Generic placeholder image

Recent Patents on Nanotechnology

Editor-in-Chief

ISSN (Print): 1872-2105
ISSN (Online): 2212-4020

Review Article

A Critical Appraisal of Functionalized 2-Dimensional Carbon-Based Nanomaterials for Drug Delivery Applications

Author(s): Dilpreet Singh*, G.D. Gupta, Nimish Gupta, Princi Verma, Abhisek Dey, Simranjeet Kaur, Akshay Kumar and Namandeep Raj

Volume 18, Issue 4, 2024

Published on: 28 September, 2023

Page: [479 - 493] Pages: 15

DOI: 10.2174/1872210518666230911150337

Price: $65

Open Access Journals Promotions 2
Abstract

The development of an efficient and innovative drug delivery system is essential to improve the pharmacological parameters of the medicinal compound or drug. The technique or manner used to improve the pharmacological parameters plays a crucial role in the delivery system. In the current scenario, various drug delivery systems are available where nanotechnology has firmly established itself in the field of drug delivery. One of the most prevalent elements is carbon with its allotropic modifications such as graphene-based nanomaterials, carbon nanotubes, carbon dots, and carbon fullerenes, these nanomaterials offer notable physiochemical and biochemical properties for the delivery applications due to their smaller size, surface area, and ability to interact with the cells or tissues. The exceptional physicochemical properties of carbon-based 2D nanomaterials, such as graphene and carbon nanotubes, make them attractive candidates for drug delivery systems. These nanomaterials offer a large surface area, high drug loading capacity, and tunable surface chemistry, enabling efficient encapsulation, controlled release, and targeted delivery of therapeutic agents. These properties of the nanomaterials can be exploited for drug delivery applications, like assisting the target delivery of drugs and aiding combination molecular imaging. This review emphasizes on the recent patents on 2D carbon-based nanomaterial and their role in drug delivery systems. Carbon-based 2D nanomaterials present a wealth of opportunities for advanced drug delivery systems. Their exceptional properties and versatility offers great potential in improving therapeutic efficacy, minimizing side effects, and enabling personalized medicine and the recent patents on 2D nanomaterial.

Keywords: 2D nanomaterials, carbon based fullerenes, graphene nanostructures, drug delivery, functionalization, peptides.

Graphical Abstract
[1]
Nasrollahzadeh M, Sajadi SM, Sajjadi M, Issaabadi Z. An intro-duction to nanotechnology. Inter Sci Technol 2019; 28: 1-27.
[2]
Yasuda H. The world trend of nanotechnology. J Surface Finish Soc Jpn 2001; 52(9): 588-92.
[http://dx.doi.org/10.4139/sfj.52.588]
[3]
Sudha PN, Sangeetha K, Vijayalakshmi K, Barhoum A. Nanomate-rials history, classification, unique properties, production and mar-ket. In: Emerging Applications of Nanoparticles and Architecture Nanostructures. Elsevier 2018; pp. 341-84.
[http://dx.doi.org/10.1016/B978-0-323-51254-1.00012-9]
[4]
Thakur P, Thakur A. Introduction to nanotechnology. In: Synthesis and Applications of Nanoparticles. Singapore: Springer 2022; pp. 1-17.
[http://dx.doi.org/10.1007/978-981-16-6819-7_1]
[5]
Tamirat Y. The role of nanotechnology in semiconductor industry: Review article. J Mater Sci Nanotechnol 2017; 2: 202.
[6]
Hong H. Composite materials with magnetically aligned carbon nanoparticles and methods of preparation. US9892835B2, 2018.
[7]
Kralj S, Makovec D. Magnetic assembly of superparamagnetic iron oxide nanoparticle clusters into nanochains and nanobundles. ACS Nano 2015; 9(10): 9700-7.
[http://dx.doi.org/10.1021/acsnano.5b02328] [PMID: 26394039]
[8]
Rudramurthy GR, Swamy MK. Potential applications of enginee-red nanoparticles in medicine and biology: An update. J Biol Inorg Chem 2018; 23(8): 1185-204.
[http://dx.doi.org/10.1007/s00775-018-1600-6] [PMID: 30097748]
[9]
Zhang W. Nanoparticle aggregation: Principles and modeling. Adv Exp Med Biol 2014; 811: 19-43.
[10]
Terna AD, Elemike EE, Mbonu JI, Osafile OE, Ezeani RO. The future of semiconductors nanoparticles: Synthesis, properties and applications. Mater Sci Eng B 2021; 272: 115363.
[http://dx.doi.org/10.1016/j.mseb.2021.115363]
[11]
Guo D, Xie G, Luo J. Mechanical properties of nanoparticles: Basics and applications. J Phys D Appl Phys 2014; 47(1): 013001.
[http://dx.doi.org/10.1088/0022-3727/47/1/013001]
[12]
Bauer S, Schmuki P, von der Mark K, Park J. Engineering biocom-patible implant surfaces. Prog Mater Sci 2013; 58(3): 261-326.
[http://dx.doi.org/10.1016/j.pmatsci.2012.09.001]
[13]
Nika DL, Pokatilov EP, Askerov AS, Balandin AA. Phonon ther-mal conduction in graphene: Role of Umklapp and edge roughness scattering. Phys Rev B Condens Matter Mater Phys 2009; 79(15): 155413.
[http://dx.doi.org/10.1103/PhysRevB.79.155413]
[14]
Munyalo JM, Zhang X. Particle size effect on thermophysical properties of nanofluid and nanofluid based phase change mate-rials: A review. J Mol Liq 2018; 265: 77-87.
[http://dx.doi.org/10.1016/j.molliq.2018.05.129]
[15]
Leontyev IN, Kuriganova AB, Leontyev NG, et al. Size dependen-ce of the lattice parameters of carbon supported platinum nanopar-ticles: X-ray diffraction analysis and theoretical considerations. RSC Advances 2014; 4(68): 35959-65.
[http://dx.doi.org/10.1039/C4RA04809A]
[16]
Roca AG, Gutiérrez L, Gavilán H, Brollo FME, Veintemillas-Verdaguer S, Morales MP. Design strategies for shape-controlled magnetic iron oxide nanoparticles. Adv Drug Deliv Rev 2019; 138: 68-104.
[http://dx.doi.org/10.1016/j.addr.2018.12.008] [PMID: 30553951]
[17]
Scarberry KE, Dickerson EB, McDonald JF, Zhang ZJ. Magnetic nanoparticle-peptide conjugates for in vitro and in vivo targeting and extraction of cancer cells. J Am Chem Soc 2008; 130(31): 10258-62.
[http://dx.doi.org/10.1021/ja801969b] [PMID: 18611005]
[18]
Xiao H, Liu S. 2D nanomaterials as lubricant additive: A review. Mater Des 2017; 135: 319-32.
[http://dx.doi.org/10.1016/j.matdes.2017.09.029]
[19]
Lauri A. Optical and electrical measurements at the nanoscale. 2018. Available from: https://spiral.imperial.ac.uk/handle/10044/1/78693
[20]
Premaratne M, Agrawal GP. Theoretical Foundations of Nanoscale Quantum Devices. Cambridge University Press 2021.
[21]
Mohanty JS, Chaudhari K, Sudhakar C, Pradeep T. Metal-ion-induced luminescence enhancement in protein protected gold clu-sters. J Phys Chem C 2019; 123(47): 28969-76.
[http://dx.doi.org/10.1021/acs.jpcc.9b07370]
[22]
Kumar S, Nehra M, Kedia D, Dilbaghi N, Tankeshwar K, Kim KH. Nanodiamonds: Emerging face of future nanotechnology. Carbon 2019; 143: 678-99.
[http://dx.doi.org/10.1016/j.carbon.2018.11.060]
[23]
Stéphane C, Christian F, Sophie DC, Bernard N. Size, shape and temperature effect on nanomaterials. Indian J Pure Appl Phy 2015; 53: 768-75.
[24]
Naqi A, Abbas N, Zahra N, Hussain A, Shabbir SQ. Effect of mul-ti-walled carbon nanotubes (MWCNTs) on the strength deve-lopment of cementitious materials. J Mater Res Technol 2019; 8(1): 1203-11.
[http://dx.doi.org/10.1016/j.jmrt.2018.09.006]
[25]
Blatt FJ. Matthiessen’s Rule. Access Science, McGraw-Hill Educa-tion 2014.
[http://dx.doi.org/10.1036/1097-8542.410800]
[26]
Liu B, Zhou K. Recent progress on graphene-analogous 2D nano-materials: Properties, modeling and applications. Prog Mater Sci 2019; 100: 99-169.
[http://dx.doi.org/10.1016/j.pmatsci.2018.09.004]
[27]
Montiel S. Biomedical applications of iron oxide nanoparticles: Current insights progress and perspectives. Pharmaceutics 2022; 14(1): 204.
[28]
Popov V. Carbon nanotubes: properties and application. Mater Sci Eng Rep 2004; 43(3): 61-102.
[http://dx.doi.org/10.1016/j.mser.2003.10.001]
[29]
Sinnott SB, Andrews R. Carbon nanotubes: synthesis, properties, and applications. Crit Rev Solid State Mater Sci 2001; 26(3): 145-249.
[http://dx.doi.org/10.1080/20014091104189]
[30]
Tong H, Ouyang S, Bi Y, Umezawa N, Oshikiri M, Ye J. Nano-photocatalytic materials: Possibilities and challenges. Adv Mater 2012; 24(2): 229-51.
[http://dx.doi.org/10.1002/adma.201102752] [PMID: 21972044]
[31]
Johnston RL. Metal nanoparticles and nanoalloys. In: Frontiers of Nanoscience. Elsevier: Amsterdam 2012; 3: pp. 1-42.
[http://dx.doi.org/10.1016/B978-0-08-096357-0.00006-6]
[32]
Krishnaswamy K, Orsat V. Sustainable delivery systems through green nanotechnology. In: Nano- and Microscale Drug Delivery Systems. Elsevier: Amsterdam 2017; pp. 17-32.
[http://dx.doi.org/10.1016/B978-0-323-52727-9.00002-9]
[33]
Lin J, Zhong Z, Li Q, et al. Facile low-temperature synthesis of cellulose nanocrystals carrying Buckminsterfullerene and its radical scavenging property in vitro. Biomacromolecules 2017; 18(12): 4034-40.
[http://dx.doi.org/10.1021/acs.biomac.7b01095] [PMID: 29131597]
[34]
Yadav J. Fullerene: Properties, synthesis and application. J Phys 2017; 6: 1-6.
[35]
Liu Q, Cui Q, Li XJ, Jin L. The applications of buckminsterfullere-ne C60 and derivatives in orthopaedic research. Connect Tissue Res 2014; 55(2): 71-9.
[http://dx.doi.org/10.3109/03008207.2013.877894] [PMID: 24409811]
[36]
Lens M, Medenica L, Citernesi U. Antioxidative capacity of C60 (buckminsterfullerene) and newly synthesized fulleropyrrolidine derivatives encapsulated in liposomes. Biotechnol Appl Biochem 2008; 51(3): 135-40.
[http://dx.doi.org/10.1042/BA20080007] [PMID: 18257745]
[37]
Asha AB, Narain R. Nanomaterials properties. In: Polymer Science and Nanotechnology. Elsevier: Amsterdam 2020; pp. 343-59.
[http://dx.doi.org/10.1016/B978-0-12-816806-6.00015-7]
[38]
Ji Z, Lin G, Lu Q, et al. Targeted therapy of SMMC-7721 liver cancer in vitro and in vivo with carbon nanotubes based drug deli-very system. J Colloid Interface Sci 2012; 365(1): 143-9.
[http://dx.doi.org/10.1016/j.jcis.2011.09.013] [PMID: 21974923]
[39]
Zhu S, Li J, Huang AG, Huang JQ, Huang YQ, Wang GX. Anti-betanodavirus activity of isoprinosine and improved efficacy using carbon nanotubes based drug delivery system. Aquaculture 2019; 512: 734377.
[http://dx.doi.org/10.1016/j.aquaculture.2019.734377]
[40]
Aqel A, El-Nour KMMA, Ammar RAA, Al-Warthan A. Carbon nanotubes, science and technology part (I) structure, synthesis and characterisation. Arab J Chem 2012; 5(1): 1-23.
[http://dx.doi.org/10.1016/j.arabjc.2010.08.022]
[41]
Bhirde AA, Patel V, Gavard J, et al. Targeted killing of cancer cells in vivo and in vitro with EGF-directed carbon nanotube-based drug delivery. ACS Nano 2009; 3(2): 307-16.
[http://dx.doi.org/10.1021/nn800551s] [PMID: 19236065]
[42]
Bakry R, Vallant RM, Najam-ul-Haq M, et al. Medicinal applica-tions of fullerenes. Int J Nanomedicine 2007; 2(4): 639-49.
[PMID: 18203430]
[43]
Zhu S, Xu G. Carbon nanohorns and their biomedical applications. In: Nanotechnologies for the Life Sciences. Wiley 2012; p. 9.
[44]
Abu Lila AS, Soliman MS, Kiran HC, et al. Tamoxifen-loaded functionalized graphene nanoribbons for breast cancer therapy. J Drug Deliv Sci Technol 2021; 63: 102499.
[http://dx.doi.org/10.1016/j.jddst.2021.102499]
[45]
Chowdhury MS, Manepalli P, Sitharaman B. Graphene nanorib-bons elicit cell specific uptake and delivery via activation of epi-dermal growth factor receptor enhanced by human papillomavirus E5 protein. Acta Biomater 2014; 10(10): 4494-504.
[http://dx.doi.org/10.1016/j.actbio.2014.06.030] [PMID: 24980059]
[46]
Blackwell RE, Zhao F, Brooks E, et al. Spin splitting of dopant edge state in magnetic zigzag graphene nanoribbons. Nature 2021; 600(7890): 647-52.
[http://dx.doi.org/10.1038/s41586-021-04201-y] [PMID: 34937899]
[47]
Eatemadi A, Daraee H, Karimkhanloo H, et al. Carbon nanotubes: Properties, synthesis, purification, and medical applications. Nanoscale Res Lett 2014; 9(1): 393.
[http://dx.doi.org/10.1186/1556-276X-9-393] [PMID: 25170330]
[48]
Gu H, Zhang L, Huang Y, Zhang Y, Fan W, Liu T. Quasi-one-dimensional graphene nanoribbon-supported MoS2 nanosheets for enhanced hydrogen evolution reaction. RSC Advances 2016; 6(17): 13757-65.
[http://dx.doi.org/10.1039/C5RA27180K]
[49]
An J, Gou Y, Yang C, Hu F, Wang C. Synthesis of a biocompatible gelatin functionalized graphene nanosheets and its application for drug delivery. Mater Sci Eng C 2013; 33(5): 2827-37.
[http://dx.doi.org/10.1016/j.msec.2013.03.008] [PMID: 23623103]
[50]
Ma X, Tao H, Yang K, et al. A functionalized graphene oxide-iron oxide nanocomposite for magnetically targeted drug delivery, pho-tothermal therapy, and magnetic resonance imaging. Nano Res 2012; 5(3): 199-212.
[http://dx.doi.org/10.1007/s12274-012-0200-y]
[51]
Georgakilas V, Tagmatarchis N, Pantarotto D, Bianco A, Briand JP, Prato M. Amino acid functionalisation of water soluble carbon nanotubes. Chem Commun 2002; (24): 3050-1.
[http://dx.doi.org/10.1039/b209843a] [PMID: 12536811]
[52]
Zhang X, Rajaraman BRS, Liu H, Ramakrishna S. Graphene’s potential in materials science and engineering. RSC Advances 2014; 4(55): 28987-9011.
[http://dx.doi.org/10.1039/C4RA02817A]
[53]
Siqi J, Shasha Y, Xiao W, Gu W. T-graphene and its boron nitride analogue as versatile drug delivery systems. Mol Phys 2020; 118(18): e1757775.
[http://dx.doi.org/10.1080/00268976.2020.1757775]
[54]
Liu J, Cui L, Losic D. Graphene and graphene oxide as new nano-carriers for drug delivery applications. Acta Biomater 2013; 9(12): 9243-57.
[http://dx.doi.org/10.1016/j.actbio.2013.08.016] [PMID: 23958782]
[55]
Pan Y, Sahoo NG, Li L. The application of graphene oxide in drug delivery. Expert Opin Drug Deliv 2012; 9(11): 1365-76.
[http://dx.doi.org/10.1517/17425247.2012.729575] [PMID: 23005029]
[56]
Sun X, Liu Z, Welsher K, et al. Nano-graphene oxide for cellular imaging and drug delivery. Nano Res 2008; 1(3): 203-12.
[http://dx.doi.org/10.1007/s12274-008-8021-8] [PMID: 20216934]
[57]
Daniyal M, Liu B, Wang W. Comprehensive review on graphene oxide for use in drug delivery system. Curr Med Chem 2020; 27(22): 3665-85.
[http://dx.doi.org/10.2174/13816128256661902011296290] [PMID: 30706776]
[58]
Rana VK, Choi MC, Kong JY, et al. Synthesis and drug‐delivery behavior of chitosan‐functionalized graphene oxide hybrid na-nosheets. Macromol Mater Eng 2011; 296(2): 131-40.
[http://dx.doi.org/10.1002/mame.201000307]
[59]
Zhang X, Luo L, Li L, et al. Trimodal synergistic antitumor drug delivery system based on graphene oxide. Nanomedicine 2019; 15(1): 142-52.
[http://dx.doi.org/10.1016/j.nano.2018.09.008] [PMID: 30300749]
[60]
Angell C, Kai M, Xie S, Dong X, Chen Y. Bioderived DNA nano-machines for potential uses in biosensing, diagnostics, and thera-peutic applications. Adv Healthc Mater 2018; 7(8): 1701189.
[http://dx.doi.org/10.1002/adhm.201701189] [PMID: 29350489]
[61]
Valero J, Škugor M. Mechanisms, methods of tracking and applica-tions of DNA walkers: A review. ChemPhysChem 2020; 21(17): 1971-88.
[http://dx.doi.org/10.1002/cphc.202000235] [PMID: 32618112]
[62]
Hu Q, Li H, Wang L, Gu H, Fan C. DNA nanotechnology-enabled drug delivery systems. Chem Rev 2019; 119(10): 6459-506.
[http://dx.doi.org/10.1021/acs.chemrev.7b00663] [PMID: 29465222]
[63]
Yu K, Hai X, Yue S, Song W, Bi S. Glutathione-activated DNA-Au nanomachine as targeted drug delivery platform for imaging-guided combinational cancer therapy. Chem Eng J 2021; 419: 129535.
[http://dx.doi.org/10.1016/j.cej.2021.129535]
[64]
Prencipe G, Tabakman SM, Welsher K, et al. PEG branched poly-mer for functionalization of nanomaterials with ultralong blood cir-culation. J Am Chem Soc 2009; 131(13): 4783-7.
[http://dx.doi.org/10.1021/ja809086q] [PMID: 19173646]
[65]
Sun J. Study on Electrolyte-gated Graphene Nanoelectronic Biosensors for Biomarker Detection. 2018. Available from: https://researchrepository.wvu.edu/cgi/viewcontent.cgi?article=7782&context=etd
[66]
Xu Z, Zhu S, Wang M, Li Y, Shi P, Huang X. Delivery of pacli-taxel using PEGylated graphene oxide as a nanocarrier. ACS Appl Mater Interfaces 2015; 7(2): 1355-63.
[http://dx.doi.org/10.1021/am507798d] [PMID: 25546399]
[67]
Cheong YK, Arce MP, Benito A, et al. Synergistic antifungal study of PEGylated graphene oxides and copper nanoparticles against candida albicans. Nanomaterials 2020; 10(5): 819.
[http://dx.doi.org/10.3390/nano10050819] [PMID: 32344901]
[68]
Wen Z, Feng Y, Hu Y, et al. Multiwalled carbon nanotubes co-delivering sorafenib and epidermal growth factor receptor siRNA enhanced tumor-suppressing effect on liver cancer. Aging 2021; 13(2): 1872-82.
[http://dx.doi.org/10.18632/aging.103905] [PMID: 33440348]
[69]
Lee PC, Chiou YC, Wong JM, Peng CL, Shieh MJ. Targeting colorectal cancer cells with single-walled carbon nanotubes conju-gated to anticancer agent SN-38 and EGFR antibody. Biomaterials 2013; 34(34): 8756-65.
[http://dx.doi.org/10.1016/j.biomaterials.2013.07.067] [PMID: 23937913]
[70]
Kim SW, Lee KY, Lee YJ, Hong HJ, Khang D. PEGylated anti-cancer-carbon nanotubes complex targeting mitochondria of lung cancer cells. Nanotechnology 2017; 28(46): 465102.
[http://dx.doi.org/10.1088/1361-6528/aa8c31] [PMID: 29053471]
[71]
Oh Y, Jin JO, Oh J. Photothermal-triggered control of sub-cellular drug accumulation using doxorubicin-loaded single-walled carbon nanotubes for the effective killing of human breast cancer cells. Nanotechnology 2017; 28(12): 125101.
[http://dx.doi.org/10.1088/1361-6528/aa5d7d] [PMID: 28145889]
[72]
Xu H. Graphene oxide quantum dot, material composed of same and graphene-like structure, and preparation method therefor. US10807872B2, 2020.
[73]
Mohapatra S. Graphene based theranostics for tumor targeted drug/gene delivery and imaging. US9675714B1, 2017.
[74]
Li L, Wu G, Yang G, Peng J, Zhao J, Zhu JJ. Focusing on lumine-scent graphene quantum dots: Current status and future perspecti-ves. Nanoscale 2013; 5(10): 4015-39.
[http://dx.doi.org/10.1039/c3nr33849e] [PMID: 23579482]
[75]
Ozkan CS. Methods of fabricating pillared graphene nanostructures. US10287677B2, 2019.
[76]
Sitharaman B. Magnetic graphene-like nanoparticles or graphitic nano-or microparticles and method of production and uses thereof. JP6139511B2, 2017.
[77]
Nel AE. Identification and optimization of carbon radicals on hydrated graphene oxide for ubiquitous antibacterial coatings. US11208330B2, 2022.
[78]
Yang X, Zhang C, Deng D, Gu Y, Wang H, Zhong Q. Multiple stimuli‐responsive mxene‐based hydrogel as intelligent drug delive-ry carriers for deep chronic wound healing. Small 2022; 18(5): 2104368.
[http://dx.doi.org/10.1002/smll.202104368] [PMID: 34821453]
[79]
Liu Z, Lin H, Zhao M, et al. 2D superparamagnetic tantalum carbi-de composite MXenes for efficient breast-cancer theranostics. Theranostics 2018; 8(6): 1648-64.
[http://dx.doi.org/10.7150/thno.23369] [PMID: 29556347]
[80]
Iravani S, Varma RS. MXenes for cancer therapy and diagnosis: Recent advances and current challenges. ACS Biomater Sci Eng 2021; 7(6): 1900-13.
[http://dx.doi.org/10.1021/acsbiomaterials.0c01763] [PMID: 33851823]
[81]
Han X, Huang J, Lin H, Wang Z, Li P, Chen Y. 2D ultrathin MXe-ne‐based drug‐delivery nanoplatform for synergistic photothermal ablation and chemotherapy of cancer. Adv Healthc Mater 2018; 7(9): 1701394.
[http://dx.doi.org/10.1002/adhm.201701394] [PMID: 29405649]
[82]
Khatami M, Iravani S. MXenes and MXene-based materials for the removal of water pollutants: Challenges and opportunities. Comments Mod Chem A Comments Inorg Chem 2021; 41(4): 213-48.
[http://dx.doi.org/10.1080/02603594.2021.1922396]
[83]
Kang Z, Khan MA, Gong Y, et al. Recent progress of MXenes and MXene-based nanomaterials for the electrocatalytic hydrogen evo-lution reaction. J Mater Chem A Mater Energy Sustain 2021; 9(10): 6089-108.
[http://dx.doi.org/10.1039/D0TA11735H]
[84]
Zhan X, Si C, Zhou J, Sun Z. MXene and MXene-based composi-tes: Synthesis, properties and environment-related applications. Nanoscale Horiz 2020; 5(2): 235-58.
[http://dx.doi.org/10.1039/C9NH00571D]
[85]
Tutty MA, Vella G, Prina-Mello A. Pre-clinical 2D and 3D toxicity response to a panel of nanomaterials; comparative assessment of NBM-induced liver toxicity. Drug Deliv Transl Res 2022; 12(9): 2157-77.
[http://dx.doi.org/10.1007/s13346-022-01170-1] [PMID: 35763196]
[86]
Naikoo GA, Arshad F, Almas M, et al. 2D materials, synthesis, characterization and toxicity: A critical review. Chem Biol Interact 2022; 365: 110081.
[http://dx.doi.org/10.1016/j.cbi.2022.110081] [PMID: 35948135]
[87]
Guo X, Mei N. Assessment of the toxic potential of graphene fami-ly nanomaterials. Yao Wu Shi Pin Fen Xi 2014; 22(1): 105-15.
[PMID: 24673908]
[88]
Buzea C, Pacheco II, Robbie K. Nanomaterials and nanoparticles: Sources and toxicity. Biointerphases 2007; 2(4): MR17-71.
[http://dx.doi.org/10.1116/1.2815690] [PMID: 20419892]
[89]
Sajid M. Nanomaterials: Types, properties, synthesis, emerging materials, and toxicity concerns. Curr Opin Environ Sci Health 2021; 25: 100319.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy