, 7029642.
[http://dx.doi.org/10.1155/2020/7029642]
[4]
Blazhenets, G.; Ma, Y.; Sörensen, A.; Schiller, F.; Rücker, G.; Eidelberg, D.; Frings, L.; Meyer, P.T. Predictive Value of 18 F-Florbetapir and 18 F-FDG PET for conversion from mild cognitive impairment to Alzheimer Dementia. J. Nucl. Med., 2020, 61(4), 597-603.
[http://dx.doi.org/10.2967/jnumed.119.230797] [PMID: 31628215]
[5]
Vos, S.J.B.; Verhey, F.; Frölich, L.; Kornhuber, J.; Wiltfang, J.; Maier, W.; Peters, O.; Rüther, E.; Nobili, F.; Morbelli, S.; Frisoni, G.B.; Drzezga, A.; Didic, M.; van Berckel, B.N.M.; Simmons, A.; Soininen, H.; Kłoszewska, I.; Mecocci, P.; Tsolaki, M.; Vellas, B.; Lovestone, S.; Muscio, C.; Herukka, S.K.; Salmon, E.; Bastin, C.; Wallin, A.; Nordlund, A.; de Mendonça, A.; Silva, D.; Santana, I.; Lemos, R.; Engelborghs, S.; Van der Mussele, S.; Freund-Levi, Y.; Wallin, Å.K.; Hampel, H.; van der Flier, W.; Scheltens, P.; Visser, P.J. Prevalence and prognosis of Alzheimer’s disease at the mild cognitive impairment stage. Brain, 2015, 138(5), 1327-1338.
[http://dx.doi.org/10.1093/brain/awv029] [PMID: 25693589]
[6]
Caroli, A.; Prestia, A.; Galluzzi, S.; Ferrari, C.; van der Flier, W.M.; Ossenkoppele, R.; Van Berckel, B.; Barkhof, F.; Teunissen, C.; Wall, A.E.; Carter, S.F.; Schöll, M.; Choo, I.H.; Grimmer, T.; Redolfi, A.; Nordberg, A.; Scheltens, P.; Drzezga, A.; Frisoni, G.B. Mild cognitive impairment with suspected nonamyloid pathology (SNAP): Prediction of progression. Neurology, 2015, 84(5), 508-515.
[http://dx.doi.org/10.1212/WNL.0000000000001209] [PMID: 25568301]
[7]
Alexopoulos, P.; Werle, L.; Roesler, J.; Thierjung, N.; Gleixner, L.S.; Yakushev, I.; Laskaris, N.; Wagenpfeil, S.; Gourzis, P.; Kurz, A.; Perneczky, R. Conflicting cerebrospinal fluid biomarkers and progression to dementia due to Alzheimer’s disease. Alzheimers Res. Ther., 2016, 8(1), 51.
[http://dx.doi.org/10.1186/s13195-016-0220-z] [PMID: 27931251]
[8]
Lombardi, G.; Crescioli, G.; Cavedo, E.; Lucenteforte, E.; Casazza, G.; Bellatorre, A.G.; Lista, C.; Costantino, G.; Frisoni, G.; Virgili, G.; Filippini, G. Structural magnetic resonance imaging for the early diagnosis of dementia due to Alzheimer’s disease in people with mild cognitive impairment. Cochrane Libr., 2020, 3(3), CD009628.
[http://dx.doi.org/10.1002/14651858.CD009628.pub2] [PMID: 32119112]
[9]
Grueso, S.; Viejo-Sobera, R. Machine learning methods for predicting progression from mild cognitive impairment to Alzheimer’s disease dementia: A systematic review. Alzheimers Res. Ther., 2021, 13(1), 162.
[http://dx.doi.org/10.1186/s13195-021-00900-w] [PMID: 34583745]
[10]
Zhou, B.; Zhao, Q.; Kojima, S.; Ding, D.; Higashide, S.; Nagai, Y.; Guo, Q.; Kagimura, T.; Fukushima, M.; Hong, Z. One-year outcome of shanghai mild cognitive impairment cohort study. Curr. Alzheimer Res., 2019, 16(2), 156-165.
[http://dx.doi.org/10.2174/1567205016666181128151144] [PMID: 30484408]
[11]
Zhou, B.; Zhao, Q.; Kojima, S.; Ding, D.; Nagai, Y.; Guo, Q. Shanghai cohort study on mild cognitive impairment: Study design and baseline characteristics. J. Alzheimers Dis. Parkinsonism, 2016, 6(2), 224.
[http://dx.doi.org/10.4172/2161-0460.1000224]
[12]
Donohue, M.C.; Sperling, R.A.; Petersen, R.; Sun, C.K.; Weiner, M.W.; Aisen, P.S. Alzheimer’s disease neuroimaging initiative. Association between elevated brain amyloid and subsequent cognitive decline among cognitively normal persons. JAMA, 2017, 317, 2305-2316.
[http://dx.doi.org/10.1001/jama.2017.6669] [PMID: 28609533]
[13]
Prestia, A.; Caroli, A.; van der Flier, W.M.; Ossenkoppele, R.; Van Berckel, B.; Barkhof, F.; Teunissen, C.E.; Wall, A.E.; Carter, S.F.; Schöll, M.; Choo, I.H.; Nordberg, A.; Scheltens, P.; Frisoni, G.B. Prediction of dementia in MCI patients based on core diagnostic markers for Alzheimer disease. Neurology, 2013, 80(11), 1048-1056.
[http://dx.doi.org/10.1212/WNL.0b013e3182872830] [PMID: 23390179]
[14]
Basaia, S.; Agosta, F.; Wagner, L.; Canu, E.; Magnani, G.; Santangelo, R.; Filippi, M. Automated classification of Alzheimer’s disease and mild cognitive impairment using a single MRI and deep neural networks. Neuroimage Clin., 2019, 21, 101645.
[http://dx.doi.org/10.1016/j.nicl.2018.101645] [PMID: 30584016]
[15]
Bouts, M.J.R.J.; Grond, J.; Vernooij, M.W.; Koini, M.; Schouten, T.M.; Vos, F.; Feis, R.A.; Cremers, L.G.M.; Lechner, A.; Schmidt, R.; Rooij, M.; Niessen, W.J.; Ikram, M.A.; Rombouts, S.A.R.B. Detection of mild cognitive impairment in a community-dwelling population using quantitative, multiparametric MRI-based classification. Hum. Brain Mapp., 2019, 40(9), 2711-2722.
[http://dx.doi.org/10.1002/hbm.24554] [PMID: 30803110]
[16]
Beyer, L.; Brendel, M.; Scheiwein, F.; Sauerbeck, J.; Hosakawa, C.; Alberts, I.; Shi, K.; Bartenstein, P.; Ishii, K.; Seibyl, J.; Cumming, P.; Rominger, A. Improved risk stratification for progression from mild cognitive impairment to Alzheimer’s Disease with a multi-analytical evaluation of amyloid-β positron emission tomography. J. Alzheimers Dis., 2020, 74(1), 101-112.
[http://dx.doi.org/10.3233/JAD-190818] [PMID: 31985461]
[17]
Youssofzadeh, V; McGuinness, B; Maguire, LP; Wong-Lin, K Multi-Kernel learning with dartel improves combined mri-pet classification of alzheimer's disease in aibl data: Group and individual analyses. Front Hum Neurosci., 2017, 11, 380.
[http://dx.doi.org/10.3389/fnhum.2017.00380]
[18]
Moradi, E.; Pepe, A.; Gaser, C.; Huttunen, H.; Tohka, J. Machine learning framework for early MRI-based Alzheimer’s conversion prediction in MCI subjects. Neuroimage, 2015, 104, 398-412.
[http://dx.doi.org/10.1016/j.neuroimage.2014.10.002] [PMID: 25312773]
[19]
Thomas, K.R.; Cook, S.E.; Bondi, M.W.; Unverzagt, F.W.; Gross, A.L.; Willis, S.L.; Marsiske, M. Application of neuropsychological criteria to classify mild cognitive impairment in the active study. Neuropsychology, 2020, 34(8), 862-873.
[http://dx.doi.org/10.1037/neu0000694] [PMID: 33197199]
[20]
Petersen, R.C.; Aisen, P.; Boeve, B.F.; Geda, Y.E.; Ivnik, R.J.; Knopman, D.S.; Mielke, M.; Pankratz, V.S.; Roberts, R.; Rocca, W.A.; Weigand, S.; Weiner, M.; Wiste, H.; Jack, C.R., Jr. Mild cognitive impairment due to Alzheimer disease in the community. Ann. Neurol., 2013, 74(2), 199-208.
[http://dx.doi.org/10.1002/ana.23931] [PMID: 23686697]
[21]
Zhou, B.; Nakatani, E.; Teramukai, S.; Nagai, Y.; Fukushima, M. Risk classification in mild cognitive impairment patients for developing Alzheimer’s disease. J. Alzheimers Dis., 2012, 30(2), 367-375.
[http://dx.doi.org/10.3233/JAD-2012-112117] [PMID: 22426014]
[22]
Bateman, R.J.; Xiong, C.; Benzinger, T.L.S.; Fagan, A.M.; Goate, A.; Fox, N.C.; Marcus, D.S.; Cairns, N.J.; Xie, X.; Blazey, T.M.; Holtzman, D.M.; Santacruz, A.; Buckles, V.; Oliver, A.; Moulder, K.; Aisen, P.S.; Ghetti, B.; Klunk, W.E.; McDade, E.; Martins, R.N.; Masters, C.L.; Mayeux, R.; Ringman, J.M.; Rossor, M.N.; Schofield, P.R.; Sperling, R.A.; Salloway, S.; Morris, J.C. Clinical and biomarker changes in dominantly inherited Alzheimer’s disease. N. Engl. J. Med., 2012, 367(9), 795-804.
[http://dx.doi.org/10.1056/NEJMoa1202753] [PMID: 22784036]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy