Generic placeholder image

Current Alzheimer Research

Editor-in-Chief

ISSN (Print): 1567-2050
ISSN (Online): 1875-5828

Research Article

Early Detection of Dementia using Risk Classification in MCI: Outcomes of Shanghai Mild Cognitive Impairment Cohort Study

Author(s): Bin Zhou*, Qianhua Zhao, Shinsuke Kojima, Ding Ding, Satoshi Higashide, Masanori Fukushima and Zhen Hong*

Volume 20, Issue 6, 2023

Published on: 26 September, 2023

Page: [431 - 439] Pages: 9

DOI: 10.2174/1567205020666230914161034

Price: $65

Abstract

Introduction: The purpose of this study is to identify the risk factors and risk classification associated with the conversion from mild cognitive impairment (MCI) to Alzheimer’s disease (AD) dementia to facilitate early intervention and the design of clinical trials for AD.

Methods: The study comprised a prospective cohort study of 400 subjects with MCI who had annual follow-ups for 3 years.

Results: During an average follow-up period of 3.5 years, 109 subjects were diagnosed with all cause of dementia, of whom 104 subjects converted to Alzheimer’s dementia and 5 subjects converted to other types of dementia. The cumulative conversion rate was 5.5% (95% CI: 3.4, 8.6), 16.3% (95% CI: 12.9, 21.1), and 31.0% (95% CI: 25.4, 36.5) in each of the first 3 follow-up years, respectively. The factors associated with a greater risk of conversion from MCI to AD included smoking status, ApoE4 carrier status, right hippocampal volume (rt. HV), left temporal lobe volume, and scores on the Revised Chinese version of the Alzheimer’s Disease Assessment Scale-Cognitive Subscale 13 (ADAS-Cog-C). The risk classification of the ADAS-Cog-C or Preclinical Alzheimer Cognitive Composite (PACC) score combined with the rt. HV showed a conversion difference among the groups at every annual follow-up.

Conclusion: A simple risk classification using the rt. HV and neuropsychological test scores, including those from the ADAS-Cog-C and PACC, could be a practicable and efficient approach to indentify individuals at risk of all-cause dementia.

Keywords: Mild cognitive impairment, dementia, risk factors, PAACC, risk classification, Alzheimer’s disease.

[1]
Jack, C.R., Jr; Bennett, D.A.; Blennow, K.; Carrillo, M.C.; Dunn, B.; Haeberlein, S.B.; Holtzman, D.M.; Jagust, W.; Jessen, F.; Karlawish, J.; Liu, E.; Molinuevo, J.L.; Montine, T.; Phelps, C.; Rankin, K.P.; Rowe, C.C.; Scheltens, P.; Siemers, E.; Snyder, H.M.; Sperling, R.; Elliott, C.; Masliah, E.; Ryan, L.; Silverberg, N. NIA-AA Research Framework: Toward a biological definition of Alzheimer’s disease. Alzheimers Dement., 2018, 14(4), 535-562.
[http://dx.doi.org/10.1016/j.jalz.2018.02.018] [PMID: 29653606]
[2]
Albert, M.S.; DeKosky, S.T.; Dickson, D.; Dubois, B.; Feldman, H.H.; Fox, N.C.; Gamst, A.; Holtzman, D.M.; Jagust, W.J.; Petersen, R.C.; Snyder, P.J.; Carrillo, M.C.; Thies, B.; Phelps, C.H. The diagnosis of mild cognitive impairment due to Alzheimer’s disease: Recommendations from the national institute on aging-Alzheimer’s association workgroups on diagnostic guidelines for alzheimer’s disease. Alzheimers Dement., 2011, 7(3), 270-279.
[http://dx.doi.org/10.1016/j.jalz.2011.03.008] [PMID: 21514249]
[3]
Zhou, B; Tanabe, K; Kojima, S; Teramukai, S; Fukushima, M Protective factors modulate the risk of beta amyloid in Alzheimer's Disease. Behav. Neurol., 2020, 7029642.
[http://dx.doi.org/10.1155/2020/7029642]
[4]
Blazhenets, G.; Ma, Y.; Sörensen, A.; Schiller, F.; Rücker, G.; Eidelberg, D.; Frings, L.; Meyer, P.T. Predictive Value of 18 F-Florbetapir and 18 F-FDG PET for conversion from mild cognitive impairment to Alzheimer Dementia. J. Nucl. Med., 2020, 61(4), 597-603.
[http://dx.doi.org/10.2967/jnumed.119.230797] [PMID: 31628215]
[5]
Vos, S.J.B.; Verhey, F.; Frölich, L.; Kornhuber, J.; Wiltfang, J.; Maier, W.; Peters, O.; Rüther, E.; Nobili, F.; Morbelli, S.; Frisoni, G.B.; Drzezga, A.; Didic, M.; van Berckel, B.N.M.; Simmons, A.; Soininen, H.; Kłoszewska, I.; Mecocci, P.; Tsolaki, M.; Vellas, B.; Lovestone, S.; Muscio, C.; Herukka, S.K.; Salmon, E.; Bastin, C.; Wallin, A.; Nordlund, A.; de Mendonça, A.; Silva, D.; Santana, I.; Lemos, R.; Engelborghs, S.; Van der Mussele, S.; Freund-Levi, Y.; Wallin, Å.K.; Hampel, H.; van der Flier, W.; Scheltens, P.; Visser, P.J. Prevalence and prognosis of Alzheimer’s disease at the mild cognitive impairment stage. Brain, 2015, 138(5), 1327-1338.
[http://dx.doi.org/10.1093/brain/awv029] [PMID: 25693589]
[6]
Caroli, A.; Prestia, A.; Galluzzi, S.; Ferrari, C.; van der Flier, W.M.; Ossenkoppele, R.; Van Berckel, B.; Barkhof, F.; Teunissen, C.; Wall, A.E.; Carter, S.F.; Schöll, M.; Choo, I.H.; Grimmer, T.; Redolfi, A.; Nordberg, A.; Scheltens, P.; Drzezga, A.; Frisoni, G.B. Mild cognitive impairment with suspected nonamyloid pathology (SNAP): Prediction of progression. Neurology, 2015, 84(5), 508-515.
[http://dx.doi.org/10.1212/WNL.0000000000001209] [PMID: 25568301]
[7]
Alexopoulos, P.; Werle, L.; Roesler, J.; Thierjung, N.; Gleixner, L.S.; Yakushev, I.; Laskaris, N.; Wagenpfeil, S.; Gourzis, P.; Kurz, A.; Perneczky, R. Conflicting cerebrospinal fluid biomarkers and progression to dementia due to Alzheimer’s disease. Alzheimers Res. Ther., 2016, 8(1), 51.
[http://dx.doi.org/10.1186/s13195-016-0220-z] [PMID: 27931251]
[8]
Lombardi, G.; Crescioli, G.; Cavedo, E.; Lucenteforte, E.; Casazza, G.; Bellatorre, A.G.; Lista, C.; Costantino, G.; Frisoni, G.; Virgili, G.; Filippini, G. Structural magnetic resonance imaging for the early diagnosis of dementia due to Alzheimer’s disease in people with mild cognitive impairment. Cochrane Libr., 2020, 3(3), CD009628.
[http://dx.doi.org/10.1002/14651858.CD009628.pub2] [PMID: 32119112]
[9]
Grueso, S.; Viejo-Sobera, R. Machine learning methods for predicting progression from mild cognitive impairment to Alzheimer’s disease dementia: A systematic review. Alzheimers Res. Ther., 2021, 13(1), 162.
[http://dx.doi.org/10.1186/s13195-021-00900-w] [PMID: 34583745]
[10]
Zhou, B.; Zhao, Q.; Kojima, S.; Ding, D.; Higashide, S.; Nagai, Y.; Guo, Q.; Kagimura, T.; Fukushima, M.; Hong, Z. One-year outcome of shanghai mild cognitive impairment cohort study. Curr. Alzheimer Res., 2019, 16(2), 156-165.
[http://dx.doi.org/10.2174/1567205016666181128151144] [PMID: 30484408]
[11]
Zhou, B.; Zhao, Q.; Kojima, S.; Ding, D.; Nagai, Y.; Guo, Q. Shanghai cohort study on mild cognitive impairment: Study design and baseline characteristics. J. Alzheimers Dis. Parkinsonism, 2016, 6(2), 224.
[http://dx.doi.org/10.4172/2161-0460.1000224]
[12]
Donohue, M.C.; Sperling, R.A.; Petersen, R.; Sun, C.K.; Weiner, M.W.; Aisen, P.S. Alzheimer’s disease neuroimaging initiative. Association between elevated brain amyloid and subsequent cognitive decline among cognitively normal persons. JAMA, 2017, 317, 2305-2316.
[http://dx.doi.org/10.1001/jama.2017.6669] [PMID: 28609533]
[13]
Prestia, A.; Caroli, A.; van der Flier, W.M.; Ossenkoppele, R.; Van Berckel, B.; Barkhof, F.; Teunissen, C.E.; Wall, A.E.; Carter, S.F.; Schöll, M.; Choo, I.H.; Nordberg, A.; Scheltens, P.; Frisoni, G.B. Prediction of dementia in MCI patients based on core diagnostic markers for Alzheimer disease. Neurology, 2013, 80(11), 1048-1056.
[http://dx.doi.org/10.1212/WNL.0b013e3182872830] [PMID: 23390179]
[14]
Basaia, S.; Agosta, F.; Wagner, L.; Canu, E.; Magnani, G.; Santangelo, R.; Filippi, M. Automated classification of Alzheimer’s disease and mild cognitive impairment using a single MRI and deep neural networks. Neuroimage Clin., 2019, 21, 101645.
[http://dx.doi.org/10.1016/j.nicl.2018.101645] [PMID: 30584016]
[15]
Bouts, M.J.R.J.; Grond, J.; Vernooij, M.W.; Koini, M.; Schouten, T.M.; Vos, F.; Feis, R.A.; Cremers, L.G.M.; Lechner, A.; Schmidt, R.; Rooij, M.; Niessen, W.J.; Ikram, M.A.; Rombouts, S.A.R.B. Detection of mild cognitive impairment in a community-dwelling population using quantitative, multiparametric MRI-based classification. Hum. Brain Mapp., 2019, 40(9), 2711-2722.
[http://dx.doi.org/10.1002/hbm.24554] [PMID: 30803110]
[16]
Beyer, L.; Brendel, M.; Scheiwein, F.; Sauerbeck, J.; Hosakawa, C.; Alberts, I.; Shi, K.; Bartenstein, P.; Ishii, K.; Seibyl, J.; Cumming, P.; Rominger, A. Improved risk stratification for progression from mild cognitive impairment to Alzheimer’s Disease with a multi-analytical evaluation of amyloid-β positron emission tomography. J. Alzheimers Dis., 2020, 74(1), 101-112.
[http://dx.doi.org/10.3233/JAD-190818] [PMID: 31985461]
[17]
Youssofzadeh, V; McGuinness, B; Maguire, LP; Wong-Lin, K Multi-Kernel learning with dartel improves combined mri-pet classification of alzheimer's disease in aibl data: Group and individual analyses. Front Hum Neurosci., 2017, 11, 380.
[http://dx.doi.org/10.3389/fnhum.2017.00380]
[18]
Moradi, E.; Pepe, A.; Gaser, C.; Huttunen, H.; Tohka, J. Machine learning framework for early MRI-based Alzheimer’s conversion prediction in MCI subjects. Neuroimage, 2015, 104, 398-412.
[http://dx.doi.org/10.1016/j.neuroimage.2014.10.002] [PMID: 25312773]
[19]
Thomas, K.R.; Cook, S.E.; Bondi, M.W.; Unverzagt, F.W.; Gross, A.L.; Willis, S.L.; Marsiske, M. Application of neuropsychological criteria to classify mild cognitive impairment in the active study. Neuropsychology, 2020, 34(8), 862-873.
[http://dx.doi.org/10.1037/neu0000694] [PMID: 33197199]
[20]
Petersen, R.C.; Aisen, P.; Boeve, B.F.; Geda, Y.E.; Ivnik, R.J.; Knopman, D.S.; Mielke, M.; Pankratz, V.S.; Roberts, R.; Rocca, W.A.; Weigand, S.; Weiner, M.; Wiste, H.; Jack, C.R., Jr. Mild cognitive impairment due to Alzheimer disease in the community. Ann. Neurol., 2013, 74(2), 199-208.
[http://dx.doi.org/10.1002/ana.23931] [PMID: 23686697]
[21]
Zhou, B.; Nakatani, E.; Teramukai, S.; Nagai, Y.; Fukushima, M. Risk classification in mild cognitive impairment patients for developing Alzheimer’s disease. J. Alzheimers Dis., 2012, 30(2), 367-375.
[http://dx.doi.org/10.3233/JAD-2012-112117] [PMID: 22426014]
[22]
Bateman, R.J.; Xiong, C.; Benzinger, T.L.S.; Fagan, A.M.; Goate, A.; Fox, N.C.; Marcus, D.S.; Cairns, N.J.; Xie, X.; Blazey, T.M.; Holtzman, D.M.; Santacruz, A.; Buckles, V.; Oliver, A.; Moulder, K.; Aisen, P.S.; Ghetti, B.; Klunk, W.E.; McDade, E.; Martins, R.N.; Masters, C.L.; Mayeux, R.; Ringman, J.M.; Rossor, M.N.; Schofield, P.R.; Sperling, R.A.; Salloway, S.; Morris, J.C. Clinical and biomarker changes in dominantly inherited Alzheimer’s disease. N. Engl. J. Med., 2012, 367(9), 795-804.
[http://dx.doi.org/10.1056/NEJMoa1202753] [PMID: 22784036]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy