Editorial

RNA干扰与神经肌肉疾病:遗传性转甲状腺素淀粉样变性的研究热点

卷 24, 期 1, 2024

发表于: 20 September, 2023

页: [6 - 7] 页: 2

弟呕挨: 10.2174/1566523223666230913110011

Open Access Journals Promotions 2
摘要

神经肌肉疾病是影响周围神经系统的严重疾病,通常在有限的时间内导致死亡。通过RNA干扰技术,许多新药正在彻底改变这些患者的预后和生活质量。然而,鉴于预期寿命的延长,一些新的问题和表型有望被揭示。在转甲状腺素介导的遗传性淀粉样变性(ATTR-v,“v”表示“变体”)中,RNA干扰被证明可以有效减少转甲状腺素的肝脏合成,并显著增加多发性神经病和心肌病的疾病进展。预期寿命的增加可能会促进肝外转甲状腺素沉积的器官的参与,如大脑和眼睛,这些器官可能不是现有治疗的目标。这篇社论讨论了所有这些问题。

关键词: 淀粉样变性、转甲状腺素、神经肌肉疾病、小干扰RNA、转甲状腺素淀粉样变性和眼淀粉样变性。

[1]
McDonald CM, Campbell C, Torricelli RE, et al. Ataluren in patients with nonsense mutation Duchenne muscular dystrophy (ACT DMD): A multicentre, randomised, double-blind, placebo-controlled, phase 3 trial. Lancet 2017; 390(10101): 1489-98.
[http://dx.doi.org/10.1016/S0140-6736(17)31611-2] [PMID: 28728956]
[2]
Mercuri E, Muntoni F, Baranello G, et al. Onasemnogene abeparvovec gene therapy for symptomatic infantile-onset spinal muscular atrophy type 1 (STR1VE-EU): an open-label, single-arm, multicentre, phase 3 trial. Lancet Neurol 2021; 20(10): 832-41.
[http://dx.doi.org/10.1016/S1474-4422(21)00251-9] [PMID: 34536405]
[3]
Mercuri E, Darras BT, Chiriboga CA, et al. Nusinersen versus sham control in later-onset spinal muscular atrophy. N Engl J Med 2018; 378(7): 625-35.
[http://dx.doi.org/10.1056/NEJMoa1710504] [PMID: 29443664]
[4]
Adams D, Gonzalez-Duarte A, O’Riordan WD, et al. Patisiran, an RNAi therapeutic, for hereditary transthyretin amyloidosis. N Engl J Med 2018; 379(1): 11-21.
[http://dx.doi.org/10.1056/NEJMoa1716153] [PMID: 29972753]
[5]
Benson MD, Waddington-Cruz M, Berk JL, et al. Inotersen treatment for patients with hereditary transthyretin amyloidosis. N Engl J Med 2018; 379(1): 22-31.
[http://dx.doi.org/10.1056/NEJMoa1716793] [PMID: 29972757]
[6]
Miller TM, Cudkowicz ME, Genge A, et al. Trial of antisense oligonucleotide tofersen for SOD1 ALS. N Engl J Med 2022; 387(12): 1099-110.
[http://dx.doi.org/10.1056/NEJMoa2204705] [PMID: 36129998]
[7]
Adams D, Algalarrondo V, Polydefkis M, Sarswat N, Slama MS, Nativi-Nicolau J. Expert opinion on monitoring symptomatic hereditary transthyretin-mediated amyloidosis and assessment of disease progression. Orphanet J Rare Dis 2021; 16(1): 411.
[http://dx.doi.org/10.1186/s13023-021-01960-9] [PMID: 34602081]
[8]
Koike H, Misu K, Sugiura M, et al. Pathology of early- vs late-onset TTR Met30 familial amyloid polyneuropathy. Neurology 2004; 63(1): 129-38.
[http://dx.doi.org/10.1212/01.WNL.0000132966.36437.12] [PMID: 15249622]
[9]
Conceição I, Damy T, Romero M, et al. Early diagnosis of ATTR amyloidosis through targeted follow-up of identified carriers of TTR gene mutations. Amyloid 2019; 26(1): 3-9.
[http://dx.doi.org/10.1080/13506129.2018.1556156] [PMID: 30793974]
[10]
Solomon SD, Adams D, Kristen A, et al. Effects of patisiran, an RNA interference therapeutic, on cardiac parameters in patients with hereditary transthyretin-mediated amyloidosis. Circulation 2019; 139(4): 431-43.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.118.035831] [PMID: 30586695]
[11]
Cambieri C, Marenco M, Colasanti T, et al. Does patisiran reduce ocular transthyretin synthesis? A pilot study of two cases. Curr Neuropharmacol 2023.
[PMID: 37357518]
[12]
Akinc A, Querbes W, De S, et al. Targeted delivery of RNAi therapeutics with endogenous and exogenous ligand-based mechanisms. Mol Ther 2010; 18(7): 1357-64.
[http://dx.doi.org/10.1038/mt.2010.85] [PMID: 20461061]
[13]
Buxbaum JN, Brannagan T III, Buades-Reinés J, et al. Transthyretin deposition in the eye in the era of effective therapy for hereditary ATTRV30M amyloidosis. Amyloid 2019; 26(1): 10-4.
[http://dx.doi.org/10.1080/13506129.2018.1554563] [PMID: 30675806]
[14]
Gillmore JD, Gane E, Taubel J, et al. CRISPR-Cas9 in vivo gene editing for transthyretin amyloidosis. N Engl J Med 2021; 385(6): 493-502.
[http://dx.doi.org/10.1056/NEJMoa2107454] [PMID: 34215024]

© 2024 Bentham Science Publishers | Privacy Policy