Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Review Article

Comprehensive Review on Recent Strategies for Management of Prostate Cancer: Therapeutic Targets and SAR

Author(s): Manish Chaudhary, Shubham Kumar, Paranjeet Kaur*, Sanjeev Kumar Sahu and Amit Mittal

Volume 24, Issue 7, 2024

Published on: 10 October, 2023

Page: [721 - 747] Pages: 27

DOI: 10.2174/1389557523666230911141339

Price: $65

Open Access Journals Promotions 2
Abstract

Prostate cancer is a disease that is affecting a large population worldwide. Androgen deprivation therapy (ADT) has become a foundation for the treatment of advanced prostate cancer, as used in most clinical settings from neo-adjuvant to metastatic stage. In spite of the success of ADT in managing the disease in the majority of men, hormonal manipulation fails eventually. New molecules are developed for patients with various hormone-refractory diseases. Advancements in molecular oncology have increased understanding of numerous cellular mechanisms which control cell death in the prostate and these insights can lead to the development of more efficacious and tolerable therapies for carcinoma of the prostate. This review is focused on numerous therapies that might be a boon for prostate therapy like signaling inhibitors, vaccines, and inhibitors of androgen receptors. Along with these, various bioactive molecules and their derivatives are highlighted, which act as potential antiprostate cancer agents. This article also emphasized the recent advances in the field of medicinal chemistry of prostate cancer agents.

Keywords: Prostate cancer, therapeutic targets, recent advances, flavonoids, bicalutamide, arylpiperazine

Graphical Abstract
[1]
Demir, Y.; Türkeş, C.; Küfrevioğlu, Ö.İ.; Beydemir, Ş. Molecular docking studies and the effect of fluorophenylthiourea derivatives on glutathione‐dependent enzymes. Chem. Biodivers., 2023, 20(1), e202200656.
[http://dx.doi.org/10.1002/cbdv.202200656] [PMID: 36538730]
[2]
Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2021, 71(3), 209-249.
[http://dx.doi.org/10.3322/caac.21660] [PMID: 33538338]
[3]
Park, H.J.; Kim, K.W.; Won, S.E.; Yoon, S.; Chae, Y.K.; Tirumani, S.H.; Ramaiya, N.H. Definition, incidence, and challenges for assessment of hyperprogressive disease during cancer treatment with immune checkpoint inhibitors. JAMA Netw. Open, 2021, 4(3), e211136-e211136.
[http://dx.doi.org/10.1001/jamanetworkopen.2021.1136] [PMID: 33760090]
[4]
Gandaglia, G.; Leni, R.; Bray, F.; Fleshner, N.; Freedland, S.J.; Kibel, A.; Stattin, P.; Van Poppel, H.; La Vecchia, C. Epidemiology and prevention of prostate cancer. Eur. Urol. Oncol., 2021, 4(6), 877-892.
[http://dx.doi.org/10.1016/j.euo.2021.09.006] [PMID: 34716119]
[5]
Quon, H.; Loblaw, A.; Nam, R. Dramatic increase in prostate cancer cases by 2021. BJU Int., 2011, 108(11), 1734-1738.
[http://dx.doi.org/10.1111/j.1464-410X.2011.10197.x] [PMID: 21507185]
[6]
Paschalis, A.; de Bono, J.S. Prostate cancer 2020: The times they are a’changing. Cancer Cell, 2020, 38(1), 25-27.
[http://dx.doi.org/10.1016/j.ccell.2020.06.008] [PMID: 32663466]
[7]
Cimadamore, A.; Lopez-Beltran, A.; Massari, F.; Santoni, M.; Mazzucchelli, R.; Scarpelli, M.; Galosi, A.B.; Cheng, L.; Montironi, R. Germline and somatic mutations in prostate cancer: focus on defective DNA. repair, PARP inhibitors and immunotherapy. Future Med., 2020, 16, 75-80.
[http://dx.doi.org/10.2217/fon-2019-0745] [PMID: 31916449]
[8]
Patel, A.R.; Klein, E.A. Risk factors for prostate cancer. Nat. Clin. Pract. Urol., 2009, 6(2), 87-95.
[http://dx.doi.org/10.1038/ncpuro1290] [PMID: 19198622]
[9]
Selley, S.; Donovan, J.; Faulkner, A.; Coast, J.; Gillatt, D. Diagnosis, management and screening of early localised prostate cancer. Health Technol. Assess., 1997, 1(2), 1-96.
[10]
Catalona, W.J.; Smith, D.S.; Ratliff, T.L.; Dodds, K.M.; Coplen, D.E.; Yuan, J.J.J.; Petros, J.A.; Andriole, G.L. Measurement of prostate-specific antigen in serum as a screening test for prostate cancer. N. Engl. J. Med., 1991, 324(17), 1156-1161.
[http://dx.doi.org/10.1056/NEJM199104253241702] [PMID: 1707140]
[11]
Shariat, S.F.; Roehrborn, C.G. Using biopsy to detect prostate cancer. Rev. Urol., 2008, 10(4), 262-280.
[PMID: 19145270]
[12]
Lange, P.H. ProstaScint scan for staging prostate cancer. Urology, 2001, 57(3), 402-406.
[http://dx.doi.org/10.1016/S0090-4295(00)01109-2] [PMID: 11248606]
[13]
Yu, W.; Zhou, L. Early diagnosis of prostate cancer from the perspective of chinese physicians. J. Cancer, 2020, 11(11), 3264-3273.
[http://dx.doi.org/10.7150/jca.36697] [PMID: 32231732]
[14]
Thalgott, M.; Rack, B.; Maurer, T.; Souvatzoglou, M.; Eiber, M.; Kreß, V.; Heck, M.M.; Andergassen, U.; Nawroth, R.; Gschwend, J.E.; Retz, M. Detection of circulating tumor cells in different stages of prostate cancer. J. Cancer Res. Clin. Oncol., 2013, 139(5), 755-763.
[http://dx.doi.org/10.1007/s00432-013-1377-5] [PMID: 23358719]
[15]
Toivanen, R.; Shen, M.M. Prostate organogenesis: Tissue induction, hormonal regulation and cell type specification. Development, 2017, 144(8), 1382-1398.
[http://dx.doi.org/10.1242/dev.148270] [PMID: 28400434]
[16]
Alukal, J.P.; Lepor, H. Testosterone deficiency and the prostate. Urol. Clin. North Am., 2016, 43(2), 203-208.
[http://dx.doi.org/10.1016/j.ucl.2016.01.013] [PMID: 27132577]
[17]
Lee, S.H.; Shen, M.M. Cell types of origin for prostate cancer. Curr. Opin. Cell Biol., 2015, 37, 35-41.
[http://dx.doi.org/10.1016/j.ceb.2015.10.002] [PMID: 26506127]
[18]
Balistreri, C.R.; Candore, G.; Lio, D.; Carruba, G. Prostate cancer: From the pathophysiologic implications of some genetic risk factors to translation in personalized cancer treatments. Cancer Gene Ther., 2014, 21(1), 2-11.
[http://dx.doi.org/10.1038/cgt.2013.77] [PMID: 24407349]
[19]
DeMarzo, A.M.; Nelson, W.G.; Isaacs, W.B.; Epstein, J.I. Pathological and molecular aspects of prostate cancer. Lancet, 2003, 361(9361), 955-964.
[http://dx.doi.org/10.1016/S0140-6736(03)12779-1] [PMID: 12648986]
[20]
Analytics, P.; Data, A. The epidemiology of prostate cancer. Cancer, 2021.
[21]
Buck, S.A.J.; Koolen, S.L.W.; Mathijssen, R.H.J.; de Wit, R.; van Soest, R.J. Cross-resistance and drug sequence in prostate cancer. Drug Resist. Updat., 2021, 56, 100761.
[http://dx.doi.org/10.1016/j.drup.2021.100761] [PMID: 33799049]
[22]
Barocas, D.A.; Alvarez, J.; Resnick, M.J.; Koyama, T.; Hoffman, K.E.; Tyson, M.D.; Conwill, R.; McCollum, D.; Cooperberg, M.R.; Goodman, M.; Greenfield, S.; Hamilton, A.S.; Hashibe, M.; Kaplan, S.H.; Paddock, L.E.; Stroup, A.M.; Wu, X.C.; Penson, D.F. Association between radiation therapy, surgery, or observation for localized prostate cancer and patient-reported outcomes after 3 years. JAMA, 2017, 317(11), 1126-1140.
[http://dx.doi.org/10.1001/jama.2017.1704] [PMID: 28324093]
[23]
Chen, R.C.; Basak, R.; Meyer, A.M.; Kuo, T.M.; Carpenter, W.R.; Agans, R.P.; Broughman, J.R.; Reeve, B.B.; Nielsen, M.E.; Usinger, D.S.; Spearman, K.C.; Walden, S.; Kaleel, D.; Anderson, M.; Stürmer, T.; Godley, P.A. Association between choice of radical prostatectomy, external beam radiotherapy, brachytherapy, or active surveillance and patient-reported quality of life among men with localized prostate cancer. JAMA, 2017, 317(11), 1141-1150.
[http://dx.doi.org/10.1001/jama.2017.1652] [PMID: 28324092]
[24]
Denmeade, S.R.; Isaacs, J.T. A history of prostate cancer treatment. Nat. Rev. Cancer, 2002, 2(5), 389-396.
[http://dx.doi.org/10.1038/nrc801] [PMID: 12044015]
[25]
Trewartha, D.; Carter, K. Advances in prostate cancer treatment. Nat. Rev. Drug Discov., 2013, 12(11), 823-824.
[http://dx.doi.org/10.1038/nrd4068] [PMID: 24172327]
[26]
Nevedomskaya, E.; Baumgart, S.; Haendler, B. Recent advances in prostate cancer treatment and drug discovery. Int. J. Mol. Sci., 2018, 19(5), 1359.
[http://dx.doi.org/10.3390/ijms19051359] [PMID: 29734647]
[27]
Swami, U.; McFarland, T.R.; Nussenzveig, R.; Agarwal, N. Advanced prostate cancer: Treatment advances and future directions. Trends Cancer, 2020, 6(8), 702-715.
[http://dx.doi.org/10.1016/j.trecan.2020.04.010] [PMID: 32534790]
[28]
Wirth, M.P.; Hakenberg, O.W.; Froehner, M. Antiandrogens in the treatment of prostate cancer. Eur. Urol., 2007, 51(2), 306-314.
[http://dx.doi.org/10.1016/j.eururo.2006.08.043] [PMID: 17007995]
[29]
Turanli, B.; Grøtli, M.; Boren, J.; Nielsen, J.; Uhlen, M.; Arga, K.Y.; Mardinoglu, A. Drug repositioning for effective prostate cancer treatment. Front. Physiol., 2018, 9, 500.
[http://dx.doi.org/10.3389/fphys.2018.00500] [PMID: 29867548]
[30]
Litwin, M.S.; Tan, H.J. The diagnosis and treatment of prostate cancer: A review. JAMA, 2017, 317(24), 2532-2542.
[http://dx.doi.org/10.1001/jama.2017.7248] [PMID: 28655021]
[31]
Denmeade, S.R.; Isaacs, J.T. Development of prostate cancer treatment: The good news. Prostate, 2004, 58(3), 211-224.
[http://dx.doi.org/10.1002/pros.10360] [PMID: 14743459]
[32]
Correale, P.; Walmsley, K.; Zaremba, S.; Zhu, M.; Schlom, J.; Tsang, K.Y. Generation of human cytolytic T lymphocyte lines directed against prostate-specific antigen (PSA) employing a PSA oligoepitope peptide. J. Immunol., 1998, 161(6), 3186-3194.
[http://dx.doi.org/10.4049/jimmunol.161.6.3186] [PMID: 9743387]
[33]
Machiels, J-P.H.; Reilly, R.T.; Emens, L.A.; Ercolini, A.M.; Lei, R.Y.; Weintraub, D.; Okoye, F.I.; Jaffee, E.M. Cyclophosphamide, doxorubicin, and paclitaxel enhance the antitumor immune response of granulocyte/macrophage-colony stimulating factor-secreting whole-cell vaccines in HER-2/neu tolerized mice. Cancer Res., 2001, 61(9), 3689-3697.
[PMID: 11325840]
[34]
Kantoff, P.W.; Higano, C.S.; Shore, N.D.; Berger, E.R.; Small, E.J.; Penson, D.F.; Redfern, C.H.; Ferrari, A.C.; Dreicer, R.; Sims, R.B.; Xu, Y.; Frohlich, M.W.; Schellhammer, P.F. Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N. Engl. J. Med., 2010, 363(5), 411-422.
[http://dx.doi.org/10.1056/NEJMoa1001294] [PMID: 20818862]
[35]
Podrazil, M.; Horvath, R.; Becht, E.; Rozkova, D.; Bilkova, P.; Sochorova, K.; Hromadkova, H.; Kayserova, J.; Vavrova, K.; Lastovicka, J.; Vrabcova, P.; Kubackova, K.; Gasova, Z.; Jarolim, L.; Babjuk, M.; Spisek, R.; Bartunkova, J.; Fucikova, J. Phase I/II clinical trial of dendritic-cell based immunotherapy (DCVAC/PCa) combined with chemotherapy in patients with metastatic, castration-resistant prostate cancer. Oncotarget, 2015, 6(20), 18192-18205.
[http://dx.doi.org/10.18632/oncotarget.4145] [PMID: 26078335]
[36]
Vogelzang, N.J.; Beer, T.M.; Bartunkova, J.; Kuklík, R.; Miller, K.; Oh, W.K.; Oudard, S.; Pandha, H.S.; Sartor, A.O.; Spisek, R. Autologous dendritic cell vaccination (DCVAC/PCa) added to docetaxel chemotherapy in a double-blind, randomized phase III trial (VIABLE) in men with advanced (mCRPC) prostate cancer. J. Clin. Oncol., 2015, 33, TPS5070.
[37]
Kantoff, P.W.; Gulley, J.L.; Pico-Navarro, C. Revised overall survival analysis of a phase II, randomized, double-blind, controlled study of PROSTVAC in men with metastatic castration-resistant prostate cancer. J. Clin. Oncol., 2017, 35(1), 124-125.
[http://dx.doi.org/10.1200/JCO.2016.69.7748] [PMID: 27646950]
[38]
Johnson, L.E.; Frye, T.P.; Chinnasamy, N.; Chinnasamy, D.; McNeel, D.G. Plasmid DNA vaccine encoding prostatic acid phosphatase is effective in eliciting autologous antigen-specific CD8+ T cells. Cancer Immunol. Immunother., 2007, 56(6), 885-895.
[http://dx.doi.org/10.1007/s00262-006-0241-8] [PMID: 17102977]
[39]
McNeel, D.G.; Dunphy, E.J.; Davies, J.G.; Frye, T.P.; Johnson, L.E.; Staab, M.J.; Horvath, D.L.; Straus, J.; Alberti, D.; Marnocha, R.; Liu, G.; Eickhoff, J.C.; Wilding, G. Safety and immunological efficacy of a DNA vaccine encoding prostatic acid phosphatase in patients with stage D0 prostate cancer. J. Clin. Oncol., 2009, 27(25), 4047-4054.
[http://dx.doi.org/10.1200/JCO.2008.19.9968] [PMID: 19636017]
[40]
Figg, W.D.; Dahut, W.; Duray, P.; Hamilton, M.; Tompkins, A.; Steinberg, S.M.; Jones, E.; Premkumar, A.; Linehan, W.M.; Floeter, M.K.; Chen, C.C.; Dixon, S.; Kohler, D.R.; Krüger, E.A.; Gubish, E.; Pluda, J.M.; Reed, E. A randomized phase II trial of thalidomide, an angiogenesis inhibitor, in patients with androgen-independent prostate cancer. Clin. Cancer Res., 2001, 7(7), 1888-1893.
[PMID: 11448901]
[41]
Figg, W.D.; Arlen, P.; Gulley, J.; Fernandez, P.; Noone, M.; Fedenko, K.; Hamilton, M.; Parker, C.; Kruger, E.A.; Pluda, J. A randomized phase II trial of docetaxel (taxotere) plus thalidomide in androgen-independent prostate cancer. Semin. Oncol., 2001, 28(4)(Suppl. 15), 62-66.
[42]
McKay, R.R.; Zurita, A.J.; Werner, L.; Bruce, J.Y.; Carducci, M.A.; Stein, M.N.; Heath, E.I.; Hussain, A.; Tran, H.T.; Sweeney, C.J.; Ross, R.W.; Kantoff, P.W.; Slovin, S.F.; Taplin, M.E. A randomized phase II trial of short-course androgen deprivation therapy with or without bevacizumab for patients with recurrent prostate cancer after definitive local therapy. J. Clin. Oncol., 2016, 34(16), 1913-1920.
[http://dx.doi.org/10.1200/JCO.2015.65.3154] [PMID: 27044933]
[43]
Kelly, W.K.; Halabi, S.; Carducci, M.; George, D.; Mahoney, J.F.; Stadler, W.M.; Morris, M.; Kantoff, P.; Monk, J.P.; Kaplan, E.; Vogelzang, N.J.; Small, E.J. Randomized, double-blind, placebo-controlled phase III trial comparing docetaxel and prednisone with or without bevacizumab in men with metastatic castration-resistant prostate cancer: CALGB 90401. J. Clin. Oncol., 2012, 30(13), 1534-1540.
[http://dx.doi.org/10.1200/JCO.2011.39.4767] [PMID: 22454414]
[44]
Melegh, Z.; Oltean, S. Targeting angiogenesis in prostate cancer. Int. J. Mol. Sci., 2019, 20(11), 2676.
[http://dx.doi.org/10.3390/ijms20112676] [PMID: 31151317]
[45]
Tolcher, A. Clinical Cancer Research. American Association Cancer Research, 1999, 5, 3847S.
[46]
Chi, K.N.; Gleave, M.E.; Klasa, R.; Murray, N.; Bryce, C.; Lopes de Menezes, D.E.; D’Aloisio, S.; Tolcher, A.W. A phase I dose-finding study of combined treatment with an antisense Bcl-2 oligonucleotide (Genasense) and mitoxantrone in patients with metastatic hormone-refractory prostate cancer. Clin. Cancer Res., 2001, 7(12), 3920-3927.
[PMID: 11751483]
[47]
Tolcher, A.W. In Seminars in oncology; Elsevier, 2001, 28, 67-70.
[48]
Aranda, A.; Pascual, A. Nuclear hormone receptors and gene expression. Physiol. Rev., 2001, 81(3), 1269-1304.
[http://dx.doi.org/10.1152/physrev.2001.81.3.1269] [PMID: 11427696]
[49]
Trump, D.L.; Smith, D.C.; Stiff, D.; Adedoyin, A.; Day, R.; Bahnson, R.R.; Hofacker, J.; Branch, R.A. A phase II trial of all- trans -retinoic acid in hormone-refractory prostate cancer: A clinical trial with detailed pharmacokinetic analysis. Cancer Chemother. Pharmacol., 1997, 39(4), 349-356.
[http://dx.doi.org/10.1007/s002800050582] [PMID: 9025776]
[50]
Culine, S.; Kramar, A.; Droz, J.P.; Théodore, C. Phase II study of all-trans retinoic acid administered intermittently for hormone refractory prostate cancer. J. Urol., 1999, 161(1), 173-175.
[http://dx.doi.org/10.1016/S0022-5347(01)62090-1] [PMID: 10037392]
[51]
Adedoyin, A.; Stiff, D.D.; Smith, D.C.; Romkes, M.; Bahnson, R.C.; Day, R.; Hofacker, J.; Branch, R.A.; Trump, D.L. All- trans -retinoic acid modulation of drug-metabolizing enzyme activities: Investigation with selective metabolic drug probes. Cancer Chemother. Pharmacol., 1997, 41(2), 133-139.
[http://dx.doi.org/10.1007/s002800050719] [PMID: 9443626]
[52]
Beer, T.M.; Eilers, K.M.; Garzotto, M.; Egorin, M.J.; Lowe, B.A.; Henner, W.D. Weekly high-dose calcitriol and docetaxel in metastatic androgen-independent prostate cancer. J. Clin. Oncol., 2003, 21(1), 123-128.
[http://dx.doi.org/10.1200/jco.2003.05.117] [PMID: 12506180]
[53]
Suenaga, M.; Soda, H.; Oka, M.; Yamaguchi, A.; Nakatomi, K.; Shiozawa, K.; Kawabata, S.; Kasai, T.; Yamada, Y.; Kamihira, S.; Tei, C.; Kohno, S. Histone deacetylase inhibitors suppress telomerase reverse transcriptase mrna expression in prostate cancer cells. Int. J. Cancer, 2002, 97(5), 621-625.
[http://dx.doi.org/10.1002/ijc.10082] [PMID: 11807787]
[54]
Shenoy, T.R.; Boysen, G.; Wang, M.Y.; Xu, Q.Z.; Guo, W.; Koh, F.M.; Wang, C.; Zhang, L.Z.; Wang, Y.; Gil, V.; Aziz, S.; Christova, R.; Rodrigues, D.N.; Crespo, M.; Rescigno, P.; Tunariu, N.; Riisnaes, R.; Zafeiriou, Z.; Flohr, P.; Yuan, W.; Knight, E.; Swain, A.; Ramalho-Santos, M.; Xu, D.Y.; de Bono, J.; Wu, H. CHD1 loss sensitizes prostate cancer to DNA damaging therapy by promoting error-prone dou-ble-strand break repair. Ann. Oncol., 2017, 28(7), 1495-1507.
[http://dx.doi.org/10.1093/annonc/mdx165] [PMID: 28383660]
[55]
Hussain, M.; Daignault-Newton, S.; Twardowski, P.W.; Albany, C.; Stein, M.N.; Kunju, L.P.; Siddiqui, J.; Wu, Y.M.; Robinson, D.; Lonigro, R.J.; Cao, X.; Tomlins, S.A.; Mehra, R.; Cooney, K.A.; Montgomery, B.; Antonarakis, E.S.; Shevrin, D.H.; Corn, P.G.; Whang, Y.E.; Smith, D.C.; Caram, M.V.; Knudsen, K.E.; Stadler, W.M.; Feng, F.Y.; Chinnaiyan, A.M. Targeting androgen receptor and DNA repair in metastatic castration-resistant prostate cancer: Results from NCI 9012. J. Clin. Oncol., 2018, 36(10), 991-999.
[http://dx.doi.org/10.1200/JCO.2017.75.7310] [PMID: 29261439]
[56]
Colombo, I.; Lheureux, S.; Oza, A.M. Rucaparib: A novel PARP inhibitor for BRCA advanced ovarian cancer. Drug Des. Devel. Ther., 2018, 12, 605-617.
[http://dx.doi.org/10.2147/DDDT.S130809] [PMID: 29606854]
[57]
Murai, J.; Huang, S.Y.N.; Renaud, A.; Zhang, Y.; Ji, J.; Takeda, S.; Morris, J.; Teicher, B.; Doroshow, J.H.; Pommier, Y. Stereospecific PARP trapping by BMN 673 and comparison with olaparib and rucaparib. Mol. Cancer Ther., 2014, 13(2), 433-443.
[http://dx.doi.org/10.1158/1535-7163.MCT-13-0803] [PMID: 24356813]
[58]
Schalken, J.A.; Hessels, D.; Verhaegh, G. New targets for therapy in prostate cancer: Differential display code 3 (DD3PCA3), a highly prostate cancer–specific gene. Urology, 2003, 62(5)(Suppl. 1), 34-43.
[http://dx.doi.org/10.1016/S0090-4295(03)00759-3] [PMID: 14607216]
[59]
Nelson, J.B.; Nguyen, S.H.; Wu-Wong, J.R.; Opgenorth, T.J.; Dixon, D.B.; Chung, L.W.K.; Inoue, N. New bone formation in an osteoblastic tumor model is increased by endothelin-1 overexpression and decreased by endothelin A receptor blockade. Urology, 1999, 53(5), 1063-1069.
[http://dx.doi.org/10.1016/S0090-4295(98)00658-X] [PMID: 10223507]
[60]
Nelson, J.B. Endothelin receptors as therapeutic targets in castration-resistant prostate cancer. Eur. Urol. Suppl., 2009, 8(1), 20-28.
[61]
Carducci, M.A.; Nelson, J.B.; Kathy Bowling, M.; Rogers, T.; Eisenberger, M.A.; Sinibaldi, V.; Donehower, R.; Leahy, T.L.; Carr, R.A.; Isaacson, J.D.; Janus, T.J.; Andre, A.; Hosmane, B.S.; Padley, R.J. Atrasentan, an endothelin-receptor antagonist for refractory adenocarcinomas: Safety and pharmacokinetics. J. Clin. Oncol., 2002, 20(8), 2171-2180.
[http://dx.doi.org/10.1200/JCO.2002.08.028] [PMID: 11956279]
[62]
Smith, M.R.; Nelson, J.B. Future therapies in hormone-refractory prostate cancer. Urology, 2005, 65(Suppl. 5), 9-16.
[http://dx.doi.org/10.1016/j.urology.2005.03.043] [PMID: 15885273]
[63]
Watson, R.W.G.; Fitzpatrick, J.M. Targeting apoptosis in prostate cancer: Focus on caspases and inhibitors of apoptosis proteins. BJU Int., 2005, 96(Suppl. 2), 30-34.
[http://dx.doi.org/10.1111/j.1464-410X.2005.05944.x] [PMID: 16359436]
[64]
Denmeade, S.R.; Jakobsen, C.M.; Janssen, S.; Khan, S.R.; Garrett, E.S.; Lilja, H.; Christensen, S.B.; Isaacs, J.T. Prostate-specific antigen-activated thapsigargin prodrug as targeted therapy for prostate cancer. J. Natl. Cancer Inst., 2003, 95(13), 990-1000.
[http://dx.doi.org/10.1093/jnci/95.13.990] [PMID: 12837835]
[65]
Canil, C.M.; Moore, M.J.; Winquist, E.; Baetz, T.; Pollak, M.; Chi, K.N.; Berry, S.; Ernst, D.S.; Douglas, L.; Brundage, M.; Fisher, B.; McKenna, A.; Seymour, L. Randomized phase II study of two doses of gefitinib in hormone-refractory prostate cancer: A trial of the National Cancer Institute of Canada-Clinical Trials Group. J. Clin. Oncol., 2005, 23(3), 455-460.
[http://dx.doi.org/10.1200/JCO.2005.02.129] [PMID: 15659491]
[66]
Jamaspishvili, T.; Berman, D.M.; Ross, A.E.; Scher, H.I.; De Marzo, A.M.; Squire, J.A.; Lotan, T.L. Clinical implications of PTEN loss in prostate cancer. Nat. Rev. Urol., 2018, 15(4), 222-234.
[http://dx.doi.org/10.1038/nrurol.2018.9] [PMID: 29460925]
[67]
Schwartz, S.; Wongvipat, J.; Trigwell, C.B.; Hancox, U.; Carver, B.S.; Rodrik-Outmezguine, V.; Will, M.; Yellen, P.; de Stanchina, E.; Baselga, J.; Scher, H.I.; Barry, S.T.; Sawyers, C.L.; Chandarlapaty, S.; Rosen, N. Feedback suppression of PI3Kα signaling in PTEN-mutated tumors is relieved by selective inhibition of PI3Kβ. Cancer Cell, 2015, 27(1), 109-122.
[http://dx.doi.org/10.1016/j.ccell.2014.11.008] [PMID: 25544636]
[68]
Rodrigues, D.N.; Boysen, G.; Sumanasuriya, S.; Seed, G.; Marzo, A.M.D.; de Bono, J. The molecular underpinnings of prostate cancer: Impacts on management and pathology practice. J. Pathol., 2017, 241(2), 173-182.
[http://dx.doi.org/10.1002/path.4826] [PMID: 27753448]
[69]
Carracedo, A.; Ma, L.; Teruya-Feldstein, J.; Rojo, F.; Salmena, L.; Alimonti, A.; Egia, A.; Sasaki, A.T.; Thomas, G.; Kozma, S.C.; Papa, A.; Nardella, C.; Cantley, L.C.; Baselga, J.; Pandolfi, P.P. Inhibition of mTORC1 leads to MAPK pathway activation through a PI3K-dependent feedback loop in human cancer. J. Clin. Invest., 2008, 118(9), 3065-3074.
[http://dx.doi.org/10.1172/JCI34739] [PMID: 18725988]
[70]
Butler, D.E.; Marlein, C.; Walker, H.F.; Frame, F.M.; Mann, V.M.; Simms, M.S.; Davies, B.R.; Collins, A.T.; Maitland, N.J. Inhibition of the PI3K/AKT/mTOR pathway activates autophagy and compensatory Ras/Raf/MEK/ERK signalling in prostate cancer. Oncotarget, 2017, 8(34), 56698-56713.
[http://dx.doi.org/10.18632/oncotarget.18082] [PMID: 28915623]
[71]
Feng, S.; Shao, L.; Castro, P.; Coleman, I.; Nelson, P.S.; Smith, P.D.; Davies, B.R.; Ittmann, M. Combination treatment of prostate cancer with FGF receptor and AKT kinase inhibitors. Oncotarget, 2017, 8(4), 6179-6192.
[http://dx.doi.org/10.18632/oncotarget.14049] [PMID: 28008155]
[72]
Choi, Y.J.; Kim, H.S.; Park, S.H.; Kim, B-S.; Kim, K.H.; Lee, H.J.; Song, H.S.; Shin, D-Y.; Lee, H.Y.; Kim, H-G. Phase II study of dovitinib in patients with castration-resistant prostate cancer (KCSG-GU11-05). Cancer Res. Treat., 2018, 50(4), 1252.
[73]
Shazer, R.L.; Jain, A.; Galkin, A.; Cinman, N.; Nguyen, K.N.; Natale, R.B.; Gross, M.; Green, L.; Bender, L.; Holden, S.; Kaplan, L.; Agus, D.B. Raloxifene, an oestrogen-receptor-β-targeted therapy, inhibits androgen-independent prostate cancer growth: Results from preclinical studies and a pilot phase II clinical trial. BJU Int., 2006, 97(4), 691-697.
[http://dx.doi.org/10.1111/j.1464-410X.2006.05974.x] [PMID: 16536755]
[74]
James, N.D.; Spears, M.R.; Sydes, M.R. Abiraterone in metastatic prostate cancer. N. Engl. J. Med., 2017, 377(17), 1696-1697.
[PMID: 29069563]
[75]
Fizazi, K.; Tran, N.; Fein, L.; Matsubara, N.; Rodriguez-Antolin, A.; Alekseev, B.Y.; Özgüroğlu, M.; Ye, D.; Feyerabend, S.; Protheroe, A.; Sulur, G.; Luna, Y.; Li, S.; Mundle, S.; Chi, K.N. Abiraterone acetate plus prednisone in patients with newly diagnosed high-risk metastatic castration-sensitive prostate cancer (LATITUDE): Final overall survival analysis of a randomised, double-blind, phase 3 trial. Lancet Oncol., 2019, 20(5), 686-700.
[http://dx.doi.org/10.1016/S1470-2045(19)30082-8] [PMID: 30987939]
[76]
Rydzewska, L.H.M.; Burdett, S.; Vale, C.L.; Clarke, N.W.; Fizazi, K.; Kheoh, T.; Mason, M.D.; Miladinovic, B.; James, N.D.; Parmar, M.K.B.; Spears, M.R.; Sweeney, C.J.; Sydes, M.R.; Tran, N.; Tierney, J.F. Adding abiraterone to androgen deprivation therapy in men with metastatic hormone-sensitive prostate cancer: A systematic review and meta-analysis. Eur. J. Cancer, 2017, 84, 88-101.
[http://dx.doi.org/10.1016/j.ejca.2017.07.003] [PMID: 28800492]
[77]
Ciccarese, C.; Nobili, E.; Grilli, D.; Casolari, L.; Rihawi, K.; Gelsomino, F.; Tortora, G.; Massari, F. The safety and efficacy of enzalutamide in the treatment of advanced prostate cancer. Expert Rev. Anticancer Ther., 2016, 16(7), 681-696.
[http://dx.doi.org/10.1080/14737140.2016.1192468] [PMID: 27210425]
[78]
Zhu, J.; Liao, R.; Su, C.; Liang, D.; Wu, J.; Qiu, K.; Li, J. Toxicity profile characteristics of novel androgen-deprivation therapy agents in patients with prostate cancer: A meta-analysis. Expert Rev. Anticancer Ther., 2018, 18(2), 193-198.
[http://dx.doi.org/10.1080/14737140.2018.1419871] [PMID: 29257709]
[79]
Lange, M.; Laviec, H.; Castel, H.; Heutte, N.; Leconte, A.; Léger, I.; Giffard, B.; Capel, A.; Dubois, M.; Clarisse, B.; Coquan, E.; Di Fiore, F.; Gouérant, S.; Bartélémy, P.; Pierard, L.; Fizazi, K.; Joly, F. Impact of new generation hormone-therapy on cognitive function in elderly patients treated for a metastatic prostate cancer: Cog-Pro trial protocol. BMC Cancer, 2017, 17(1), 549.
[http://dx.doi.org/10.1186/s12885-017-3534-8] [PMID: 28814281]
[80]
Schepisi, G.; Farolfi, A.; Conteduca, V.; Martignano, F.; De Lisi, D.; Ravaglia, G.; Rossi, L.; Menna, C.; Bellia, S.; Barone, D.; Gunelli, R.; De Giorgi, U. Immunotherapy for prostate cancer: Where we are headed. Int. J. Mol. Sci., 2017, 18(12), 2627.
[http://dx.doi.org/10.3390/ijms18122627] [PMID: 29206214]
[81]
Rathkopf, D.E.; Antonarakis, E.S.; Shore, N.D.; Tutrone, R.F.; Alumkal, J.J.; Ryan, C.J.; Saleh, M.; Hauke, R.J.; Bandekar, R.; Maneval, E.C.; de Boer, C.J.; Yu, M.K.; Scher, H.I. Safety and antitumor activity of apalutamide (ARN-509) in metastatic castration-resistant prostate cancer with and without prior abiraterone acetate and prednisone. Clin. Cancer Res., 2017, 23(14), 3544-3551.
[http://dx.doi.org/10.1158/1078-0432.CCR-16-2509] [PMID: 28213364]
[82]
Smith, M.R.; Saad, F.; Chowdhury, S.; Oudard, S.; Hadaschik, B.A.; Graff, J.N.; Olmos, D.; Mainwaring, P.N.; Lee, J.Y.; Uemura, H. Lopez-Gitlitz, A.; Trudel, G.C.; Espina, B.M.; Shu, Y.; Park, Y.C.; Rackoff, W.R.; Yu, M.K.; Small, E.J. Apalutamide treatment and metastasis-free survival in prostate cancer. N. Engl. J. Med., 2018, 378(15), 1408-1418.
[http://dx.doi.org/10.1056/NEJMoa1715546] [PMID: 29420164]
[83]
Moilanen, A.M.; Riikonen, R.; Oksala, R.; Ravanti, L.; Aho, E.; Wohlfahrt, G.; Nykänen, P.S.; Törmäkangas, O.P.; Palvimo, J.J.; Kallio, P.J. Discovery of ODM-201, a new-generation androgen receptor inhibitor targeting resistance mechanisms to androgen signaling-directed prostate cancer therapies. Sci. Rep., 2015, 5(1), 12007.
[http://dx.doi.org/10.1038/srep12007] [PMID: 26137992]
[84]
Borgmann, H.; Lallous, N.; Ozistanbullu, D.; Beraldi, E.; Paul, N.; Dalal, K.; Fazli, L.; Haferkamp, A.; Lejeune, P.; Cherkasov, A.; Gleave, M.E. Moving towards precision urologic oncology: Targeting enzalutamide-resistant prostate cancer and mutated forms of the androgen receptor using the novel inhibitor darolutamide (ODM-201). Eur. Urol., 2018, 73(1), 4-8.
[http://dx.doi.org/10.1016/j.eururo.2017.08.012] [PMID: 28851578]
[85]
Wang, A.; Wang, Y.; Meng, X.; Yang, Y. Design, synthesis and biological evaluation of novel thiohydantoin derivatives as potent androgen receptor antagonists for the treatment of prostate cancer. Bioorg. Med. Chem., 2021, 31, 115953.
[http://dx.doi.org/10.1016/j.bmc.2020.115953] [PMID: 33388655]
[86]
Fernández, O.; Afonso, J.; Vázquez, S.; Campos, B.; Lázaro, M.; León, L.; Antón Aparicio, L.M. Metastatic castration-resistant prostate cancer. Anticancer Drugs, 2014, 25(3), 237-243.
[http://dx.doi.org/10.1097/CAD.0000000000000045] [PMID: 24217332]
[87]
Francini, E.; Sweeney, C.J. Docetaxel activity in the era of life-prolonging hormonal therapies for metastatic castration-resistant prostate cancer. Eur. Urol., 2016, 70(3), 410-412.
[http://dx.doi.org/10.1016/j.eururo.2016.05.002] [PMID: 27184379]
[88]
Xu, X.; Ge, R.; Li, L.; Wang, J.; Lu, X.; Xue, S.; Chen, X.; Li, Z.; Bian, J. Exploring the tetrahydroisoquinoline thiohydantoin scaffold blockade the androgen receptor as potent anti-prostate cancer agents. Eur. J. Med. Chem., 2018, 143, 1325-1344.
[http://dx.doi.org/10.1016/j.ejmech.2017.10.031] [PMID: 29117897]
[89]
Xu, X.; Du, Q.; Meng, Y.; Li, Z.; Wu, H.; Li, Y.; Zhao, Z.; Ge, R.; Lu, X.; Xue, S.; Chen, X.; Yang, Y.; Wang, J.; Bian, J. Discovery of pyridine tetrahydroisoquinoline thiohydantoin derivatives with low blood-brain barrier penetration as the androgen receptor antagonists. Eur. J. Med. Chem., 2020, 192, 112196.
[http://dx.doi.org/10.1016/j.ejmech.2020.112196] [PMID: 32169785]
[90]
Zuo, M.; Xu, X.; Xie, Z.; Ge, R.; Zhang, Z.; Li, Z.; Bian, J. Design and synthesis of indoline thiohydantoin derivatives based on enzaluta-mide as antiproliferative agents against prostate cancer. Eur. J. Med. Chem., 2017, 125, 1002-1022.
[http://dx.doi.org/10.1016/j.ejmech.2016.10.049] [PMID: 27810589]
[91]
Markowski, M.C.; De Marzo, A.M.; Antonarakis, E.S. BET inhibitors in metastatic prostate cancer: Therapeutic implications and rational drug combinations. Expert Opin. Investig. Drugs, 2017, 26(12), 1391-1397.
[http://dx.doi.org/10.1080/13543784.2017.1393518] [PMID: 29032717]
[92]
Jin, L.; Garcia, J.; Chan, E.; de la Cruz, C.; Segal, E.; Merchant, M.; Kharbanda, S.; Raisner, R.; Haverty, P.M.; Modrusan, Z.; Ly, J.; Choo, E.; Kaufman, S.; Beresini, M.H.; Romero, F.A.; Magnuson, S.; Gascoigne, K.E. Therapeutic targeting of the CBP/p300 bromodomain blocks the growth of castration-resistant prostate cancer. Cancer Res., 2017, 77(20), 5564-5575.
[http://dx.doi.org/10.1158/0008-5472.CAN-17-0314] [PMID: 28819026]
[93]
Faraji, A.; Oghabi Bakhshaiesh, T.; Hasanvand, Z.; Motahari, R.; Nazeri, E.; Boshagh, M.A.; Firoozpour, L.; Mehrabi, H.; Khalaj, A.; Esmaeili, R.; Foroumadi, A. Design, synthesis and evaluation of novel thienopyrimidine-based agents bearing diaryl urea functionality as potential inhibitors of angiogenesis. Eur. J. Med. Chem., 2021, 209, 112942.
[http://dx.doi.org/10.1016/j.ejmech.2020.112942] [PMID: 33328104]
[94]
Bayrak, S.; Öztürk, C.; Demir, Y.; Alım, Z.; Küfrevioglu, Ö.İ. Purification of polyphenol oxidase from potato and investigation of the inhibitory effects of phenolic acids on enzyme activity. Protein Pept. Lett., 2020, 27(3), 187-192.
[http://dx.doi.org/10.2174/0929866526666191002142301] [PMID: 31577197]
[95]
Demir, Y.; Ceylan, H.; Türkeş, C.; Beydemir, Ş. Molecular docking and inhibition studies of vulpinic, carnosic and usnic acids on polyol pathway enzymes. J. Biomol. Struct. Dyn., 2022, 40(22), 12008-12021.
[http://dx.doi.org/10.1080/07391102.2021.1967195] [PMID: 34424822]
[96]
Li, X.; Chen, G.; Zhang, X.; Zhang, Q.; Zheng, S.; Wang, G.; Chen, Q.H. A new class of flavonol-based anti-prostate cancer agents: Design, synthesis, and evaluation in cell models. Bioorg. Med. Chem. Lett., 2016, 26(17), 4241-4245.
[http://dx.doi.org/10.1016/j.bmcl.2016.07.050] [PMID: 27476422]
[97]
Samaan, N.; Zhong, Q.; Fernandez, J.; Chen, G.; Hussain, A.M.; Zheng, S.; Wang, G.; Chen, Q.H. Design, synthesis, and evaluation of novel heteroaromatic analogs of curcumin as anti-cancer agents. Eur. J. Med. Chem., 2014, 75, 123-131.
[http://dx.doi.org/10.1016/j.ejmech.2014.01.041] [PMID: 24531225]
[98]
Khatik, G.L.; Kaur, J.; Kumar, V.; Tikoo, K.; Nair, V.A. 1,2,4-Oxadiazoles: A new class of anti-prostate cancer agents. Bioorg. Med. Chem. Lett., 2012, 22(5), 1912-1916.
[http://dx.doi.org/10.1016/j.bmcl.2012.01.059] [PMID: 22326399]
[99]
Ravinaik, B.; Ramachandran, D.; Basaveswara Rao, M.V. Design, synthesis and anticancer evaluation of 1,2,4-oxadiazole bearing isoxazole-pyrazole derivatives. Lett. Org. Chem., 2020, 17(5), 352-359.
[http://dx.doi.org/10.2174/1570178616666190725090906]
[100]
Zhang, D.; Asnake, S.; Zhang, J.; Olsson, P.E.; Zhao, G. Discovery of novel 5-methyl-1 H -pyrazole derivatives as potential antiprostate cancer agents: Design, synthesis, molecular modeling, and biological evaluation. Chem. Biol. Drug Des., 2018, 91(6), 1113-1124.
[http://dx.doi.org/10.1111/cbdd.13173] [PMID: 29388326]
[101]
Anil, D.A.; Aydin, B.O.; Demir, Y.; Turkmenoglu, B. Design, synthesis, biological evaluation and molecular docking studies of novel 1H-1,2,3-Triazole derivatives as potent inhibitors of carbonic anhydrase, acetylcholinesterase and aldose reductase. J. Mol. Struct., 2022, 1257, 132613.
[http://dx.doi.org/10.1016/j.molstruc.2022.132613]
[102]
Buza, A.; Türkeş, C.; Arslan, M.; Demir, Y.; Dincer, B.; Nixha, A.R.; Beydemir, Ş. Discovery of novel benzenesulfonamides incorporating 1,2,3-triazole scaffold as carbonic anhydrase I, II, IX, and XII inhibitors. Int. J. Biol. Macromol., 2023, 239, 124232.
[http://dx.doi.org/10.1016/j.ijbiomac.2023.124232] [PMID: 37001773]
[103]
Birgül, K.; Yıldırım, Y.; Karasulu, H.Y.; Karasulu, E.; Uba, A.I.; Yelekçi, K.; Bekçi, H.; Cumaoğlu, A.; Kabasakal, L.; Yılmaz, Ö.; Kü-çükgüzel, Ş.G. Synthesis, molecular modeling, in vivo study and anticancer activity against prostate cancer of (+) (S)-naproxen derivatives. Eur. J. Med. Chem., 2020, 208, 112841.
[http://dx.doi.org/10.1016/j.ejmech.2020.112841] [PMID: 32998089]
[104]
a) Xu, F.; Chen, H.; Xu, J.; Liang, X.; He, X.; Shao, B.; Sun, X.; Li, B. Synthesis, structure–activity relationship and biological evaluation of novel arylpiperzines as α1A/1D-AR subselective antagonists for BPH. Bioorg. Med. Chem., 2015, 23(24), 7735-7742.;
b) Sharma, V.; Das, R.; Sharma, D.; Mujwar, S.; Mehta, D.K. Green chemistry approach towards Piperazine: Anticancer agents. J. Mol. Struct., 2023, 1292, 136089.
[105]
Chen, H.; Xu, F.; Xu, B.B.; Xu, J.Y.; Shao, B.H.; Huang, B.Y.; Yuan, M. Design, synthesis and biological evaluation of novel arylpiperazine derivatives on human prostate cancer cell lines. Chin. Chem. Lett., 2016, 27(2), 277-282.
[http://dx.doi.org/10.1016/j.cclet.2015.09.016]
[106]
Chen, H.; Xu, B.B.; Sun, T.; Zhou, Z.; Ya, H.Y.; Yuan, M. Synthesis and antitumor activity of novel arylpiperazine derivatives containing the saccharin moiety. Molecules, 2017, 22(11), 1857.
[http://dx.doi.org/10.3390/molecules22111857] [PMID: 29109383]
[107]
Chen, H.; Yu, Y.Z.; Tian, X.M.; Wang, C.L.; Qian, Y.N.; Deng, Z.A.; Zhang, J.X.; Lv, D.J.; Zhang, H.B.; Shen, J.L.; Yuan, M.; Zhao, S.C. Synthesis and biological evaluation of arylpiperazine derivatives as potential anti-prostate cancer agents. Bioorg. Med. Chem., 2019, 27(1), 133-143.
[http://dx.doi.org/10.1016/j.bmc.2018.11.029] [PMID: 30482547]
[108]
Chen, H.; Wang, C.L.; Sun, T.; Zhou, Z.; Niu, J.X.; Tian, X.M.; Yuan, M. Synthesis, biological evaluation and SAR of naftopidil-based arylpiperazine derivatives. Bioorg. Med. Chem. Lett., 2018, 28(9), 1534-1539.
[http://dx.doi.org/10.1016/j.bmcl.2018.03.070] [PMID: 29615343]
[109]
Chen, H.; Zhang, J.; Hu, P.; Qian, Y.; Li, J.; Shen, J. Synthesis, biological evaluation and molecular docking of 4-Amino-2H-benzo[h]chromen-2-one (ABO) analogs containing the piperazine moiety. Bioorg. Med. Chem., 2019, 27(20), 115081.
[http://dx.doi.org/10.1016/j.bmc.2019.115081] [PMID: 31493989]
[110]
Chen, H.; Qian, Y.; Jia, H.; Yu, Y.; Zhang, H.; Shen, J.; Zhao, S. Synthesis and pharmacological evaluation of naftopidil-based arylpiperazine derivatives containing the bromophenol moiety. Pharmacol. Rep., 2020, 72(4), 1058-1068.
[http://dx.doi.org/10.1007/s43440-019-00041-w] [PMID: 32048266]
[111]
Kandil, S.; Lee, K.Y.; Davies, L.; Rizzo, S.A.; Dart, D.A.; Westwell, A.D. Discovery of deshydroxy bicalutamide derivatives as androgen receptor antagonists. Eur. J. Med. Chem., 2019, 167, 49-60.
[http://dx.doi.org/10.1016/j.ejmech.2019.01.054] [PMID: 30743097]
[112]
Pertusati, F.; Ferla, S.; Bassetto, M.; Brancale, A.; Khandil, S.; Westwell, A.D.; McGuigan, C. A new series of bicalutamide, enzalutamide and enobosarm derivatives carrying pentafluorosulfanyl (SF5) and pentafluoroethyl (C2F5) substituents: Improved antiproliferative agents against prostate cancer. Eur. J. Med. Chem., 2019, 180, 1-14.
[http://dx.doi.org/10.1016/j.ejmech.2019.07.001] [PMID: 31288149]
[113]
Kandil, S.B.; McGuigan, C.; Westwell, A.D. Synthesis and biological evaluation of bicalutamide analogues for the potential treatment of prostate cancer. Molecules, 2020, 26(1), 56.
[http://dx.doi.org/10.3390/molecules26010056] [PMID: 33374450]
[114]
Ferla, S.; Bassetto, M.; Pertusati, F.; Kandil, S.; Westwell, A.D.; Brancale, A.; McGuigan, C. Rational design and synthesis of novel anti-prostate cancer agents bearing a 3,5-bis-trifluoromethylphenyl moiety. Bioorg. Med. Chem. Lett., 2016, 26(15), 3636-3640.
[http://dx.doi.org/10.1016/j.bmcl.2016.06.001] [PMID: 27301368]
[115]
Li, X.; Lee, M.; Chen, G.; Zhang, Q.; Zheng, S.; Wang, G.; Chen, Q.H. 3-O-Substituted-3′,4′,5′-trimethoxyflavonols: Synthesis and cell-based evaluation as anti-prostate cancer agents. Bioorg. Med. Chem., 2017, 25(17), 4768-4777.
[http://dx.doi.org/10.1016/j.bmc.2017.07.022] [PMID: 28760528]
[116]
Rajaram, P.; Jiang, Z.; Chen, G.; Rivera, A.; Phasakda, A.; Zhang, Q.; Zheng, S.; Wang, G.; Chen, Q.H. Nitrogen-containing derivatives of O-tetramethylquercetin: Synthesis and biological profiles in prostate cancer cell models. Bioorg. Chem., 2019, 87, 227-239.
[http://dx.doi.org/10.1016/j.bioorg.2019.03.047] [PMID: 30904813]
[117]
Vue, B.; Zhang, S.; Zhang, X.; Parisis, K.; Zhang, Q.; Zheng, S.; Wang, G.; Chen, Q.H. Silibinin derivatives as anti-prostate cancer agents: Synthesis and cell-based evaluations. Eur. J. Med. Chem., 2016, 109, 36-46.
[http://dx.doi.org/10.1016/j.ejmech.2015.12.041] [PMID: 26748997]
[118]
Vue, B.; Zhang, S.; Vignau, A.; Chen, G.; Zhang, X.; Diaz, W.; Zhang, Q.; Zheng, S.; Wang, G.; Chen, Q.H. O-aminoalkyl-o-trimethyl-2, 3-dehydrosilybins: Synthesis and in vitro effects towards prostate cancer cells. Molecules, 2018, 23(12), 3142.
[http://dx.doi.org/10.3390/molecules23123142] [PMID: 30501133]
[119]
Jiang, Z.; Sekhon, A.; Oka, Y.; Chen, G.; Alrubati, N.; Kaur, J.; Orozco, A.; Zhang, Q.; Wang, G.; Chen, Q.-H. 3-O-Substituted-2, 3-dehydrosilybins selectively suppress androgen receptor-positive LNCaP prostate cancer cell proliferation. Nat. Prod. Commun., 2020, 15(5), 1934578X20922326.
[120]
Bassetto, M.; Ferla, S.; Giancotti, G.; Pertusati, F.; Westwell, A.D.; Brancale, A.; McGuigan, C. Rational design and synthesis of novel phenylsulfonyl-benzamides as anti-prostate cancer agents. MedChemComm, 2017, 8(7), 1414-1420.
[http://dx.doi.org/10.1039/C7MD00164A] [PMID: 30108852]
[121]
Bindu, B.; Vijayalakshmi, S.; Manikandan, A. Discovery, synthesis and molecular substantiation of N-(benzo[d]thiazol-2-yl)-2-hydroxyquinoline-4-carboxamides as anticancer agents. Bioorg. Chem., 2019, 91, 103171.
[http://dx.doi.org/10.1016/j.bioorg.2019.103171] [PMID: 31382059]
[122]
Kazui, Y.; Fujii, S.; Yamada, A.; Ishigami-Yuasa, M.; Kagechika, H.; Tanatani, A. Structure-activity relationship of novel (benzoylaminophenoxy)phenol derivatives as anti-prostate cancer agents. Bioorg. Med. Chem., 2018, 26(18), 5118-5127.
[http://dx.doi.org/10.1016/j.bmc.2018.09.008] [PMID: 30228001]
[123]
Soliman, D.H.; Farrag, A.M.; Omran, O. Design, synthesis and insilico studies of novel chalcones as anti-prostate cancer and cathepsin B inhibitors. J. Appl. Pharm. Sci, 2017, 7(07), 010-020.
[124]
Kumar, C.; Rasool, R.U.; Iqra, Z.; Nalli, Y.; Dutt, P.; Satti, N.K.; Sharma, N.; Gandhi, S.G.; Goswami, A.; Ali, A. Alkyne–azide cycloaddition analogues of dehydrozingerone as potential anti-prostate cancer inhibitors via the PI3K/Akt/NF-kB pathway. MedChemComm, 2017, 8(11), 2115-2124.
[http://dx.doi.org/10.1039/C7MD00267J] [PMID: 30108729]
[125]
Gomha, S.M.; Abdel-aziz, H.M.; Badrey, M.G.; Abdulla, M.M. efficient synthesis of some new 1, 3, 4‐thiadiazoles and 1, 2, 4‐triazoles linked to pyrazolylcoumarin ring system as potent 5α‐reductase inhibitors. J. Heterocycl. Chem., 2019, 56(4), 1275-1282.
[http://dx.doi.org/10.1002/jhet.3487]
[126]
Xie, H.; Liang, J.J.; Wang, Y.L.; Hu, T.X.; Wang, J.Y.; Yang, R.H.; Yan, J.K.; Zhang, Q.R.; Xu, X.; Liu, H.M.; Ke, Y. The design, synthesis and anti-tumor mechanism study of new androgen receptor degrader. Eur. J. Med. Chem., 2020, 204, 112512.
[http://dx.doi.org/10.1016/j.ejmech.2020.112512] [PMID: 32736229]
[127]
Mochona, B.; Qi, X.; Euynni, S.; Sikazwi, D.; Mateeva, N.; Soliman, K.F. Design and evaluation of novel oxadiazole derivatives as potential prostate cancer agents. Bioorg. Med. Chem. Lett., 2016, 26(12), 2847-2851.
[http://dx.doi.org/10.1016/j.bmcl.2016.04.058] [PMID: 27156770]
[128]
(a) El-Din, M.M.G.; El-Gamal, M.I.; Abdel-Maksoud, M.S.; Yoo, K.H.; Oh, C-H. Synthesis and broad-spectrum antiproliferative activity of diarylamides and diarylureas possessing 1, 3, 4-oxadiazole derivatives. Bioorganic Med. Chem. Lett., 2015, 25(8), 1692-1699.;
(b) Kumar, M.; Rani, I.; Mujwar, S.; Narang, R.; Devgun, M.; Khokra, S.L. In-silico design, synthesis, and pharmacological evaluation of oxadiazole-based selective Cyclo-oxygenase-2 inhibitors. Assay Drug Dev. Technol., 2023, 21(4), 166-179.
[PMID: 37318837]
[129]
Chauthe, S.K.; Mahajan, S.; Rachamalla, M.; Tikoo, K.; Singh, I.P. Synthesis and evaluation of linear furanocoumarins as potential anti-breast and anti-prostate cancer agents. Med. Chem. Res., 2015, 24(6), 2476-2484.
[http://dx.doi.org/10.1007/s00044-014-1312-6]
[130]
Zhang, X.; Wang, R.; Perez, G.R.; Chen, G.; Zhang, Q.; Zheng, S.; Wang, G.; Chen, Q.H. Design, synthesis, and biological evaluation of 1,9-diheteroarylnona-1,3,6,8-tetraen-5-ones as a new class of anti-prostate cancer agents. Bioorg. Med. Chem., 2016, 24(19), 4692-4700.
[http://dx.doi.org/10.1016/j.bmc.2016.08.006] [PMID: 27543391]
[131]
Bhati, S.; Kaushik, V.; Singh, J. In silico identification of piperazine linked thiohydantoin derivatives as novel androgen antagonist in prostate cancer treatment. Int. J. Pept. Res. Ther., 2019, 25(3), 845-860.
[http://dx.doi.org/10.1007/s10989-018-9734-5]
[132]
Arjun, H.A.; Elancheran, R.; Manikandan, N.; Lakshmithendral, K.; Ramanathan, M.; Bhattacharjee, A.; Lokanath, N.K.; Kabilan, S. Design, synthesis, and biological evaluation of (E)-N′-((1-chloro-3, 4-dihydronaphthalen-2-yl) methylene) benzohydrazide derivatives as anti-prostate cancer agents. Front Chem., 2019, 7, 474.
[http://dx.doi.org/10.3389/fchem.2019.00474] [PMID: 31355179]
[133]
Cao, S.; Cao, R.; Liu, X.; Luo, X.; Zhong, W. Design, synthesis and biological evaluation of novel benzothiazole derivatives as selective PI3Kβ inhibitors. Molecules, 2016, 21(7), 876.
[http://dx.doi.org/10.3390/molecules21070876] [PMID: 27384552]
[134]
Gomha, S.M.; Badry, M.G.; Abdalla, M.M. Isoxazolopyrimidinethione and isoxazolopyridopyrimidinethione derivatives: Key intermediates for synthesis of novel fused triazoles as potent 5α-reductase inhibitors and anti-prostate cancer. J. Heterocycl. Chem., 2016, 53(2), 558-565.
[http://dx.doi.org/10.1002/jhet.2417]
[135]
Mohareb, R.M.; Abbas, N.S.; Mohamed, A.A. Synthesis of tetrahydropyrazolo-quinazoline and tetrahydropyrazolo-pyrimidocarbazole derivatives as potential anti-prostate cancer agents and Pim-1 kinase inhibitors. Med. Chem. Res., 2017, 26(6), 1073-1088.
[http://dx.doi.org/10.1007/s00044-017-1811-3]
[136]
Saravanan, K.; Elancheran, R.; Divakar, S.; Anand, S.A.A.; Ramanathan, M.; Kotoky, J.; Lokanath, N.K.; Kabilan, S. Design, synthesis and biological evaluation of 2-(4-phenylthiazol-2-yl) isoindoline-1,3-dione derivatives as anti-prostate cancer agents. Bioorg. Med. Chem. Lett., 2017, 27(5), 1199-1204.
[http://dx.doi.org/10.1016/j.bmcl.2017.01.065] [PMID: 28162857]
[137]
Szumilak, M.; Galdyszynska, M.; Dominska, K.; Stanczak, A.; Piastowska-Ciesielska, A.W. Anticancer activity of some polyamine derivatives on human prostate and breast cancer cell lines. Acta Biochim. Pol., 2017, 64(2), 307-313.
[http://dx.doi.org/10.18388/abp.2016_1416] [PMID: 28411366]
[138]
He, Z.X.; Huo, J.L.; Gong, Y.P.; An, Q.; Zhang, X.; Qiao, H.; Yang, F.F.; Zhang, X.H.; Jiao, L.M.; Liu, H.M.; Ma, L.Y.; Zhao, W. Design, synthesis and biological evaluation of novel thiosemicarbazone-indole derivatives targeting prostate cancer cells. Eur. J. Med. Chem., 2021, 210, 112970.
[http://dx.doi.org/10.1016/j.ejmech.2020.112970] [PMID: 33153765]
[139]
Anand, S.A.A.; George, K.; Thomas, N.S.; Kabilan, S. Synthesis, characterization and antitumor activities of some novel thiazinones and thiosemicarbazones derivatives. Phosphorus Sulfur Silicon Relat. Elem., 2020, 195(10), 821-829.
[http://dx.doi.org/10.1080/10426507.2020.1757672]
[140]
Coşkun, G.; Djikic, T.; Hayal, T.; Türkel, N.; Yelekçi, K.; Şahin, F.; Küçükgüzel, Ş. Synthesis, molecular docking and anticancer activity of diflunisal derivatives as cyclooxygenase enzyme inhibitors. Molecules, 2018, 23(8), 1969.
[http://dx.doi.org/10.3390/molecules23081969] [PMID: 30082676]
[141]
Li, K.; Li, Y.; Zhou, D.; Fan, Y.; Guo, H.; Ma, T.; Wen, J.; Liu, D.; Zhao, L. Synthesis and biological evaluation of quinoline derivatives as potential anti-prostate cancer agents and Pim-1 kinase inhibitors. Bioorg. Med. Chem., 2016, 24(8), 1889-1897.
[http://dx.doi.org/10.1016/j.bmc.2016.03.016] [PMID: 26979485]
[142]
Britton, R.G.; Horner-Glister, E.; Pomenya, O.A.; Smith, E.E.; Denton, R.; Jenkins, P.R.; Steward, W.P.; Brown, K.; Gescher, A.; Sale, S. Synthesis and biological evaluation of novel flavonols as potential anti-prostate cancer agents. Eur. J. Med. Chem., 2012, 54, 952-958.
[http://dx.doi.org/10.1016/j.ejmech.2012.06.031] [PMID: 22789812]
[143]
Khatik, G.L.; Kaur, J.; Kumar, V.; Tikoo, K.; Venugopalan, P.; Nair, V.A. Aldol derivatives of thioxoimidazolidinones as potential anti-prostate cancer agents. Eur. J. Med. Chem., 2011, 46(8), 3291-3301.
[http://dx.doi.org/10.1016/j.ejmech.2011.04.050] [PMID: 21600678]
[144]
Kumar, V.; Rachamalla, M.; Nandekar, P.; Khatik, G.L.; Sangamwar, A.T.; Tikoo, K.; Nair, V.A. Design and synthesis of optically pure 3-aryl-6-methyl-2-thioxotetrahydropyrimidin-4(1H)-ones as anti-prostate cancer agents. RSC Advances, 2014, 4(71), 37868-37877.
[http://dx.doi.org/10.1039/C4RA06391K]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy