Generic placeholder image

Current Pediatric Reviews

Editor-in-Chief

ISSN (Print): 1573-3963
ISSN (Online): 1875-6336

Review Article

Biological Therapies for Pediatric Atopic Dermatitis - A Review

Author(s): Giulia Milano, Stefano Forestieri, Micol Tedeschi, Amelia Licari*, Valeria Brazzelli and Gian Luigi Marseglia

Volume 20, Issue 3, 2024

Published on: 18 September, 2023

Page: [240 - 252] Pages: 13

DOI: 10.2174/1573396320666230912103136

Price: $65

Abstract

Atopic dermatitis (AD) is the most frequent chronic-recurrent inflammatory skin disease in the pediatric age. It has a complex and multifactorial pathogenesis: the two key actors are impaired skin barrier function and immune system dysregulation, which represent the main targets of AD therapy. Monoclonal antibodies have revolutionized the management of moderate-to-severe AD, by selective inhibition of key cytokines in the pathogenetic process. For this reason, there is great interest in exploring AD pathogenetic mechanisms to develop new therapeutic strategies. This review aims to summarize the most recent scientific evidence on available and future biological therapies for the treatment of pediatric AD, emphasizing the molecular mechanisms underlying their action.

Keywords: Atopic dermatitis, children, type 2 inflammation, biologics, dupilumab, JAK inhibitors.

Graphical Abstract
[1]
Eyerich S, Metz M, Bossios A, Eyerich K. New biological treatments for asthma and skin allergies. Europ J Aller Clin Immunol 2020; 75: 546-60.
[http://dx.doi.org/10.1111/all.14027]
[2]
Chello C, Carnicelli G, Sernicola A, et al. Atopic dermatitis in the elderly Caucasian population: Diagnostic clinical criteria and review of the literature. Int J Dermatol 2020; 59(6): 716-21.
[http://dx.doi.org/10.1111/ijd.14891] [PMID: 32311089]
[3]
Langan SM, Irvine AD, Weidinger S. Atopic dermatitis. Lancet 2020; 396(10247): 345-60.
[http://dx.doi.org/10.1016/S0140-6736(20)31286-1] [PMID: 32738956]
[4]
Makowska K, Nowaczyk J, Blicharz L, Waśkiel-Burnat A, Czuwara J, Olszewska M, et al. Immunopathogenesis of atopic dermatitis: Focus on interleukins as disease drivers and therapeutic targets for novel treatments. Int J Mol Sci 2023; 24(1): 781.
[5]
Votto M, Sabino L, Crapanzano C, De Filippo M, Dobbiani G, Palocci G, et al. Biological therapies in allergic diseases. J Pediat ImmunolAllerg 2021.
[6]
Pappa G, Sgouros D, Theodoropoulos K, Kanelleas A, Bozi E, Gregoriou S, et al. The IL-4/-13 axis and its blocking in the treatment of atopic dermatitis. J Clin Med 2022; 11(19): 5633.
[7]
Stefanovic N, Flohr C, Irvine AD. The exposome in atopic dermatitis. Allergy 2020; 75(1): 63-74.
[http://dx.doi.org/10.1111/all.13946] [PMID: 31194890]
[8]
Leung DYM. New insights into atopic dermatitis: role of skin barrier and immune dysregulation. Allergol Int 2013; 62(2): 151-61.
[http://dx.doi.org/10.2332/allergolint.13-RAI-0564] [PMID: 23712284]
[9]
Di Nardo A, Wertz P, Giannetti A, Seidenari S. Ceramide and cholesterol composition of the skin of patients with atopic dermatitis. Acta Derm Venereol 1998; 78(1): 27-30.
[http://dx.doi.org/10.1080/00015559850135788] [PMID: 9498022]
[10]
De Benedetto A, Rafaels NM, McGirt LY, et al. Tight junction defects in patients with atopic dermatitis. J Allergy Clin Immunol 2011; 127(3): 773-786.e7, 7.
[http://dx.doi.org/10.1016/j.jaci.2010.10.018] [PMID: 21163515]
[11]
Palmer CNA, Irvine AD, Terron-Kwiatkowski A, Zhao Y, Liao H, Lee SP, et al. Common loss-of-function variants of the epidermal barrier protein filaggrin are a major predisposing factor for atopic dermatitis. Nat Genet 2006; 38(4): 441-6.
[http://dx.doi.org/10.1038/ng1767]
[12]
Johnson-Huang LM, McNutt NS, Krueger JG, Lowes MA. Cytokine-producing dendritic cells in the pathogenesis of inflammatory skin diseases. J Clin Immunol 2009; 29(3): 247-56.
[http://dx.doi.org/10.1007/s10875-009-9278-8] [PMID: 19252974]
[13]
Ständer S. Atopic dermatitis. N Engl J Med 2021; 384(12): 1136-43.
[http://dx.doi.org/10.1056/NEJMra2023911] [PMID: 33761208]
[14]
Dharmage SC, Lowe AJ, Matheson MC, Burgess JA, Allen KJ, Abramson MJ. Atopic dermatitis and the atopic march revisited. Allergy 2014; 69(1): 17-27.
[http://dx.doi.org/10.1111/all.12268] [PMID: 24117677]
[15]
Bao L, Mohan GC, Alexander JB, et al. A molecular mechanism for IL-4 suppression of loricrin transcription in epidermal keratinocytes: implication for atopic dermatitis pathogenesis. Innate Immun 2017; 23(8): 641-7.
[http://dx.doi.org/10.1177/1753425917732823] [PMID: 28952836]
[16]
Cabanillas B, Novak N. Atopic dermatitis and filaggrin. Curr Opin Immunol 2016; 42: 1-8.
[http://dx.doi.org/10.1016/j.coi.2016.05.002] [PMID: 27206013]
[17]
Czarnowicki T, He H, Krueger JG, Guttman-Yassky E. Atopic dermatitis endotypes and implications for targeted therapeutics. J Aller Clin Immunol 2019; 1-11.
[http://dx.doi.org/10.1016/j.jaci.2018.10.032]
[18]
Oyoshi MK, Larson RP, Ziegler SF, Geha RS. Mechanical injury polarizes skin dendritic cells to elicit a Th2 response by inducing cutaneous TSLP expression. J Allergy Clin Immunol 2010; 126(5): 976.
[http://dx.doi.org/10.1016/j.jaci.2010.08.041] [PMID: 21050944]
[19]
Furue M, Furue M. Interleukin-31 and pruritic skin. J Clin Med 2021; 10(9): 1906.
[http://dx.doi.org/10.3390/jcm10091906] [PMID: 33924978]
[20]
Ong PY, Ohtake T, Brandt C, et al. Endogenous antimicrobial peptides and skin infections in atopic dermatitis. N Engl J Med 2002; 347(15): 1151-60.
[http://dx.doi.org/10.1056/NEJMoa021481] [PMID: 12374875]
[21]
Brauweiler AM, Goleva E, Leung DYM. Th2 cytokines increase Staphylococcus aureus alpha toxin-induced keratinocyte death through the signal transducer and activator of transcription 6 (STAT6). J Invest Dermatol 2014; 134(8): 2114-21.
[http://dx.doi.org/10.1038/jid.2014.43] [PMID: 24468745]
[22]
Yosipovitch G, Berger T, Fassett MS. Neuroimmune interactions in chronic itch of atopic dermatitis. J Eur Acad Dermatol Venereol 2020; 34(2): 239-50.
[http://dx.doi.org/10.1111/jdv.15973] [PMID: 31566796]
[23]
Oetjen LK, Mack MR, Feng J, et al. Sensory neurons co-opt classical immune signaling pathways to mediate chronic itch. Cell 2017; 171(1): 217-228.e13.
[http://dx.doi.org/10.1016/j.cell.2017.08.006] [PMID: 28890086]
[24]
Shang H, Cao XL, Wan YJ, Meng J, Guo LH. IL-4 gene polymorphism may contribute to an increased risk of atopic dermatitis in children. Dis Markers 2016; 2016: 1-6.
[http://dx.doi.org/10.1155/2016/1021942] [PMID: 27212784]
[25]
Wynn TA. Type 2 cytokines: Mechanisms and therapeutic strategies. Nat Rev Immunol 2015; 15(5): 271-82.
[http://dx.doi.org/10.1038/nri3831] [PMID: 25882242]
[26]
Dupilumab EMA. Annex I summary of product characteristics. Available from: https://www.ema.europa.eu/en/documents/product-information/dupixent-epar-product-information_en.pdf (cited 2023 Apr 6).
[27]
DUPIXENT® (dupilumab) injection, for subcutaneous use Initial U.S. Approval. 2017. Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2022/761055s042lbl.pdf (cited 2023 Apr 6).
[28]
Paller AS, Bansal A, Simpson EL, Boguniewicz M. Clinically meaningful responses to dupilumab in adolescents with uncontrolled moderate-to-severe atopic dermatitis: Post-hoc analyses from a randomized clinical trial. Am J Clin Dermatol 2020; 21: 119-31.
[http://dx.doi.org/10.1007/s40257-019-00478-y]
[29]
Paller AS, Siegfried EC, Thaçi D, et al. Efficacy and safety of dupilumab with concomitant topical corticosteroids in children 6 to 11 years old with severe atopic dermatitis: A randomized, double-blinded, placebo-controlled phase 3 trial. J Am Acad Dermatol 2020; 83(5): 1282-93.
[http://dx.doi.org/10.1016/j.jaad.2020.06.054] [PMID: 32574587]
[30]
Paller AS, Simpson EL, Siegfried EC, et al. Dupilumab in children aged 6 months to younger than 6 years with uncontrolled atopic dermatitis: A randomised, double-blind, placebo-controlled, phase 3 trial. Lancet 2022; 400(10356): 908-19.
[http://dx.doi.org/10.1016/S0140-6736(22)01539-2] [PMID: 36116481]
[31]
Blauvelt A, Guttman-Yassky E, Paller AS, et al. Long-term efficacy and safety of dupilumab in adolescents with moderate-to-severe atopic dermatitis: Results through week 52 from a phase III open-label extension trial (LIBERTY AD PED-OLE). Am J Clin Dermatol 2022; 23(3): 365-83.
[http://dx.doi.org/10.1007/s40257-022-00683-2] [PMID: 35567671]
[32]
Fachler T, Shreberk-Hassidim R, Molho-Pessach V. Dupilumab-induced ocular surface disease: A systematic review. J Am Acad Dermatol 2022; 86(2): 486-7.
[http://dx.doi.org/10.1016/j.jaad.2021.09.029] [PMID: 34560194]
[33]
Akinlade B, Guttman-Yassky E, Bruin-Weller M, et al. Conjunctivitis in dupilumab clinical trials. Br J Dermatol 2019; 181(3): 459-73.
[http://dx.doi.org/10.1111/bjd.17869] [PMID: 30851191]
[34]
Bakker DS, Ariens LFM, van Luijk C, van der Schaft J, Thijs JL, Schuttelaar MLA, et al. Goblet cell scarcity and conjunctival inflammation during treatment with dupilumab in patients with atopic dermatitis. Br J Dermatol 2019; 180(5): 1248-9.
[http://dx.doi.org/10.1111/bjd.17538]
[35]
Waldman RA, DeWane ME, Sloan B, Grant-Kels JM. Characterizing dupilumab facial redness: A multi-institution retrospective medical record review. J Am Acad Dermatol 2020; 82(1): 230-2.
[http://dx.doi.org/10.1016/j.jaad.2019.06.026] [PMID: 31228530]
[36]
Paller AS, Beck LA, Blauvelt A, et al. Infections in children and adolescents treated with dupilumab in pediatric clinical trials for atopic dermatitisn : A pooled analysis of trial data. Pediatr Dermatol 2022; 39(2): 187-96.
[http://dx.doi.org/10.1111/pde.14909] [PMID: 35083774]
[37]
Martinez-Cabriales SA, Kirchhof MG, Constantinescu CM, Murguia-Favela L, Ramien ML. Recommendations for vaccination in children with atopic dermatitis treated with dupilumab: A consensus meeting, 2020. Am J Clin Dermatol 2021; 22(4): 443-55.
[http://dx.doi.org/10.1007/s40257-021-00607-6] [PMID: 34076879]
[38]
Rubin LG, Levin MJ, Ljungman P, et al. 2013 IDSA clinical practice guideline for vaccination of the immunocompromised host. Clin Infect Dis 2014; 58(3): 309-18.
[http://dx.doi.org/10.1093/cid/cit816] [PMID: 24421306]
[39]
Blauvelt A, Simpson EL, Tyring SK, et al. Dupilumab does not affect correlates of vaccine-induced immunity: A randomized, placebo-controlled trial in adults with moderate-to-severe atopic dermatitis. J Am Acad Dermatol 2019; 80(1): 158-167.e1.
[http://dx.doi.org/10.1016/j.jaad.2018.07.048] [PMID: 30092324]
[40]
Geba GP, Li D, Xu M, et al. Attenuating the atopic march: Meta-analysis of the dupilumab atopic dermatitis database for incident allergic events. J Allergy Clin Immunol 2023; 151(3): 756-66.
[http://dx.doi.org/10.1016/j.jaci.2022.08.026] [PMID: 36084766]
[41]
Özkaya E, Günay MB, Babuna Kobaner G, Keskinkaya Z, Gökalp MO. Long-term dupilumab therapy in Netherton syndrome with severe atopic manifestations: Case report and review of the literature. Australasian J Dermatol 2023; 64(2): 272-7. Available from: https://onlinelibrary.wiley.com/doi/full/10.1111/ajd.13986
[42]
Long-term extension trial in subjects with atopic dermatitis who participated in previous tralokinumab trials : ECZTEND. NCT03587805, 2018.
[43]
Tralokinumab monotherapy for adolescent subjects with moderate to severe atopic dermatitis : ECZTRA 6 (ECZema TRAlokinumab Trial no. 6). NCT03526861, 2018.
[44]
Tralokinumab administered with device a in adults and adolescents with moderate-to-severe atopic dermatitis (INJECZTRA). NCT05194540, 2022.
[45]
Tralokinumab monotherapy for children with moderate-to-severe atopic dermatitis : TRAPEDS 1 (TRAlokinumab PEDiatric Trial no. 1). NCT05388760, 2022.
[46]
Evaluation of the Efficacy and Safety of Lebrikizumab (LY3650150) in Moderate to Severe Atopic Dermatitis. NCT04146363, 2019.
[47]
Evaluation of the Efficacy and Safety of Lebrikizumab (LY3650150) in Moderate to Severe Atopic Dermatitis (ADvocate2). NCT04178967, 2019.
[48]
Safety and Efficacy of Lebrikizumab (LY3650150) in Combination With Topical Corticosteroid in Moderate-to-Severe Atopic Dermatitis.(ADhere). NCT04250337, 2020.
[49]
Study to Assess the Safety and Efficacy of Lebrikizumab (LY3650150) in Adolescent Participants With Moderate-to-Severe Atopic Dermatitis (ADore). NCT04250350, 2020.
[50]
A Study of Lebrikizumab (LY3650150) in Combination With Topical Corticosteroids in Japanese Participants With Moderate-to-Severe Atopic Dermatitis (ADhere-J). NCT04760314, 2021.
[51]
Long-term Safety and Efficacy Study of Lebrikizumab (LY3650150) in Participants With Moderate-to-Severe Atopic Dermatitis (ADjoin). NCT05369403, 2022.
[52]
A Study of Lebrikizumab in Combination With Topical Corticosteroids in Participants Having Atopic Dermatitis (AD) That Are Not Adequately Controlled or Non-eligible for Cyclosporine. NCT05149313, 2021.
[53]
A Study of Lebrikizumab (LY3650150) in Adult and Adolescent Participants With Moderate-to-Severe Atopic Dermatitis Previously Treated With Dupilumab (ADapt). NCT05369403, 2022.
[54]
A Study of (LY3650150) Lebrikizumab to Assess the Safety and Efficacy of Adult and Adolescent Participants With Moderate-to-Severe Atopic Dermatitis and Skin of Color (ADmirable). NCT05372419, 2022.
[55]
Kabashima K, Matsumura T, Komazaki H, Kawashima M. Trial of nemolizumab and topical agents for atopic dermatitis with pruritus. N Engl J Med 2020; 383(2): 141-50.
[http://dx.doi.org/10.1056/NEJMoa1917006] [PMID: 32640132]
[56]
Kabashima K, Matsumura T, Komazaki H, Kawashima M. Nemolizumab plus topical agents in patients with atopic dermatitis (AD) and moderate-to-severe pruritus provide improvement in pruritus and signs of AD for up to 68 weeks: Results from two phase III, long-term studies. Br J Dermatol 2022; 186(4): 642-51.
[http://dx.doi.org/10.1111/bjd.20873] [PMID: 34726262]
[57]
A Multicenter, Open-Label, Single-Group Clinical Trial to Assess the Pharmacokinetics and Safety of Nemolizumab (CD14152) in Adolescent Subjects (12-17 Years) With Moderate-to-Severe Atopic Dermatitis. NCT03921411, 2019.
[58]
A Multicenter, Open-Label, Single-Group Clinical Trial to Assess the Pharmacokinetics, Safety and Efficacy of Nemolizumab (CD14152) in Pediatric Subjects (Aged 2 to 11 Years) With Moderate-to-Severe Atopic Dermatitis. NCT04921345, 2021.
[59]
A Randomized, Double-Blind, Placebo-Controlled Study to Assess the Efficacy and Safety of Nemolizumab in Subjects With Moderate-to-Severe Atopic Dermatitis. NCT03985943, 2019.
[60]
Efficacy & Safety of Nemolizumab in Subjects With Moderate-to-Severe Atopic Dermatitis. NCT03989349, 2019.
[61]
A Prospective, Multicenter, Long-Term Study to Assess the Safety and Efficacy of Nemolizumab (CD14152) in Subjects With Moderate-to-Severe Atopic Dermatitis. NCT03989206, 2019.
[62]
A Phase 2 Multinational, Randomized, Double-blind, Parallel-group, 16-week Placebo-controlled Study With a 36-Week Extension to Investigate the Use of Benralizumab for Patients With Moderate to Severe Atopic Dermatitis Despite Treatment With Topical Medications (The HILLIER Study). NCT04605094, 2020.
[63]
An Exploratory 16 Week, Double Blind, Placebo-Controlled Single Center Mechanistic Study to Determine the Effect of Rhumab-E25 on Phenotype and Function of IgE Mediated Antigen Presentation by Dendritic Cells in Subjects With Atopic Dermatitis. NCT00822783, 2009.
[64]
The Role of Anti-IgE (Omalizumab) in the Management of Severe Recalcitrant Paediatric Atopic Eczema. (ADAPT). NCT02300701, 2014.
[65]
Chan S, Cornelius V, Cro S, Harper JI, Lack G. Treatment effect of omalizumab on severe pediatric atopic dermatitis. JAMA Pediatr 2020; 174(1): 29-37.
[http://dx.doi.org/10.1001/jamapediatrics.2019.4476] [PMID: 31764962]
[66]
Butala S, Paller AS. Biologics in the management of childhood atopic dermatitis. J Allergy Clin Immunol 2023; 151(3): 681-5.
[http://dx.doi.org/10.1016/j.jaci.2023.01.010] [PMID: 36682587]
[67]
Popovic B, Breed J, Rees DG, et al. Structural characterisation reveals mechanism of IL-13-neutralising monoclonal antibody tralokinumab as inhibition of binding to IL-13Rα1 and IL-13Rα2. J Mol Biol 2017; 429(2): 208-19.
[http://dx.doi.org/10.1016/j.jmb.2016.12.005] [PMID: 27956146]
[68]
Bieber T. Interleukin-13: Targeting an underestimated cytokine in atopic dermatitis. Allergy 2020; 75(1): 54-62.
[69]
Wollenberg A, Kinberger M, Arents B, et al. European guideline (EuroGuiDerm) on atopic eczema: Part I : Systemic therapy. J Eur Acad Dermatol Venereol 2022; 36(9): 1409-31.
[http://dx.doi.org/10.1111/jdv.18345] [PMID: 35980214]
[70]
Wollenberg A, Blauvelt A, Guttman-Yassky E, et al. Tralokinumab for moderate-to-severe atopic dermatitis: Results from two 52-week, randomized, double-blind, multicentre, placebo-controlled phase III trials (ECZTRA 1 and ECZTRA 2). Br J Dermatol 2021; 184(3): 437-49.
[http://dx.doi.org/10.1111/bjd.19574] [PMID: 33000465]
[71]
Silverberg JI, Toth D, Bieber T, et al. Tralokinumab plus topical corticosteroids for the treatment of moderate-to-severe atopic dermatitis: results from the double-blind, randomized, multicentre, placebo-controlled phase III ECZTRA 3 trial. Br J Dermatol 2021; 184(3): 450-63.
[http://dx.doi.org/10.1111/bjd.19573] [PMID: 33000503]
[72]
Simpson EL, Gooderham M, Wollenberg A, et al. Efficacy and safety of lebrikizumab in combination with topical corticosteroids in adolescents and adults with moderate-to-severe atopic dermatitis. JAMA Dermatol 2023; 159(2): 182-91.
[http://dx.doi.org/10.1001/jamadermatol.2022.5534] [PMID: 36630140]
[73]
Eli Lilly Submits BLA for Lebrikizumab AD Treatment. 2022. Available from: https://www.dermatologytimes.com/view/eli-lilly-submits-bla-for-lebrikizumab-ad-treatment (cited 2023 Apr 4).
[74]
Keam SJ. Nemolizumab: First Approval. Drugs 2022; 82(10): 1143-50.
[http://dx.doi.org/10.1007/s40265-022-01741-z] [PMID: 35834124]
[75]
Kondratuk K, Netravali IA, Castelo-Soccio L. Modern interventions for pediatric atopic dermatitis: An updated pharmacologic approach. Dermatol Ther 2022; 13(2): 367-89.
[76]
FitzGerald JM, Bleecker ER, Nair P, et al. Benralizumab, an anti-interleukin-5 receptor α monoclonal antibody, as add-on treatment for patients with severe, uncontrolled, eosinophilic asthma (CALIMA): A randomised, double-blind, placebo-controlled phase 3 trial. Lancet 2016; 388(10056): 2128-41.
[http://dx.doi.org/10.1016/S0140-6736(16)31322-8] [PMID: 27609406]
[77]
David E, Ungar B, Renert-Yuval Y, Facheris P, del Duca E, Guttman-Yassky E. The evolving landscape of biologic therapies for atopic dermatitis: Present and future perspective. Clin Exp Allergy 2023; 53(2): 156-72.
[78]
Iyengar SR, Hoyte eg , Loza A, et al. Immunologic effects of omalizumab in children with severe refractory atopic dermatitis: A randomized, placebo-controlled clinical trial. Int Arch Allergy Immunol 2013; 162(1): 89-93.
[http://dx.doi.org/10.1159/000350486] [PMID: 23816920]
[79]
Heil PM, Maurer D, Klein B, Hultsch T, Stingl G. Omalizumab therapy in atopic dermatitis: Depletion of IgE does not improve the clinical course : A randomized, placebo-controlled and double blind pilot study. J German Soc Dermatol 2010; 8(12): 990-8.
[80]
Wang Hsiao-Han. Efficacy of omalizumab in patients with atopic dermatitis: A systematic review and meta-analysis. J Aller Clin Immunol 2016; 138: 1719-1722.e1.
[81]
Highlights of prescribing information. Xolair® (omalizumab). Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2016/103976s5225lbl.pdf
[82]
Radi G, Campanti A, Diotallevi F, Martina E, Marani A, Offidani A. A systematic review of atopic dermatitis: The intriguing journey starting from physiopathology to treatment, from laboratory bench to bedside. Biomedicines 2022; 10(11): 2700.
[83]
Ratchataswan T, Banzon TM, Thyssen JP, Weidinger S, Guttman-Yassky E, Phipatanakul W. Biologics for treatment of atopic dermatitis: Current status and future prospect. J Allergy Clin Immunol Pract 2021; 9(3): 1053-65.
[http://dx.doi.org/10.1016/j.jaip.2020.11.034] [PMID: 33685604]
[84]
Li H, Zhang Z, Zhang H, Guo Y, Yao Z. Update on the pathogenesis and therapy of atopic dermatitis. Clin Rev Allergy Immunol 2021; 61(3): 324-38.
[http://dx.doi.org/10.1007/s12016-021-08880-3]
[85]
Furue M, Tsuji G, Mitoma C, Nakahara T, Chiba T, Morino-Koga S, et al. Gene regulation of filaggrin and other skin barrier proteins via aryl hydrocarbon receptor. J Dermatol Sci 2015; 80(2): 83-8.
[http://dx.doi.org/10.1016/j.jdermsci.2015.07.011]
[86]
Smith SH, Jayawickreme C, Rickard DJ, et al. Tapinarof is a natural AhR agonist that resolves skin inflammation in mice and humans. J Invest Dermatol 2017; 137(10): 2110-9.
[http://dx.doi.org/10.1016/j.jid.2017.05.004] [PMID: 28595996]
[87]
Strober B, Stein Gold L, Bissonnette R, et al. One-year safety and efficacy of tapinarof cream for the treatment of plaque psoriasis: Results from the PSOARING 3 trial. J Am Acad Dermatol 2022; 87(4): 800-6.
[http://dx.doi.org/10.1016/j.jaad.2022.06.1171] [PMID: 35772599]
[88]
Li H, Zuo J, Tang W. Phosphodiesterase-4 inhibitors for the treatment of inflammatory diseases. Front Pharmacol, 2018; 9
[89]
FDA. CDER. Highlights of prescribing information. EUCRISATM (crisaborole) ointment. Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2020/207695s007s009s010lbl.pdf
[90]
Otsuka’s Moizerto® Ointment Granted Approval in Japan as a Treatment for Atopic Dermatitis. Available from: https://www.otsuka.co.jp/en/company/newsreleases/2021/20210927_1.html (cited 2023 Apr 24).
[91]
Freitas E, Gooderham M, Torres T. New topical therapies in development for atopic dermatitis. Drugs 2022; 82(8): 843-53.
[http://dx.doi.org/10.1007/s40265-022-01722-2] [PMID: 35596877]
[92]
Shreberk-Hassidim R, Ramot Y, Zlotogorski A. Janus kinase inhibitors in dermatology: A systematic review. J Am Acad Dermatol 2017; 76(4): 745-753.e19.
[http://dx.doi.org/10.1016/j.jaad.2016.12.004]
[93]
Chovatiya R, Paller AS. JAK inhibitors in the treatment of atopic dermatitis. J Allergy Clin Immunol 2021; 148(4): 927-40.
[http://dx.doi.org/10.1016/j.jaci.2021.08.009] [PMID: 34437922]
[94]
Leung DYM, Paller AS, Zaenglein AL, Tom WL, Ong PY, Venturanza ME, et al. Safety, pharmacokinetics, and efficacy of ruxolitinib cream in children and adolescents with atopic dermatitis. Ann Allergy Asthma Immunol 2023; 130(4): 500-507.e3.
[http://dx.doi.org/10.1016/j.anai.2022.12.033]
[95]
Highlights of prescribing information. OPZELURATM (ruxolitinib). 2022. Available from: https://www.opzelura.com/prescribing-information.pdf
[96]
Japan. JT Receives Approvals of CORECTIM ® Ointment 0.25% and CORECTIM ® Ointment 0.5% for the Treatment of Pediatric Atopic Dermatitis in Japan. Available from: https://www.jt.com/media/news/2021/pdf/20210323_E1.pdf
[97]
Nakagawa H, Igarashi A, Saeki H, et al. Safety, efficacy, and pharmacokinetics of delgocitinib ointment in infants with atopic dermatitis: A phase 3, open-label, and long-term study. Allergol Int 2023; S1323-8930(23)00041-2.
[http://dx.doi.org/10.1016/j.alit.2023.04.003] [PMID: 37100717]
[98]
Agarwal I, Panda M, Das A. Tofacitinib in paediatric dermatoses: A narrative review. Clin Exp Dermat 2022; 147: 1256-64.
[99]
A Phase 3, Multicenter, Randomized, Double-blind, Placebo-controlled, Parallel-group, Outpatient Study Evaluating the Pharmacokinetics, Efficacy, and Safety of Baricitinib in Pediatric Patients With Moderate to Severe Atopic Dermatitis (BREEZE-AD-PEDS). NCT03952559, 2019.
[100]
Guttman-Yassky E, Teixeira HD, Simpson EL, et al. Once-daily upadacitinib versus placebo in adolescents and adults with moderate-to-severe atopic dermatitis (Measure Up 1 and Measure Up 2): results from two replicate double-blind, randomised controlled phase 3 trials. Lancet 2021; 397(10290): 2151-68.
[http://dx.doi.org/10.1016/S0140-6736(21)00588-2] [PMID: 34023008]
[101]
FDA. FDA, CDER. Highlights of prescribing information. RINVOQ® (upadacitinib). Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2022/211675s003lbl.pdf (cited 2023 Apr 4).
[102]
PMDA. PMDA. Rinvoq® (upadacitinib). Highlights of prescribing information. 12/16/2021. Available from: https://www.pmda.go.jp/drugs/2022/P20220613001/112130000_30200AMX00027_B101_1.pdf (cited 2023 May 1).
[103]
CHMP. Rinvoq, INN-upadacitinib. EMA. Available from: www.ema.europa.eu/contact
[104]
Blauvelt A, Teixeira HD, Simpson EL, et al. Efficacy and safety of upadacitinib vs dupilumab in adults with moderate-to-severe atopic dermatitis. JAMA Dermatol 2021; 157(9): 1047-55.
[http://dx.doi.org/10.1001/jamadermatol.2021.3023] [PMID: 34347860]
[105]
Study to Evaluate Efficacy and Safety of PF-04965842 in Subjects Aged 12 Years And Older With Moderate to Severe Atopic Dermatitis (JADE Mono-1). NCT03349060, 2017.
[106]
Study Evaluating Efficacy and Safety of PF-04965842 in Subjects Aged 12 Years And Older With Moderate to Severe Atopic Dermatitis (JADE Mono-2). NCT03575871, 2018.
[107]
JAK1 Inhibitor With Medicated Topical Therapy in Adolescents With Atopic Dermatitis (JADE TEEN). NCT03796676, 2019.
[108]
Niculet E, Bobeica C, Stefanopol IA, et al. Once-daily abrocitinib for the treatment of moderate-to-severe atopic dermatitis in adults and adolescents aged 12 years and over: A short review of current clinical perspectives. Ther Clin Risk Manag 2022; 18: 399-407.
[http://dx.doi.org/10.2147/TCRM.S338661] [PMID: 35444421]
[109]
FDA. CDER. Highlights of prescribing information. CIBINQO TM (abrocitinib). Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2023/213871s001lbl.pdf
[110]
Japan’s MHLW Approves Pfizer’s CIBINQO® (abrocitinib) for Adults and Adolescents with Moderate to Severe Atopic Dermatitis | Pfizer. Available from: https://www.pfizer.com/news/press-release/press-release-detail/japans-mhlw-approves-pfizers-cibinqor-abrocitinib-adults (cited 2023 May 1).
[111]
Medicines Agency E. Cibinqo (abrocitinib). Available from: www.ema.europa.eu/contact

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy