Review Article

用于基于生物标志物的癌症检测的石墨烯分析传感器综述

卷 31, 期 12, 2024

发表于: 18 September, 2023

页: [1464 - 1484] 页: 21

弟呕挨: 10.2174/0929867331666230912101634

价格: $65

摘要

纳米材料工程拓宽了纳米技术在有限功能系统中的应用范围。 如今,用于现场检测和患者护理的即时健康诊断和监测工具受到高度重视。 石墨烯作为一种单原子碳化合物,具有检测癌症生物标志物及其衍生物的潜力。 原子范围的石墨烯层专注于物理化学特性,例如改善的导电性和导热性、光学透明度以及增加的化学和机械强度,从而使其成为癌症生物标志物检测的最佳材料。 二维石墨烯出色的机械、电气、电化学和光学特性可以实现任何生物传感器开发的科学目标,即开发一种更紧凑、更便携的现场护理设备,用于快速、早期的癌症诊断。 氧化石墨烯层及其复合材料可以改善公认的生物标志物的生物功能化。 石墨烯的重要性在于收集其缺失的数据,以评估其高水平的专业知识,包括表面改性和分析报告的多样性。 这篇综述提供了对石墨烯的重要见解,以激发研究,解决癌症诊断中当前和剩余的障碍。

关键词: 生物标志物、石墨烯、纳米生物传感器、癌症、二维、电化学。

[1]
Ramanathan, S.; Gopinath, S.C.B.; Arshad, M.K.M.; Poopalan, P. Nanostructured aluminosilicate from fly ash: Potential approach in waste utilization for industrial and medical applications. J. Clean. Prod., 2020, 253119923
[http://dx.doi.org/10.1016/j.jclepro.2019.119923]
[2]
Kalaiyarasi, J.; Pandian, K.; Ramanathan, S.; Gopinath, S.C.B. Graphitic carbon nitride/graphene nanoflakes hybrid system for electrochemical sensing of DNA bases in meat samples. Sci. Rep., 2020, 10(1), 12860.
[http://dx.doi.org/10.1038/s41598-020-69578-8] [PMID: 32732935]
[3]
Ramanathan, S.; Gopinath, S.C.B.; Arshad, M.K.M.; Poopalan, P.; Anbu, P.; Lakshmipriya, T.; Kasim, F.H. Aluminosilicate nanocomposite on genosensor: A prospective voltammetry platform for epidermal growth factor receptor mutant analysis in non-small cell lung cancer. Sci. Rep., 2019, 9(1), 17013.
[http://dx.doi.org/10.1038/s41598-019-53573-9] [PMID: 31745155]
[4]
Letchumanan, I.; Gopinath, S.C.B.; Md Arshad, M.K.; Anbu, P.; Lakshmipriya, T. Gold nano-urchin integrated label-free amperometric aptasensing human blood clotting factor IX: A prognosticative approach for “Royal disease”. Biosens. Bioelectron., 2019, 131, 128-135.
[http://dx.doi.org/10.1016/j.bios.2019.02.006] [PMID: 30826647]
[5]
Ramanathan, S.; Gopinath, S.C.B.; Ismail, Z.H.; Md Arshad, M.K.; Poopalan, P. Aptasensing nucleocapsid protein on nanodiamond assembled gold interdigitated electrodes for impedimetric SARS-CoV-2 infectious disease assessment. Biosens. Bioelectron., 2022, 197113735
[http://dx.doi.org/10.1016/j.bios.2021.113735] [PMID: 34736114]
[6]
Ramanathan, S.; Gopinath, S.C.B.; Md Arshad, M.K.; Poopalan, P. Multidimensional (0D-3D) nanostructures for lung cancer biomarker analysis: Comprehensive assessment on current diagnostics. Biosens. Bioelectron., 2019, 141111434
[http://dx.doi.org/10.1016/j.bios.2019.111434] [PMID: 31238281]
[7]
Taniselass, S.; Md Arshad, M.K.; Gopinath, S.C.B. Current state of green reduction strategies: Solution-processed reduced graphene oxide for healthcare biodetection. Mater. Sci. Eng. C, 2019, 96, 904-914.
[http://dx.doi.org/10.1016/j.msec.2018.11.062] [PMID: 30606604]
[8]
Fathil, M.F.M.; Md Arshad, M.K.; Gopinath, S.C.B.; Hashim, U.; Adzhri, R.; Ayub, R.M.; Ruslinda, A.R.; Nuzaihan M N, M.; Azman, A.H.; Zaki, M.; Tang, T.H. Diagnostics on acute myocardial infarction: Cardiac troponin biomarkers. Biosens. Bioelectron., 2015, 70, 209-220.
[http://dx.doi.org/10.1016/j.bios.2015.03.037] [PMID: 25841117]
[9]
Ramanathan, S.; Gopinath, S.C.B.; Md Arshad, M.K.; Poopalan, P.; Anbu, P.; Lakshmipriya, T. Aluminosilicate nanocomposites from incinerated Chinese holy joss fly ash: A potential nanocarrier for drug cargos. Sci. Rep., 2020, 10(1), 3351.
[http://dx.doi.org/10.1038/s41598-020-60208-x] [PMID: 32099019]
[10]
Abi, A.; Mohammadpour, Z.; Zuo, X.; Safavi, A. Nucleic acid-based electrochemical nanobiosensors. Biosens. Bioelectron., 2018, 102, 479-489.
[http://dx.doi.org/10.1016/j.bios.2017.11.019] [PMID: 29195218]
[11]
Noah, N.M.; Ndangili, P.M. Current trends of nanobiosensors for point-of-care diagnostics. J. Anal. Methods. Chem., 2019, 2019, 2179718.
[http://dx.doi.org/10.1155/2019/2179718]
[12]
Gopinath, S.C.B.; Tang, T.H.; Chen, Y.; Citartan, M.; Lakshmipriya, T. Bacterial detection: From microscope to smartphone. Biosens. Bioelectron., 2014, 60, 332-342.
[http://dx.doi.org/10.1016/j.bios.2014.04.014] [PMID: 24836016]
[13]
Ramanathan, S.; Gopinath, S.C.B.; Hilmi Ismail, Z.; Subramaniam, S. Nanodiamond conjugated SARS-CoV-2 spike protein: Electrochemical impedance immunosensing on a gold microelectrode. Mikrochim. Acta, 2022, 189(6), 226.
[http://dx.doi.org/10.1007/s00604-022-05320-7] [PMID: 35590000]
[14]
Foo, M.E.; Gopinath, S.C.B. Feasibility of graphene in biomedical applications. Biomed. Pharmacother., 2017, 94, 354-361.
[http://dx.doi.org/10.1016/j.biopha.2017.07.122] [PMID: 28772213]
[15]
Du, W.; Geng, H.; Yang, Y.; Zhang, Y.; Rui, X.; Li, C.C. Pristine graphene for advanced electrochemical energy applications. J. Power. Sources., 2019, 437226899
[http://dx.doi.org/10.1016/j.jpowsour.2019.226899]
[16]
Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Katsnelson, M.I.; Grigorieva, I.V.; Dubonos, S.V.; Firsov, A.A. Two-dimensional gas of massless Dirac fermions in graphene. Nature., 2005, 438(7065), 197-200.
[http://dx.doi.org/10.1038/nature04233] [PMID: 16281030]
[17]
Qi, B.; Ren, K.; Lin, Y.; Zhang, S.; Wei, T.; Fan, Z. Design of layered-stacking graphene assemblies as advanced electrodes for supercapacitors. Particuology, 2022, 60, 1-13.
[http://dx.doi.org/10.1016/j.partic.2021.03.001]
[18]
Castro, E.V.; Novoselov, K.S.; Morozov, S.V.; Peres, N.M.R.; dos Santos, J.M.B.L.; Nilsson, J.; Guinea, F.; Geim, A.K.; Neto, A.H.C. Biased bilayer graphene: Semiconductor with a gap tunable by the electric field effect. Phys. Rev. Lett., 2007, 99(21)216802
[http://dx.doi.org/10.1103/PhysRevLett.99.216802] [PMID: 18233240]
[19]
Novoselov, K.S.; Mishchenko, A.; Carvalho, A.; Castro Neto, A.H. 2D materials and van der Waals heterostructures. Science., 1979, 2016, 353.
[PMID: 27471306]
[20]
Novodchuk, I.; Bajcsy, M.; Yavuz, M. Graphene-based field effect transistor biosensors for breast cancer detection: A review on biosensing strategies. Carbon., 2021, 172, 431-453.
[http://dx.doi.org/10.1016/j.carbon.2020.10.048]
[21]
Torkaman-Asadi, M.A.; Kouchakzadeh, M.A. Atomistic simulations of mechanical properties and fracture of graphene: A review. Comput. Mater. Sci., 2022, 210111457
[http://dx.doi.org/10.1016/j.commatsci.2022.111457]
[22]
Rouhi, N.; Akhgari, A.; Orouji, N.; Nezami, A.; Rahimzadegan, M.; Kamali, H. Recent progress in the graphene-based biosensing approaches for the detection of Alzheimer’s biomarkers. J. Pharm. Biomed. Anal., 2023, 222115084
[http://dx.doi.org/10.1016/j.jpba.2022.115084] [PMID: 36183576]
[23]
Yang, Q.; Lin, H.; Wang, X.; Zhang, L.Y.; Jing, M.; Yuan, W.; Li, C.M. Dynamically self-assembled adenine-mediated synthesis of pristine graphene-supported clean Pd nanoparticles with superior electrocatalytic performance toward formic acid oxidation. J. Colloid Interface. Sci., 2022, 613, 515-523.
[http://dx.doi.org/10.1016/j.jcis.2022.01.061] [PMID: 35063783]
[24]
Al Kausor, M.; Chakrabortty, D. Graphene oxide based semiconductor photocatalysts for degradation of organic dye in waste water: A review on fabrication, performance enhancement and challenges. Inorg. Chem. Commun., 2021, 129108630
[http://dx.doi.org/10.1016/j.inoche.2021.108630]
[25]
Yildiz, G.; Bolton-Warberg, M.; Awaja, F. Graphene and graphene oxide for bio-sensing: General properties and the effects of graphene ripples. Acta. Biomater., 2021, 131, 62-79.
[http://dx.doi.org/10.1016/j.actbio.2021.06.047] [PMID: 34237423]
[26]
Joshi, D.J.; Koduru, J.R.; Malek, N.I.; Hussain, C.M.; Kailasa, S.K. Surface modifications and analytical applications of graphene oxide: A review. Trends. Analyt. Chem., 2021, 144116448
[http://dx.doi.org/10.1016/j.trac.2021.116448]
[27]
Huskić, M.; Bolka, S.; Vesel, A.; Mozetič, M.; Anžlovar, A.; Vizintin, A.; Žagar, E. One-step surface modification of graphene oxide and influence of its particle size on the properties of graphene oxide/epoxy resin nanocomposites. Eur. Polym. J., 2018, 101, 211-217.
[http://dx.doi.org/10.1016/j.eurpolymj.2018.02.036]
[28]
Sieradzka, M.; Ślusarczyk, C.; Biniaś, W.; Fryczkowski, R. The role of the oxidation and reduction parameters on the properties of the reduced graphene oxide. Coatings., 2021, 11(2), 166.
[http://dx.doi.org/10.3390/coatings11020166]
[29]
Torres, F.G.; Troncoso, O.P.; Rodriguez, L.; De-la-Torre, G.E. Sustainable synthesis, reduction and applications of graphene obtained from renewable resources. Sustainable Materials and Technologies, Elsevier, 2021, pp. 29
[30]
Zhang, Y.; Xu, Y.; Liu, R.; Niu, Y. Synthesis of high-quality graphene by electrochemical anodic and cathodic co-exfoliation method. Chem. Eng. J., 2023, 461141985
[http://dx.doi.org/10.1016/j.cej.2023.141985]
[31]
Kaur, H.; Garg, R.; Singh, S.; Jana, A.; Bathula, C.; Kim, H.S.; Kumbar, S.G.; Mittal, M. Progress and challenges of graphene and its congeners for biomedical applications. J. Mol. Liq., 2022, 368120703
[http://dx.doi.org/10.1016/j.molliq.2022.120703]
[32]
Bahri, M.; Gebre, S.H.; Elaguech, M.A.; Dajan, F.T.; Sendeku, M.G.; Tlili, C.; Wang, D. Recent advances in chemical vapour deposition techniques for graphene-based nanoarchitectures: From synthesis to contemporary applications. Coord. Chem. Rev., 2023, 475214910
[http://dx.doi.org/10.1016/j.ccr.2022.214910]
[33]
Yuan, Y.; Wang, Y.; Liu, S.; Zhang, X.; Liu, X.; Sun, C.; Yuan, D.; Zhang, Y.; Cao, X. Direct chemical vapor deposition synthesis of graphene super-hydrophobic transparent glass. Vacuum., 2022, 202111136
[http://dx.doi.org/10.1016/j.vacuum.2022.111136]
[34]
Priyadharshini, K.; Rathinavel, S.; Velumani, E.; Manikandan, A. Green synthesis and application of graphene oxide extracted from Punica granatum. Mater. Today Proc., 2023, 80, 1341-1347.
[http://dx.doi.org/10.1016/j.matpr.2023.01.085]
[35]
Singh, J.; Jindal, N.; Kumar, V.; Singh, K. Role of green chemistry in synthesis and modification of graphene oxide and its application: A review study. Chem. Phys., 2023, 6, 100185.
[36]
Sun, C.; Wen, B.; Bai, B. Recent advances in nanoporous graphene membrane for gas separation and water purification. Sci. Bull., 2015, 60(21), 1807-1823.
[http://dx.doi.org/10.1007/s11434-015-0914-9]
[37]
Pellenz, L.; da Silva, L.J.S.; Mazur, L.P.; Figueiredo, G.M.; Borba, F.H.; Ulson de Souza, A.A.; Guelli Ulson de Souza, S.M.A.; da Silva, A. Functionalization of graphene with nitrogen-based groups for water purification via adsorption: A review. J. Water. Process. Eng., 2022, 48102873
[http://dx.doi.org/10.1016/j.jwpe.2022.102873]
[38]
Zhou, Y.; He, J.; Chen, R.; Li, X. Recent advances in biomass-derived graphene and carbon nanotubes. Mater. Today. Sustain., 2022, 18, 100138.
[39]
Taniselass, S.; Arshad, M.K.M.; Gopinath, S.C.B.; Ramli, M.M. Self-assembled reduced graphene oxide nanoflakes assisted by post-sonication boosted electrical performance in gold interdigitated microelectrodes. J. Colloid Interface Sci., 2020, 577, 345-354.
[http://dx.doi.org/10.1016/j.jcis.2020.05.070] [PMID: 32485416]
[40]
Taniselass, S.; Arshad, M.K.M.; Gopinath, S.C.B. Graphene-based electrochemical biosensors for monitoring noncommunicable disease biomarkers. Biosens. Bioelectron., 2019, 130, 276-292.
[http://dx.doi.org/10.1016/j.bios.2019.01.047] [PMID: 30771717]
[41]
Kumar, N.A.; Dar, M.A.; Gul, R.; Baek, J.B. Graphene and molybdenum disulfide hybrids: Synthesis and applications. Mater. Today, 2015, 18(5), 286-298.
[http://dx.doi.org/10.1016/j.mattod.2015.01.016]
[42]
Song, K.M.; Jeong, E.; Jeon, W.; Cho, M.; Ban, C. Aptasensor for ampicillin using gold nanoparticle based dual fluorescence–colorimetric methods. Anal. Bioanal. Chem., 2012, 402(6), 2153-2161.
[http://dx.doi.org/10.1007/s00216-011-5662-3] [PMID: 22222912]
[43]
Pei, H.; Zhu, S.; Yang, M.; Kong, R.; Zheng, Y.; Qu, F. Graphene oxide quantum dots@silver core–shell nanocrystals as turn-on fluorescent nanoprobe for ultrasensitive detection of prostate specific antigen. Biosens. Bioelectron., 2015, 74, 909-914.
[http://dx.doi.org/10.1016/j.bios.2015.07.056] [PMID: 26257182]
[44]
Muthuraj, B.; Chowdhury, S.R.; Mukherjee, S.; Patra, C.R.; Iyer, P.K. Aggregation deaggregation influenced selective and sensitive detection of Cu 2+ and ATP by histidine functionalized water-soluble fluorescent perylene diimide under physiological conditions and in living cells. RSC Adv., 2015, 5(36), 28211-28218.
[http://dx.doi.org/10.1039/C5RA00408J]
[45]
Fathil, M.F.M.; Md Arshad, M.K.; Ruslinda, A.R.; Nuzaihan M N, M.; Gopinath, S.C.B.; Adzhri, R.; Hashim, U. Progression in sensing cardiac troponin biomarker charge transductions on semiconducting nanomaterials. Anal. Chim. Acta., 2016, 935, 30-43.
[http://dx.doi.org/10.1016/j.aca.2016.06.012] [PMID: 27543013]
[46]
Gopinath, S.C.B.; Perumal, V.; Kumaresan, R.; Lakshmipriya, T.; Rajintraprasad, H.; Rao, B.S.; Arshad, M.K.M.; Chen, Y.; Kotani, N.; Hashim, U. Nanogapped impedimetric immunosensor for the detection of 16 kDa heat shock protein against Mycobacterium tuberculosis. Mikrochim. Acta., 2016, 183(10), 2697-2703.
[http://dx.doi.org/10.1007/s00604-016-1911-7]
[47]
Serra, R.; Ielapi, N.; Barbetta, A.; Andreucci, M.; de Franciscis, S. Novel biomarkers for cardiovascular risk. Biomarkers. Med., 2018, 12(9), 1015-1024.
[http://dx.doi.org/10.2217/bmm-2018-0056] [PMID: 30126290]
[48]
Ismail, N.A.; Zulkifli, N.W.M.; Chowdhury, Z.Z.; Johan, M.R. Functionalization of graphene-based materials: Effective approach for enhancement of tribological performance as lubricant additives. Diam. Relat. Mater., 2021, 115108357
[http://dx.doi.org/10.1016/j.diamond.2021.108357]
[49]
Arshad, F.; Nabi, F.; Iqbal, S.; Khan, R.H. Applications of graphene-based electrochemical and optical biosensors in early detection of cancer biomarkers. Colloids. Surf. B Biointerfaces., 2022, 212112356
[http://dx.doi.org/10.1016/j.colsurfb.2022.112356] [PMID: 35123193]
[50]
Khan, R.; Miyagawa, K.; Bianco, A.; Nishina, Y. Covalent double functionalization of graphene oxide for proton conductive and redox-active functions. Appl. Mater. Today., 2021, 24101120
[http://dx.doi.org/10.1016/j.apmt.2021.101120]
[51]
Cao, Y.; Wang, P.; Fan, J.; Yu, H. Covalently functionalized graphene by thiourea for enhancing H2-evolution performance of TiO2 photocatalyst. Ceram. Int., 2021, 47(1), 654-661.
[http://dx.doi.org/10.1016/j.ceramint.2020.08.173]
[52]
Xie, Y.; Wang, X.; Hou, L.; Wang, X.; Zhang, Y.; Zhu, C.; Hu, Z.; He, M. Graphene covalently functionalized by cross-linking reaction of bifunctional pillar organic molecule for high capacitance. J. Energy. Storage., 2021, 38102530
[http://dx.doi.org/10.1016/j.est.2021.102530]
[53]
Zhianmanesh, M.; Gilmour, A.; Bilek, M.M.M.; Akhavan, B. Plasma surface functionalization: A comprehensive review of advances in the quest for bioinstructive materials and interfaces. Appl. Phys. Rev., 2023, 10(2)021301
[http://dx.doi.org/10.1063/5.0130829]
[54]
Dardouri, M.; Bettencourt, A.; Martin, V.; Carvalho, F.A.; Santos, C.; Monge, N.; Santos, N.C.; Fernandes, M.H.; Gomes, P.S.; Ribeiro, I.A.C. Using plasma-mediated covalent functionalization of rhamnolipids on polydimethylsiloxane towards the antimicrobial improvement of catheter surfaces. Mater. Sci. Eng. C, 2021.
[PMID: 35525746]
[55]
Morales Frias, I.A.; Zine, N.; Sigaud, M.; Lozano-Sánchez, P.; Caffio, M.; Errachid, A. Non-covalent Π–Π functionalized gii-senser graphene foam for interleukin 10 impedimetric detection. SSRN, 2022, 114954.
[http://dx.doi.org/10.2139/ssrn.4163527]
[56]
Tian, S.; Huang, D.; Xu, Z.; Wu, S.; Luo, T.; Xiong, G. Enhanced thermal transport across the interface between charged graphene and poly(ethylene oxide) by non-covalent functionalization. Int. J. Heat Mass Transf., 2022, 183122188
[http://dx.doi.org/10.1016/j.ijheatmasstransfer.2021.122188]
[57]
Krishnakumar, S.; Gopidas, K.R. Covalent functionalization of organic nanoparticles using aryl diazonium chemistry and their solvent-dependent self-assembly. Langmuir., 2017, 33(5), 1162-1170.
[http://dx.doi.org/10.1021/acs.langmuir.6b03269] [PMID: 28061527]
[58]
Wang, Y.; Wang, F.; Dong, S.; He, H.; Lu, Y.; Shi, J.; Liu, J.; Zhu, H. Ultra-small SiO2 nanoparticles highly dispersed on non-covalent functionalized reduced graphene oxide nanoplatelets for high-performance elastomer applications. Compos. Sci. Technol., 2020, 198108297
[http://dx.doi.org/10.1016/j.compscitech.2020.108297]
[59]
Sainz-Urruela, C.; Vera-López, S.; Paz San Andrés, M.; Díez-Pascual, A.M. Surface functionalization of graphene oxide with tannic acid: Covalent vs non-covalent approaches. J. Mol. Liq., 2022, 357119104
[http://dx.doi.org/10.1016/j.molliq.2022.119104]
[60]
Shi, Y.; Zhang, X.; Mei, L.; Han, D.; Hu, K.; Chao, L-Q.; Li, X.; Miao, M. Sensitive acetaminophen electrochemical sensor with amplified signal strategy via non-covalent functionalization of soluble tetrahydroxyphthalocyanine and graphene. Microchem. J., 2021, 160105609
[http://dx.doi.org/10.1016/j.microc.2020.105609]
[61]
Rashi Exploring the methods of synthesis, functionalization, and characterization of graphene and graphene oxide for supercapacitor applications. Ceram. Int., 2022, 49, 40-47.
[62]
Deepa, C.; Rajeshkumar, L.; Ramesh, M. Preparation, synthesis, properties and characterization of graphene-based 2D nano-materials for biosensors and bioelectronics. J. Mater. Res. Technol., 2022, 19, 2657-2694.
[http://dx.doi.org/10.1016/j.jmrt.2022.06.023]
[63]
Prattis, I.; Hui, E.; Gubeljak, P.; Kaminski Schierle, G.S.; Lombardo, A.; Occhipinti, L.G. Graphene for biosensing applications in point-of-care testing. Trends Biotechnol., 2021, 39(10), 1065-1077.
[http://dx.doi.org/10.1016/j.tibtech.2021.01.005] [PMID: 33573848]
[64]
Jiang, Z.; Feng, B.; Xu, J.; Qing, T.; Zhang, P.; Qing, Z. Graphene biosensors for bacterial and viral pathogens. Biosens. Bioelectron., 2020, 166112471
[http://dx.doi.org/10.1016/j.bios.2020.112471] [PMID: 32777726]
[65]
Báez, D.F.; Brito, T.P.; Espinoza, L.C.; Méndez-Torres, A.M.; Sierpe, R.; Sierra-Rosales, P.; Venegas, C.J.; Yáñez, C.; Bollo, S. Graphene-based sensors for small molecule determination in real samples. Microchem. J., 2021, 167106303
[http://dx.doi.org/10.1016/j.microc.2021.106303]
[66]
Hasanzadeh, M.; Shadjou, N. What are the reasons for low use of graphene quantum dots in immunosensing of cancer biomarkers? Mater. Sci. Eng. C, 2017, 71, 1313-1326.
[http://dx.doi.org/10.1016/j.msec.2016.11.068] [PMID: 27987686]
[67]
Li, B.; Tan, H.; Jenkins, D.; Srinivasa, R.V.; Rosa, B.G.; Güder, F.; Pan, G.; Yeatman, E.; Sharp, D.J. Clinical detection of neurodegenerative blood biomarkers using graphene immunosensor. Carbon., 2020, 168, 144-162.
[http://dx.doi.org/10.1016/j.carbon.2020.06.048]
[68]
Goldoni, R.; Farronato, M.; Connelly, S.T.; Tartaglia, G.M.; Yeo, W.H. Recent advances in graphene-based nanobiosensors for salivary biomarker detection. Biosens. Bioelectron., 2021, 171112723
[http://dx.doi.org/10.1016/j.bios.2020.112723] [PMID: 33096432]
[69]
Gao, L.; Lian, C.; Zhou, Y.; Yan, L.; Li, Q.; Zhang, C.; Chen, L.; Chen, K. Graphene oxide–DNA based sensors. Biosens. Bioelectron., 2014, 60, 22-29.
[http://dx.doi.org/10.1016/j.bios.2014.03.039] [PMID: 24768760]
[70]
Singh, M.; Sharma, D.; Garg, M.; Kumar, A.; Baliyan, A.; Rani, R.; Kumar, V. Current understanding of biological interactions and processing of DNA origami nanostructures: Role of machine learning and implications in drug delivery. Biotechnol. Adv., 2022, 61108052
[http://dx.doi.org/10.1016/j.biotechadv.2022.108052] [PMID: 36307050]
[71]
Ikram, M.; Bari, M.A.; Bilal, M.; Jamal, F.; Nabgan, W.; Haider, J.; Haider, A.; Nazir, G.; Khan, A.D.; Khan, K.; Tareen, A.K.; Khan, Q.; Ali, G.; Imran, M.; Caffrey, E.; Maqbool, M. Innovations in the synthesis of graphene nanostructures for bio and gas sensors. Biomat. Adv., 2023, 145213234
[http://dx.doi.org/10.1016/j.bioadv.2022.213234] [PMID: 36502548]
[72]
Premkumar, T.; Geckeler, K.E. Graphene–DNA hybrid materials: Assembly, applications, and prospects. Prog. Polym. Sci., 2012, 37(4), 515-529.
[http://dx.doi.org/10.1016/j.progpolymsci.2011.08.003]
[73]
Koirala, D.; Shrestha, P.; Emura, T.; Hidaka, K.; Mandal, S.; Endo, M.; Sugiyama, H.; Mao, H. Single-molecule mechanochemical sensing using DNA origami nanostructures. Angew. Chem. Int. Ed., 2014, 53(31), 8137-8141.
[http://dx.doi.org/10.1002/anie.201404043] [PMID: 24931175]
[74]
Campos, R.; Machado, G., Jr; Cerqueira, M.F.; Borme, J.; Alpuim, P. Wafer scale fabrication of graphene microelectrode arrays for the detection of DNA hybridization. Microelectron. Eng., 2018, 189, 85-90.
[http://dx.doi.org/10.1016/j.mee.2017.12.015]
[75]
Guan, J.; He, K.; Gunasekaran, S. Selection of ssDNA aptamer using GO-SELEX and development of DNA nanostructure-based electrochemical aptasensor for penicillin. Biosens. Bioelectron.: X, 2022, 12100220
[http://dx.doi.org/10.1016/j.biosx.2022.100220]
[76]
Kim, H.E.; Schuck, A.; Lee, J.H.; Kim, Y.S. Solution-gated graphene field effect transistor for TP53 DNA sensor with coplanar electrode array. Sens. Actuators B Chem., 2019, 291, 96-101.
[http://dx.doi.org/10.1016/j.snb.2019.03.080]
[77]
Green, N.S.; Norton, M.L. Interactions of DNA with graphene and sensing applications of graphene field-effect transistor devices: A review. Anal. Chim. Acta, 2015, 853, 127-142.
[http://dx.doi.org/10.1016/j.aca.2014.10.023] [PMID: 25467454]
[78]
Piccinini, E.; Bliem, C.; Reiner-Rozman, C.; Battaglini, F.; Azzaroni, O.; Knoll, W. Enzyme-polyelectrolyte multilayer assemblies on reduced graphene oxide field-effect transistors for biosensing applications. Biosens. Bioelectron., 2017, 92, 661-667.
[http://dx.doi.org/10.1016/j.bios.2016.10.035] [PMID: 27836616]
[79]
Wang, Q.; Wang, M.; Lei, C.; Yan, L.; Wu, X.; Li, L. Functionalizing graphene with clay nanosheets as a protein carrier. Colloid Interface Sci. Commun., 2022, 48100618
[http://dx.doi.org/10.1016/j.colcom.2022.100618]
[80]
Kim, D.J.; Sohn, I.Y.; Jung, J.H.; Yoon, O.J.; Lee, N.E.; Park, J.S. Reduced graphene oxide field-effect transistor for label-free femtomolar protein detection. Biosens. Bioelectron., 2013, 41, 621-626.
[http://dx.doi.org/10.1016/j.bios.2012.09.040] [PMID: 23107386]
[81]
Chaudhary, K.; Kumar, K.; Venkatesu, P.; Masram, D.T. Protein immobilization on graphene oxide or reduced graphene oxide surface and their applications: Influence over activity, structural and thermal stability of protein. Adv. Colloid Interface Sci., 2021, 289102367
[http://dx.doi.org/10.1016/j.cis.2021.102367] [PMID: 33545443]
[82]
Viswanathan, S.; Narayanan, T.N.; Aran, K.; Fink, K.D.; Paredes, J.; Ajayan, P.M.; Filipek, S.; Miszta, P.; Tekin, H.C.; Inci, F.; Demirci, U.; Li, P.; Bolotin, K.I.; Liepmann, D.; Renugopalakrishanan, V. Graphene–protein field effect biosensors: Glucose sensing. Mater. Today, 2015, 18(9), 513-522.
[http://dx.doi.org/10.1016/j.mattod.2015.04.003]
[83]
Yang, Y.X.; Wang, P.; Zhu, B.T. Binding affinity prediction for antibody–protein antigen complexes: A machine learning analysis based on interface and surface areas. J. Mol. Graph. Model., 2023, 118108364
[http://dx.doi.org/10.1016/j.jmgm.2022.108364] [PMID: 36356467]
[84]
Rafiq, S.; Dao, T.; Liu, C.; Scheinberg, D.A.; Brentjens, R.J.; Engineered, T. Engineered T cell receptor-mimic antibody, (TCRm) Chimeric Antigen Receptor (CAR) T cells against the intracellular protein wilms tumor-1 (WT1) for treatment of hematologic and solid cancers. Blood., 2014, 124(21), 2155-2155.
[http://dx.doi.org/10.1182/blood.V124.21.2155.2155]
[85]
Fu, Y.; Liu, K.; Zhao, L.; Jiang, X.; Wang, T. Circular RNA ubiquitin-associated protein 2 silencing suppresses bladder cancer progression by downregulating DNA topoisomerase 2-alpha through sponging miR-496. Eur. Urol. Open. Sci., 2023, 50, 31-42.
[http://dx.doi.org/10.1016/j.euros.2023.01.008] [PMID: 37101770]
[86]
Safarzadeh, M.; Pan, G. Detection of a double-stranded MGMT gene using electrochemically reduced graphene oxide (ErGO) electrodes decorated with AuNPs and peptide nucleic acids (PNA). Biosensors, 2022, 12(2), 98.
[http://dx.doi.org/10.3390/bios12020098] [PMID: 35200358]
[87]
Shahrokhian, S.; Salimian, R. Ultrasensitive detection of cancer biomarkers using conducting polymer/electrochemically reduced graphene oxide-based biosensor: Application toward BRCA1 sensing. Sens. Actuators B Chem., 2018, 266, 160-169.
[http://dx.doi.org/10.1016/j.snb.2018.03.120]
[88]
Wang, C.; Zhang, Y.; Tang, W.; Wang, C.; Han, Y.; Qiang, L.; Gao, J.; Liu, H.; Han, L. Ultrasensitive, high-throughput and multiple cancer biomarkers simultaneous detection in serum based on graphene oxide quantum dots integrated microfluidic biosensing platform. Anal. Chim. Acta, 2021, 1178338791
[http://dx.doi.org/10.1016/j.aca.2021.338791] [PMID: 34482866]
[89]
Deepa; Nohwal, B.; Pundir, C.S. An electrochemical CD59 targeted noninvasive immunosensor based on graphene oxide nanoparticles embodied pencil graphite for detection of lung cancer. Microchem. J., 2020, 156104957
[http://dx.doi.org/10.1016/j.microc.2020.104957]
[90]
Singh, V.K.; Kumar, S.; Pandey, S.K.; Srivastava, S.; Mishra, M.; Gupta, G.; Malhotra, B.D.; Tiwari, R.S.; Srivastava, A. Fabrication of sensitive bioelectrode based on atomically thin CVD grown graphene for cancer biomarker detection. Biosens. Bioelectron., 2018, 105, 173-181.
[http://dx.doi.org/10.1016/j.bios.2018.01.014] [PMID: 29412942]
[91]
Zhang, F.; Fan, L.; Liu, Z.; Han, Y.; Guo, Y. A label-free electrochemical aptasensor for the detection of cancer antigen 125 based on nickel hexacyanoferrate nanocubes/polydopamine functionalized graphene. J. Electroanal. Chem., 2022, 918116424
[http://dx.doi.org/10.1016/j.jelechem.2022.116424]
[92]
Salahandish, R.; Ghaffarinejad, A.; Omidinia, E.; Zargartalebi, H.; Majidzadeh-A, K.; Naghib, S.M.; Sanati-Nezhad, A. Label-free ultrasensitive detection of breast cancer miRNA-21 biomarker employing electrochemical nano-genosensor based on sandwiched AgNPs in PANI and N-doped graphene. Biosens. Bioelectron., 2018, 120, 129-136.
[http://dx.doi.org/10.1016/j.bios.2018.08.025] [PMID: 30172235]
[93]
Dong, W.; Ren, Y.; Bai, Z.; Yang, Y.; Wang, Z.; Zhang, C.; Chen, Q. Trimetallic AuPtPd nanocomposites platform on graphene: Applied to electrochemical detection and breast cancer diagnosis. Talanta., 2018, 189, 79-85.
[http://dx.doi.org/10.1016/j.talanta.2018.06.067] [PMID: 30086978]
[94]
Aiyer, S.; Prasad, R.; Kumar, M.; Nirvikar, K.; Jain, B.; Kushwaha, O.S. Fluorescent carbon nanodots for targeted in vitro cancer cell imaging. Appl. Mater. Today, 2016, 4, 71-77.
[http://dx.doi.org/10.1016/j.apmt.2016.07.001]
[95]
Torul, H.; Yarali, E.; Eksin, E.; Ganguly, A.; Benson, J.; Tamer, U.; Papakonstantinou, P.; Erdem, A. Paper-based electrochemical biosensors for voltammetric detection of miRNA biomarkers using reduced graphene oxide or MoS2 nanosheets decorated with gold nanoparticle electrodes. Biosensors, 2021, 11(7), 236.
[http://dx.doi.org/10.3390/bios11070236] [PMID: 34356708]
[96]
Geetha Bai, R.; Muthoosamy, K.; Tuvikene, R.; Nay Ming, H.; Manickam, S. Highly sensitive electrochemical biosensor using folic acid-modified reduced graphene oxide for the detection of cancer biomarker. Nanomaterials., 2021, 11(5), 1272.
[http://dx.doi.org/10.3390/nano11051272] [PMID: 34066073]
[97]
Rajaji, U.; Muthumariyappan, A.; Chen, S.M.; Chen, T.W.; Ramalingam, R.J. A novel electrochemical sensor for the detection of oxidative stress and cancer biomarker (4-nitroquinoline N-oxide) based on iron nitride nanoparticles with multilayer reduced graphene nanosheets modified electrode. Sens. Actuators B Chem., 2019, 291, 120-129.
[http://dx.doi.org/10.1016/j.snb.2019.04.041]
[98]
Pachauri, N.; Dave, K.; Dinda, A.; Solanki, P.R. Cubic CeO 2 implanted reduced graphene oxide-based highly sensitive biosensor for non-invasive oral cancer biomarker detection. J. Mater. Chem. B Mater. Biol. Med., 2018, 6(19), 3000-3012.
[http://dx.doi.org/10.1039/C8TB00653A] [PMID: 32254335]
[99]
Rauf, S.; Mishra, G.K.; Azhar, J.; Mishra, R.K.; Goud, K.Y.; Nawaz, M.A.H.; Marty, J.L.; Hayat, A. Carboxylic group riched graphene oxide based disposable electrochemical immunosensor for cancer biomarker detection. Anal. Biochem., 2018, 545, 13-19.
[http://dx.doi.org/10.1016/j.ab.2018.01.007] [PMID: 29339058]
[100]
Jahromi, A.K.; Shieh, H.; Low, K.; Tasnim, N.; Najjaran, H.; Hoorfar, M. Experimental comparison of direct and indirect aptamer-based biochemical functionalization of electrolyte-gated graphene field-effect transistors for biosensing applications. Anal. Chim. Acta., 2022, 1222340177
[http://dx.doi.org/10.1016/j.aca.2022.340177] [PMID: 35934424]
[101]
Hroncekova, S.; Bertok, T.; Hires, M.; Jane, E.; Lorencova, L.; Vikartovska, A.; Tanvir, A.; Kasak, P.; Tkac, J. Ultrasensitive Ti3C2TX MXene/Chitosan nanocomposite-based amperometric biosensor for detection of potential prostate cancer marker in urine samples. Processes., 2020, 8(5), 580.
[http://dx.doi.org/10.3390/pr8050580] [PMID: 33304843]
[102]
Thriveni, G.; Ghosh, K. Advancement and challenges of biosensing using field effect transistors. Biosensors, 2022, 12(8), 647.
[http://dx.doi.org/10.3390/bios12080647] [PMID: 36005043]
[103]
Capaz, R.B. Grand challenges in graphene and graphite research. Frontiers in Carbon, 2022, 11034557
[http://dx.doi.org/10.3389/frcrb.2022.1034557]
[104]
Alhazmi, H.A.; Ahsan, W.; Mangla, B.; Javed, S.; Hassan, M.Z.; Asmari, M.; Al Bratty, M.; Najmi, A. Graphene-based biosensors for disease theranostics: Development, applications, and recent advancements. Nanotechnol. Rev., 2021, 11(1), 96-116.
[http://dx.doi.org/10.1515/ntrev-2022-0009]
[105]
Zhang, J.; Yu, S.H. Carbon dots: Large-scale synthesis, sensing and bioimaging. Mater. Today, 2016, 19(7), 382-393.
[http://dx.doi.org/10.1016/j.mattod.2015.11.008]
[106]
Xie, X.P.; Xie, Y.F.; Liu, Y.T.; Wang, H.Q. Adaptively capturing the heterogeneity of expression for cancer biomarker identification. BMC Bioinform., 2018, 19(1), 401.
[http://dx.doi.org/10.1186/s12859-018-2437-2] [PMID: 30390627]
[107]
Mohammed, A.; Biegert, G.; Adamec, J.; Helikar, T. CancerDiscover: An integrative pipeline for cancer biomarker and cancer class prediction from high-throughput sequencing data. Oncotarget., 2018, 9(2), 2565-2573.
[http://dx.doi.org/10.18632/oncotarget.23511] [PMID: 29416792]
[108]
Andre, F.; Mardis, E.; Salm, M.; Soria, J.C.; Siu, L.L.; Swanton, C. Prioritizing targets for precision cancer medicine. Ann. Oncol., 2014, 25(12), 2295-2303.
[http://dx.doi.org/10.1093/annonc/mdu478] [PMID: 25344359]
[109]
Umelo, I.A.; Costanza, B.; Castronovo, V. Innovative methods for biomarker discovery in the evaluation and development of cancer precision therapies. Cancer. Metastasis. Rev., 2018, 37(1), 125-145.
[http://dx.doi.org/10.1007/s10555-017-9710-0] [PMID: 29392535]
[110]
Bhawal, R.; Oberg, A.L.; Zhang, S.; Kohli, M. Challenges and opportunities in clinical applications of blood-based proteomics in cancer. Cancers., 2020, 12(9), 2428.
[http://dx.doi.org/10.3390/cancers12092428] [PMID: 32867043]
[111]
Das, V.; Kalita, J.; Pal, M. Predictive and prognostic biomarkers in colorectal cancer: A systematic review of recent advances and challenges. Biomed. Pharmacother., 2017, 87, 8-19.
[http://dx.doi.org/10.1016/j.biopha.2016.12.064] [PMID: 28040600]
[112]
Hristova, V.A.; Chan, D.W. Cancer biomarker discovery and translation: Proteomics and beyond. Expert Rev. Proteomics., 2019, 16(2), 93-103.
[http://dx.doi.org/10.1080/14789450.2019.1559062] [PMID: 30556752]
[113]
DeSantis, T.Z.; Shah, M.S.; Cope, J.L.; Hollister, E.B. Microbial markers in the diagnosis of colorectal cancer: The promise, reality and challenge. Future. Microbiol., 2017, 12(15), 1341-1344.
[http://dx.doi.org/10.2217/fmb-2017-0185] [PMID: 28972391]
[114]
Roberts, A.; Tripathi, P.P.; Gandhi, S. Graphene nanosheets as an electric mediator for ultrafast sensing of urokinase plasminogen activator receptor-A biomarker of cancer. Biosens. Bioelectron., 2019, 141111398
[http://dx.doi.org/10.1016/j.bios.2019.111398] [PMID: 31176112]
[115]
Akbari jonous, Z.; Shayeh, J.S.; Yazdian, F.; Yadegari, A.; Hashemi, M.; Omidi, M. An electrochemical biosensor for prostate cancer biomarker detection using graphene oxide-gold nanostructures. Eng. Life Sci., 2019, 19(3), 206-216.
[http://dx.doi.org/10.1002/elsc.201800093]
[116]
Hossain, M.B.; Islam, M.M.; Abdulrazak, L.F.; Rana, M.M.; Akib, T.B.A.; Hassan, M. Graphene-coated optical fiber SPR biosensor for BRCA1 and BRCA2 breast cancer biomarker detection: A numerical design-based analysis. Photonic Sens., 2020, 10(1), 67-79.
[http://dx.doi.org/10.1007/s13320-019-0556-7]
[117]
Yen, Y.K.; Chao, C.H.; Yeh, Y.S.A. Graphene-PEDOT:PSS Modified Paper-based Aptasensor for Electrochemical Impedance Spectroscopy Detection of Tumor Marker; Sensors: Switzerland, 2020, p. 20.
[118]
Pothipor, C.; Bamrungsap, S.; Jakmunee, J.; Ounnunkad, K. A gold nanoparticle-dye/poly(3-aminobenzylamine)/two dimensional MoSe2/graphene oxide electrode towards label-free electrochemical biosensor for simultaneous dual-mode detection of cancer antigen 15-3 and microRNA-21. Colloids Surf. B Biointerfaces, 2022, 210112260
[http://dx.doi.org/10.1016/j.colsurfb.2021.112260] [PMID: 34894598]
[119]
Ranjan, P.; Khan, R. Electrochemical immunosensor for early detection of β-amyloid Alzheimer’s disease biomarker based on aligned carbon nanotubes gold nanocomposites. Biosensors., 2022, 12(11), 1059.
[http://dx.doi.org/10.3390/bios12111059] [PMID: 36421177]
[120]
Jafari-Kashi, A.; Rafiee-Pour, H.A.; Shabani-Nooshabadi, M. A new strategy to design label-free electrochemical biosensor for ultrasensitive diagnosis of CYFRA 21–1 as a biomarker for detection of non-small cell lung cancer. Chemosphere., 2022, 301134636
[http://dx.doi.org/10.1016/j.chemosphere.2022.134636] [PMID: 35447211]
[121]
Khodadoust, A.; Nasirizadeh, N.; Taheri, R.A.; Dehghani, M.; Ghanei, M.; Bagheri, H. A ratiometric electrochemical dna-biosensor for detection of MiR-141. Mikrochim. Acta., 2022, 189, 213.
[122]
Sadeghi, M.; Kashanian, S.; Naghib, S.M.; Arkan, E. A high-performance electrochemical aptasensor based on graphene-decorated rhodium nanoparticles to detect HER2-ECD oncomarker in liquid biopsy. Sci. Rep., 2022, 12(1), 3299.
[http://dx.doi.org/10.1038/s41598-022-07230-3] [PMID: 35228597]
[123]
Li, G.; Chen, W.; Mi, D.; Wang, B.; Li, H.; Wu, G.; Ding, P.; Liang, J.; Zhou, Z. A highly sensitive strategy for glypican-3 detection based on aptamer/gold carbon dots/magnetic graphene oxide nanosheets as fluorescent biosensor. Anal. Bioanal. Chem., 2022, 414(22), 6441-6453.
[http://dx.doi.org/10.1007/s00216-022-04201-5] [PMID: 35788872]
[124]
Jalil, O.; Pandey, C.M.; Kumar, D. Highly sensitive electrochemical detection of cancer biomarker based on anti-EpCAM conjugated molybdenum disulfide grafted reduced graphene oxide nanohybrid. Bioelectrochemistry., 2021, 138107733
[http://dx.doi.org/10.1016/j.bioelechem.2020.107733] [PMID: 33429154]
[125]
Ho, J.A.; Chang, H.; Shih, N.; Wu, L.; Chang, Y. Diagnostic detection of human lung cancer-associated antigen using a gold nanoparticle-based electrochemical. Anal. Chem., 2010, 82, 5944-5950.
[126]
Kalkal, A.; Pradhan, R.; Kadian, S.; Manik, G.; Packirisamy, G. Biofunctionalized graphene quantum dots based fluorescent biosensor toward efficient detection of small cell lung cancer. ACS Appl. Bio Mater., 2020, 3(8), 4922-4932.
[http://dx.doi.org/10.1021/acsabm.0c00427] [PMID: 35021736]
[127]
Liu, X.; Yue, T.; Qi, K.; Qiu, Y.; Guo, X. Porous graphene based electrochemical immunosensor using Cu3(BTC)2 metal-organic framework as nonenzymatic label. Talanta., 2020, 217121042
[http://dx.doi.org/10.1016/j.talanta.2020.121042] [PMID: 32498912]
[128]
Jozghorbani, M.; Fathi, M.; Kazemi, S.H.; Alinejadian, N. Determination of carcinoembryonic antigen as a tumor marker using a novel graphene-based label-free electrochemical immunosensor. Anal. Biochem., 2021, 613114017
[http://dx.doi.org/10.1016/j.ab.2020.114017] [PMID: 33212021]
[129]
Kumar, S.; Gupta, N.; Malhotra, B.D. Ultrasensitive biosensing platform based on yttria doped zirconia-reduced graphene oxide nanocomposite for detection of salivary oral cancer biomarker. Bioelectrochemistry., 2021, 140107799
[http://dx.doi.org/10.1016/j.bioelechem.2021.107799] [PMID: 33774391]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy