Generic placeholder image

Current Nutrition & Food Science

Editor-in-Chief

ISSN (Print): 1573-4013
ISSN (Online): 2212-3881

Mini-Review Article

Ginger (Zingiber officinale Roscoe; Family: Zingiberaceae) in Non-Alcoholic Fatty Liver Disease: Review on the Existing Scientific Evidence and Way Forward

Author(s): Pankaj Prabhakar, Vijay Marakala, Dhanya Sacheendran, Thomas George, Rhea Katherine D'souza, Princy Louis Palatty and Manjeshwar Shrinath Baliga*

Volume 20, Issue 7, 2024

Published on: 13 September, 2023

Page: [789 - 796] Pages: 8

DOI: 10.2174/1573401319666230913122317

Price: $65

Abstract

Non-alcoholic fatty liver disease (NAFLD) is today the most prevalent hepatic disorder in the world. Although many pharmaceutical agents have been investigated for their potential to prevent or treat NAFLD, currently, there is no standard treatment to manage this ailment. Reports indicate that ginger and its phytochemicals gingerol and zingerone are effective in mitigating NAFLD in experimental study models. Furthermore, randomised control trials have demonstrated that ginger is also effective in preventing NAFLD in both adults and children. Mechanistic studies suggest that ginger mediates these beneficial effects by activating many pathways, such as reducing free radicals, dyslipidemia, and hepatic fat deposition. Concomitantly, ginger also increases antioxidant enzyme levels and insulin-sensitive effects, and all these pharmacological actions provide beneficial outcomes. In this review, the evidence from experimental and clinical trials has been emphasised. In addition, an attempt has been made to identify the gaps for future study to address for the benefit of the medical, pharmaceutical, nutraceutical, and agricultural businesses.

Keywords: Zingiber officinale, liver cirrhosis, inflammation, dyslipidemia, NAFLD, phytochemicals.

Graphical Abstract
[1]
Paul SB, Dhamija E, Kedia S. Non-alcoholic fatty liver disease associated with hepatocellular carcinoma: An increasing concern. Indian J Med Res 2019; 149(1): 9-17.
[http://dx.doi.org/10.4103/ijmr.IJMR_1456_17] [PMID: 31115369]
[2]
Carr RM, Oranu A, Khungar V. Non-alcoholic fatty liver disease: Pathophysiology and management. Gastroenterol Clin North Am 2016; 45(4): 639-52.
[http://dx.doi.org/10.1016/j.gtc.2016.07.003] [PMID: 27837778]
[3]
Buzzetti E, Pinzani M, Tsochatzis EA. The multiple-hit pathogenesis of non-alcoholic fatty liver disease (NAFLD). Metabolism 2016; 65(8): 1038-48.
[http://dx.doi.org/10.1016/j.metabol.2015.12.012] [PMID: 26823198]
[4]
Calzadilla Bertot L, Adams L. The natural course of non-alcoholic fatty liver disease. Int J Mol Sci 2016; 17(5): 774.
[http://dx.doi.org/10.3390/ijms17050774]
[5]
Benedict M, Zhang X. Non-alcoholic fatty liver disease: An expanded review. World J Hepatol 2017; 9(16): 715-32.
[http://dx.doi.org/10.4254/wjh.v9.i16.715] [PMID: 28652891]
[6]
Maurice J, Manousou P. Non-alcoholic fatty liver disease. Clin Med 2018; 18(3): 245-50.
[http://dx.doi.org/10.7861/clinmedicine.18-3-245] [PMID: 29858436]
[7]
Younossi ZM, Koenig AB, Abdelatif D, Fazel Y, Henry L, Wymer M. Global epidemiology of nonalcoholic fatty liver disease—Meta-analytic assessment of prevalence, incidence, and outcomes. Hepatology 2016; 64(1): 73-84.
[http://dx.doi.org/10.1002/hep.28431] [PMID: 26707365]
[8]
Yasutake K, Kohjima M, Kotoh K, Nakashima M, Nakamuta M, Enjoji M. Dietary habits and behaviors associated with nonalcoholic fatty liver disease. World J Gastroenterol 2014; 20(7): 1756-67.
[http://dx.doi.org/10.3748/wjg.v20.i7.1756] [PMID: 24587653]
[9]
Estes C, Anstee QM, Arias-Loste MT, et al. Modeling NAFLD disease burden in China, France, Germany, Italy, Japan, Spain, United Kingdom, and United States for the period 2016–2030. J Hepatol 2018; 69(4): 896-904.
[http://dx.doi.org/10.1016/j.jhep.2018.05.036] [PMID: 29886156]
[10]
Mitra S, De A, Chowdhury A. Epidemiology of non-alcoholic and alcoholic fatty liver diseases. Transl Gastroenterol Hepatol 2020; 5: 16.
[http://dx.doi.org/10.21037/tgh.2019.09.08] [PMID: 32258520]
[11]
Kalra S, Vithalani M, Gulati G, et al. Study of prevalence of nonalcoholic fatty liver disease (NAFLD) in type 2 diabetes patients in India (SPRINT). J Assoc Physicians India 2013; 61(7): 448-53.
[PMID: 24772746]
[12]
Bril F, Cusi K. Management of nonalcoholic fatty liver disease in patients with type 2 diabetes: A call to action. Diabetes Care 2017; 40(3): 419-30.
[http://dx.doi.org/10.2337/dc16-1787] [PMID: 28223446]
[13]
Jegatheesan P, Beutheu S, Ventura G, et al. Citrulline and nonessential amino acids prevent fructose-induced nonalcoholic fatty liver disease in rats. J Nutr 2015; 145(10): 2273-9.
[http://dx.doi.org/10.3945/jn.115.218982] [PMID: 26246323]
[14]
Dyson JK, Anstee QM, McPherson S. Non-alcoholic fatty liver disease: A practical approach to diagnosis and staging. Frontline Gastroenterol 2014; 5(3): 211-8.
[http://dx.doi.org/10.1136/flgastro-2013-100403] [PMID: 25018867]
[15]
Dongiovanni P, Anstee Q, Valenti L. Genetic predisposition in NAFLD and NASH: Impact on severity of liver disease and response to treatment. Curr Pharm Des 2013; 19(29): 5219-38.
[http://dx.doi.org/10.2174/13816128113199990381] [PMID: 23394097]
[16]
Jegatheesan P, De Bandt JP. Fructose and NAFLD: The multifaceted aspects of fructose metabolism. Nutrients 2017; 9(3): 230.
[http://dx.doi.org/10.3390/nu9030230] [PMID: 28273805]
[17]
Jensen T, Abdelmalek MF, Sullivan S, et al. Fructose and sugar: A major mediator of non-alcoholic fatty liver disease. J Hepatol 2018; 68(5): 1063-75.
[http://dx.doi.org/10.1016/j.jhep.2018.01.019] [PMID: 29408694]
[18]
Prabhakar P, Reeta K, Maulik SK, Dinda AK, Gupta YK. α-Amyrin attenuates high fructose diet-induced metabolic syndrome in rats. Appl Physiol Nutr Metab 2017; 42(1): 23-32.
[http://dx.doi.org/10.1139/apnm-2016-0088] [PMID: 27911087]
[19]
Feillet-Coudray C, Fouret G, Vigor C, et al. Long-term measures of dyslipidemia, inflammation, and oxidative stress in rats fed a high-fat/high-fructose diet. Lipids 2019; 54(1): 81-97.
[http://dx.doi.org/10.1002/lipd.12128] [PMID: 30767221]
[20]
Seki K, Kitade M, Nishimura N, et al. Oral administration of fructose exacerbates liver fibrosis and hepatocarcinogenesis via increased intestinal permeability in a rat steatohepatitis model. Oncotarget 2018; 9(47): 28638-51.
[http://dx.doi.org/10.18632/oncotarget.25587] [PMID: 29983886]
[21]
Paschos P, Paletas K. Non alcoholic fatty liver disease and metabolic syndrome. Hippokratia 2009; 13(1): 9-19.
[PMID: 19240815]
[22]
Dong B, Kan CFK, Singh AB, Liu J. High-fructose diet downregulates long-chain acyl-CoA synthetase 3 expression in liver of hamsters via impairing LXR/RXR signaling pathway. J Lipid Res 2013; 54(5): 1241-54.
[http://dx.doi.org/10.1194/jlr.M032599] [PMID: 23427282]
[23]
Su Q, Baker C, Christian P, et al. Hepatic mitochondrial and ER stress induced by defective PPARα signaling in the pathogenesis of hepatic steatosis. Am J Physiol Endocrinol Metab 2014; 306(11): E1264-73.
[http://dx.doi.org/10.1152/ajpendo.00438.2013] [PMID: 24735884]
[24]
Satapati S, Kucejova B, Duarte JAG, et al. Mitochondrial metabolism mediates oxidative stress and inflammation in fatty liver. J Clin Invest 2016; 126(4): 1605.
[http://dx.doi.org/10.1172/JCI86695] [PMID: 27035816]
[25]
Fujii J, Homma T, Kobayashi S, Seo HG. Mutual interaction between oxidative stress and endoplasmic reticulum stress in the pathogenesis of diseases specifically focusing on non-alcoholic fatty liver disease. World J Biol Chem 2018; 9(1): 1-15.
[http://dx.doi.org/10.4331/wjbc.v9.i1.1] [PMID: 30364769]
[26]
Campo JAD, Gallego P, Grande L. Role of inflammatory response in liver diseases: Therapeutic strategies. World J Hepatol 2018; 10(1): 1-7.
[http://dx.doi.org/10.4254/wjh.v10.i1.1] [PMID: 29399273]
[27]
Parola M, Pinzani M. Liver fibrosis: Pathophysiology, pathogenetic targets and clinical issues. Mol Aspects Med 2019; 65: 37-55.
[http://dx.doi.org/10.1016/j.mam.2018.09.002] [PMID: 30213667]
[28]
Chen K, Chen X, Xue H, et al. Coenzyme Q10 attenuates high-fat diet-induced non-alcoholic fatty liver disease through activation of the AMPK pathway. Food Funct 2019; 10(2): 814-23.
[http://dx.doi.org/10.1039/C8FO01236A] [PMID: 30675881]
[29]
Lyons C, Roche H. Nutritional modulation of AMPK-impact upon metabolic-inflammation. Int J Mol Sci 2018; 19(10): 3092.
[http://dx.doi.org/10.3390/ijms19103092] [PMID: 30304866]
[30]
Ding RB, Bao J, Deng CX. Emerging roles of SIRT1 in fatty liver diseases. Int J Biol Sci 2017; 13(7): 852-67.
[http://dx.doi.org/10.7150/ijbs.19370] [PMID: 28808418]
[31]
Schwenger KJP, Allard JP. Clinical approaches to non-alcoholic fatty liver disease. World J Gastroenterol 2014; 20(7): 1712-23.
[http://dx.doi.org/10.3748/wjg.v20.i7.1712] [PMID: 24587650]
[32]
Dong S, Zhan ZY, Cao HY, et al. Urinary metabolomics analysis identifies key biomarkers of different stages of nonalcoholic fatty liver disease. World J Gastroenterol 2017; 23(15): 2771-84.
[http://dx.doi.org/10.3748/wjg.v23.i15.2771] [PMID: 28487615]
[33]
Klein S, Mittendorfer B, Eagon JC, et al. Gastric bypass surgery improves metabolic and hepatic abnormalities associated with nonalcoholic fatty liver disease. Gastroenterology 2006; 130(6): 1564-72.
[http://dx.doi.org/10.1053/j.gastro.2006.01.042] [PMID: 16697719]
[34]
Alqarni I, Bassiouni YA, Badr AM, Ali RA. Telmisartan and/or chlorogenic acid attenuates fructose-induced non-alcoholic fatty liver disease in rats: Implications of cross-talk between angiotensin, the sphingosine kinase/sphingoine-1-phosphate pathway, and TLR4 receptors. Biochem Pharmacol 2019; 164: 252-62.
[http://dx.doi.org/10.1016/j.bcp.2019.04.018] [PMID: 31004566]
[35]
Masarone M, Rosato V, Dallio M, et al. Role of oxidative stress in pathophysiology of nonalcoholic fatty liver disease. Oxid Med Cell Longev 2018; 2018: 1-14.
[http://dx.doi.org/10.1155/2018/9547613] [PMID: 29991976]
[36]
Xu Y, Guo W, Zhang C, et al. Herbal medicine in the treatment of non-alcoholic fatty liver diseases-efficacy, action mechanism, and clinical application. Front Pharmacol 2020; 11: 601.
[http://dx.doi.org/10.3389/fphar.2020.00601] [PMID: 32477116]
[37]
Sanyal AJ, Chalasani N, Kowdley KV, et al. Pioglitazone, vitamin E, or placebo for nonalcoholic steatohepatitis. N Engl J Med 2010; 362(18): 1675-85.
[http://dx.doi.org/10.1056/NEJMoa0907929] [PMID: 20427778]
[38]
Perumpail B, Li A, Iqbal U, et al. Potential therapeutic benefits of herbs and supplements in patients with NAFLD. Diseases 2018; 6(3): 80.
[http://dx.doi.org/10.3390/diseases6030080] [PMID: 30201879]
[39]
Salehi B, Ata A, Sharopov , et al. Antidiabetic potential of medicinal plants and their active components. Biomolecules 2019; 9(10): 551.
[http://dx.doi.org/10.3390/biom9100551] [PMID: 31575072]
[40]
Sasidharan S, Chen Y, Saravanan D, Sundram KM, Yoga Latha L. Extraction, isolation and characterization of bioactive compounds from plants’ extracts. Afr J Tradit Complement Altern Med 2011; 8(1): 1-10.
[PMID: 22238476]
[41]
Bode AM, Dong Z. Chapter 7 The amazing and mighty ginger. Herbal Medicine: Biomolecular and Clinical Aspects. (2nd ed..), Boca Raton (FL): CRC Press/Taylor & Francis 2011.
[42]
Anh NH, Kim SJ, Long NP, et al. Ginger on human health: A comprehensive systematic review of 109 randomized controlled trials. Nutrients 2020; 12(1): 157.
[http://dx.doi.org/10.3390/nu12010157] [PMID: 31935866]
[43]
Mao QQ, Xu XY, Cao SY, et al. Bioactive compounds and bioactivities of ginger (Zingiber officinale Roscoe). Foods 2019; 8(6): 185.
[http://dx.doi.org/10.3390/foods8060185] [PMID: 31151279]
[44]
Prasad S, Tyagi AK. Ginger and its constituents: Role in prevention and treatment of gastrointestinal cancer. Gastroenterol Res Pract 2015; 2015: 1-11.
[http://dx.doi.org/10.1155/2015/142979] [PMID: 25838819]
[45]
Ali BH, Blunden G, Tanira MO, Nemmar A. Some phytochemical, pharmacological and toxicological properties of ginger (Zingiber officinale Roscoe): A review of recent research. Food Chem Toxicol 2008; 46(2): 409-20.
[http://dx.doi.org/10.1016/j.fct.2007.09.085] [PMID: 17950516]
[46]
Rong X, Peng G, Suzuki T, Yang Q, Yamahara J, Li Y. A 35-day gavage safety assessment of ginger in rats. Regul Toxicol Pharmacol 2009; 54(2): 118-23.
[http://dx.doi.org/10.1016/j.yrtph.2009.03.002] [PMID: 19303040]
[47]
Benny M, Shylaja MR, Antony B, et al. Acute and sub acute toxicity studies with ginger extract in rats. Int J Pharm Sci Res 2021; 12(5): 2799-09.
[48]
Jeena K, Liju VB, Kuttan R. A preliminary 13-week oral toxicity study of ginger oil in male and female Wistar rats. Int J Toxicol 2011; 30(6): 662-70.
[http://dx.doi.org/10.1177/1091581811419023] [PMID: 21960667]
[49]
Ryan JL, Morrow GR. Ginger. Oncol Nurse Ed 2010; 24(2): 46-9.
[50]
Modi M, Modi K. Ginger Root. Treasure Island, FL: StatPearls 2023.
[51]
Crichton M, Davidson AR, Innerarity C, et al. Orally consumed ginger and human health: An umbrella review. Am J Clin Nutr 2022; 115(6): 1511-27.
[http://dx.doi.org/10.1093/ajcn/nqac035] [PMID: 35147170]
[52]
Sahebkar A. Potential efficacy of ginger as a natural supplement for nonalcoholic fatty liver disease. World J Gastroenterol 2011; 17(2): 271-2.
[http://dx.doi.org/10.3748/wjg.v17.i2.271] [PMID: 21246004]
[53]
Gao H, Guan T, Li C, et al. Treatment with ginger ameliorates fructose-induced Fatty liver and hypertriglyceridemia in rats: Modulation of the hepatic carbohydrate response element-binding protein-mediated pathway. Evid Based Complement Alternat Med 2012; 2012: 1-12.
[http://dx.doi.org/10.1155/2012/570948] [PMID: 23193424]
[54]
Wang J, Gao H, Ke D, et al. Improvement of liquid fructose-induced adipose tissue insulin resistance by ginger treatment in rats is associated with suppression of adipose macrophage-related proinflammatory cytokines. Evid Based Complement Alternat Med 2013; 2013: 1-12.
[http://dx.doi.org/10.1155/2013/590376] [PMID: 23533500]
[55]
Wang K, Li B, Fu R, Jiang Z, Wen X, Ni Y. Bentong ginger oleoresin mitigates liver injury and modulates gut microbiota in mouse with nonalcoholic fatty liver disease induced by high-fat diet. J Food Sci 2022; 87(3): 1268-81.
[http://dx.doi.org/10.1111/1750-3841.16076] [PMID: 35152443]
[56]
Ahmida MH, Abuzogaya MH. The effects of oral administration of green tea and ginger extracts on serum and hepatic lipid content in rats fed a hyperlipidemic diet. Pharm Lett 2009; 1(1): 56-64.
[57]
Lai YS, Lee WC, Lin YE, et al. Ginger essential oil ameliorates hepatic injury and lipid accumulation in high fat diet-induced nonalcoholic fatty liver disease. J Agric Food Chem 2016; 64(10): 2062-71.
[http://dx.doi.org/10.1021/acs.jafc.5b06159] [PMID: 26900108]
[58]
Sekiya K, Ohtani A, Kusano S. Enhancement of insulin sensitivity in adipocytes by ginger. Biofactors 2004; 22(1-4): 153-6.
[http://dx.doi.org/10.1002/biof.5520220130] [PMID: 15630272]
[59]
Chakraborty D, Mukherjee A, Sikdar S, Paul A, Ghosh S, Khuda-Bukhsh AR. [6]-Gingerol isolated from ginger attenuates sodium arsenite induced oxidative stress and plays a corrective role in improving insulin signaling in mice. Toxicol Lett 2012; 210(1): 34-43.
[http://dx.doi.org/10.1016/j.toxlet.2012.01.002] [PMID: 22285432]
[60]
Sarrafan A, Ghobeh M, Yaghmaei P. The effect of 6-gingerol on biochemical and histological parameters in cholesterol-induced nonalcoholic fatty liver disease in NMRI mice. Braz J Pharm Sci 2021; 57: e18020.
[http://dx.doi.org/10.1590/s2175-979020200003181020]
[61]
Li J, Wang S, Yao L, et al. 6-gingerol ameliorates age-related hepatic steatosis: Association with regulating lipogenesis, fatty acid oxidation, oxidative stress and mitochondrial dysfunction. Toxicol Appl Pharmacol 2019; 362: 125-35.
[http://dx.doi.org/10.1016/j.taap.2018.11.001] [PMID: 30408433]
[62]
Ahn J, Lee H, Jung CH, et al. 6-Gingerol ameliorates hepatic steatosis via HNF4α/miR-467b-3p/GPAT1 cascade. Cell Mol Gastroenterol Hepatol 2021; 12(4): 1201-13.
[http://dx.doi.org/10.1016/j.jcmgh.2021.06.007] [PMID: 34139323]
[63]
Mohammed HM. Zingerone ameliorates non-alcoholic fatty liver disease in rats by activating AMPK. J Food Biochem 2022; 46(7): e14149.
[http://dx.doi.org/10.1111/jfbc.14149] [PMID: 35338494]
[64]
Samadi M, Moradinazar M, Khosravy T, Soleimani D, Jahangiri P, Kamari N. A systematic review and meta-analysis of preclinical and clinical studies on the efficacy of ginger for the treatment of fatty liver disease. Phytother Res 2022; 36(3): 1182-93.
[http://dx.doi.org/10.1002/ptr.7390] [PMID: 35106852]
[65]
Rafie R, Hosseini SA, Hajiani E, Saki Malehi A, Mard SA. Effect of ginger powder supplementation in patients with non-alcoholic fatty liver disease: A randomized clinical trial. Clin Exp Gastroenterol 2020; 13: 35-45.
[http://dx.doi.org/10.2147/CEG.S234698] [PMID: 32158249]
[66]
Rahimlou M, Yari Z, Hekmatdoost A, Alavian SM, Keshavarz SA. Ginger supplementation in nonalcoholic fatty liver disease: A randomized, double-blind, placebo-controlled pilot study. Hepat Mon 2016; 16(1): e34897.
[http://dx.doi.org/10.5812/hepatmon.34897] [PMID: 27110262]
[67]
Kamari N, Moradinazar M, Qasemi M, Khosravy T, Samadi M, Abdolahzad H. Combination of the effect of ginger and anti-inflammatory diet on children with obesity with nonalcoholic fatty liver disease: A randomized clinical trial. Food Sci Nutr 2023; 11(4): 1846-59.
[http://dx.doi.org/10.1002/fsn3.3218] [PMID: 37051346]
[68]
Zhou Q, Peng Y, Chen F, Dai J. Ginger supplementation for the treatment of non-alcoholic fatty liver disease: A meta-analysis of randomized controlled trials. Afr Health Sci 2023; 23(1): 614-21.
[http://dx.doi.org/10.4314/ahs.v23i1.65] [PMID: 37545930]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy